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What is a moduli space? Why do we study moduli spaces?

Part I

Introduction to moduli spaces



What is a moduli space? Why do we study moduli spaces?

Classification problems

Problem

Find all possible mathematical objects with given conditions or axioms.

• Finite dimensional vector spaces up to isomorphism

• Cyclic groups

• Finite simple groups

• Poincaré conjecture: a consequence of the classification of three

dimensional compact manifolds



What is a moduli space? Why do we study moduli spaces?

Moduli spaces

In many natural geometric classification problems,

• there are infinitely many objects,

• but it depends on several parameters,

• parameters form a space (with good structures).

A moduli space is a space of parameters we need to classify certain

geometric objects.

In concrete terms, a moduli space is a dictionary of geometric objects.



What is a moduli space? Why do we study moduli spaces?

Toy example: moduli space of circles

To describe a circle on R2, we need two pieces of information:

the center (x0, y0) and the radius r.

Also for any choice of (x0, y0) and r > 0, we can construct a circle

(x− x0)2 + (y − y0)2 = r2.

Therefore, the moduli space MC of circles on R2 is

MC = {(x0, y0, r) ∈ R3 | r > 0},

which is an open subset of R3.



What is a moduli space? Why do we study moduli spaces?

Universal family

Define

UC = {(x, y, x0, y0, r) ∈ R5 | (x− x0)2 + (y − y0)2 = r2, r > 0}.

There is a map

π : UC → MC

(x, y, x0, y0, r) 7→ (x0, y0, r).

For a point (1, 2, 3),

π−1(1, 2, 3) = {(x, y) ∈ R2 | (x− 1)2 + (y − 2)2 = 32}.

• Moduli space MC has all information about circles on R2.

• UC contains all circles on R2.

UC is called the universal family of MC .



What is a moduli space? Why do we study moduli spaces?

Moduli space of triangles and two lessons

A triangle on R2 can be described by three vertices,

v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3).

To get a triangle, three vertices v1, v2, v3 must not be collinear.

Set

C = {(v1, v2, v3) ∈ R6 | v1, v2, v3 are collinear}

Then the moduli space MT of triangles seems to be

MT = R6 − C.

But...



What is a moduli space? Why do we study moduli spaces?

Need quotient spaces

But three points v2, v3, v1 define the same triangle.

More generally, a permutation of v1, v2, v3 defines the same triangle.

In algebraic terms, there is a S3 group action on R6 − C and

MT = (R6 − C)/S3,

the quotient space (or orbit space).

Many moduli spaces are constructed in this way.

Lesson: Group action is a very important tool in moduli theory.



What is a moduli space? Why do we study moduli spaces?

Moduli of degenerated objects

MT is not compact.

There are many tools to study the geometry of compact spaces.

⇒ Want to compactify it.

MT is not compact (closed) because

• Sometimes limt→0(v1(t), v2(t), v3(t)) is a triple of collinear points.

• Sometimes limt→0 v1(t) diverges.

We can remedy this problem by

• allow degenerated triangles,

• consider triangles in a projective plane instead of R2.

Lesson: A compactification of a moduli space may a moduli space of

given objects and their degenerations.



What is a moduli space? Why do we study moduli spaces?

Why do we study moduli spaces?

Many mathematical problems can be solved by studying geometry of

moduli spaces.

Classical enumeration problems:

• How many lines in a plane pass through given 2 points?

• How many lines in a three dimensional vector space intersect given

4 general lines?

1 0

2 1

3 ∞
4 none of them



What is a moduli space? Why do we study moduli spaces?

Approach using moduli space

ML: moduli space of lines in a three dimensional space.

`1, `2, `3, `4: four given lines.

Si = {` ∈ML | ` ∩ `i 6= ∅}.

We want to find

|S1 ∩ S2 ∩ S3 ∩ S4|.

By studying geometry of ML (using cohomology), one can obtain the

answer 2.

• (Steiner’s problem) Find the number of conics which are tangent

to given 5 general lines. Answer: 3264.



What is a moduli space? Why do we study moduli spaces?

Using degeneration

Degeneration on a moduli space is very useful technique to prove many

problems. Here is a toy example.

Question

Show that the sum of angle defects of a triangle is always 360◦.

• When we deform our triangle to smaller similar triangles, the sum

of angle defects is a constant.

• For the degenerated triangle (a point), the sum is 360◦.



What is a moduli space? Why do we study moduli spaces?

Using degeneration

Degeneration on a moduli space is very useful technique to prove many

problems. Here is a toy example.

Question

Show that the sum of angle defects of a triangle is always 360◦.

• When we deform our triangle to smaller similar triangles, the sum

of angle defects is a constant.

• For the degenerated triangle (a point), the sum is 360◦.



Birational geometry of moduli spaces

Part II

Birational geometry of moduli spaces



Birational geometry of moduli spaces

Birational geometry

One way to study a space: compare it with other similar spaces.

Two spaces A,B are birational if they share a common open dense

subset O.

f : A→ B is called a birational morphism if it preserves O.

If B is simpler than A,

Geometric data of B ⇒ Understand the geometry of A.



Birational geometry of moduli spaces

Comparison of dictionaries

We can describe the birational geometry of moduli spaces as a

comparison of dictionaries.

There is an one-to-one correspondence between many Korean words

and English words, but...

Korean English

설거지하다(dish)

세수하다(face) ↔ wash

씻다(hand)

이다 ↔ be

have been



Birational geometry of moduli spaces

Typical situations

Let X,Y be two birational moduli spaces.

• There is a surjective morphism f : X → Y . X is finer than Y .

• There is no birational morphism between X and Y , but there is Z

which has surjective birational morphisms from X and Y .
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Birational geometry of moduli spaces

Goals of the birational geometry of a moduli space M

• Find new moduli spaces which are birational to M .

• Understand the difference between them.

• Study geometric properties of M using birational moduli spaces.

• Interpret them using some theoretical frameworks.

• Classify birational models.



Moduli space of stable rational curves

Part III

Moduli spaces of stable rational curves



Moduli space of stable rational curves

Moduli spaces in algebraic geometry

Moduli theory is particularly useful in algebraic geometry because many

moduli spaces are finite dimensional spaces (variety, scheme, stack,

· · · ).

• Grassmannian G(k, n): moduli space of k-dimensional sub

vectorspaces of Cn.

• Hilbert scheme Hilb(X): moduli space of subschemes of a fixed

scheme X.

• Mg: moduli space of smooth algebraic curves of genus g.

• MC(r): moduli space of rank r vector bundles over a curve C.

My favorite is the moduli space M0,n of stable rational curves.



Moduli space of stable rational curves

Pointed rational curves

A smooth rational curve is a complex curve isomorphic to CP1.

• CP1 = C ∪ {∞}

• Topologically, it is homeomorphic to S2, a 2-dimensional sphere.

An n-pointed smooth rational curve is (CP1, p1, · · · , pn) where

p1, · · · , pn are distinct points on CP1.



Moduli space of stable rational curves

Pointed rational curves

Invertible linear fractions act on CP1 as

z 7→ az + b

cz + d
.

Two n-pointed smooth rational curves (CP1, p1, · · · , pn) and

(CP1, q1, · · · , qn) are isomorphic if there exists an invertible linear

fraction f such that f(pi) = qi.

Lemma

For any three distinct points a, b, c ∈ CP1, there exists a unique linear

fraction f such that f(a) = 0, f(b) = 1, f(c) =∞.

So we may assume that p1 = 0, p2 = 1, p3 =∞.



Moduli space of stable rational curves

Moduli of n-pointed smooth rational curves

Definition

M0,n is the moduli space of isomorphism classes of n-pointed smooth

rational curves.

M0,n = (CP1 − {0, 1,∞})n−3 − {pi = pj for some i 6= j}

= (C− {0, 1})n−3 − {pi = pj for some i 6= j}

• Open dense subset of Cn−3 ⇒ smooth complex manifold

• dimM0,n = n− 3

• But it is NOT compact. (some points may collide at a point)

• Want to find a nice compactification.



Moduli space of stable rational curves

Degeneration of n-pointed rational curves

When two or more points approaches, make a bubble at that point and

distribute the points on the bubble.

As a result, we can get a singular curve with distinct points at the

smooth part.



Moduli space of stable rational curves

Moduli space of stable rational curves

Definition

An n-pointed complex curve (C, p1, · · · , pn) is rational if all

components are isomorphic to CP1 and there is no cycle of

components. An n-pointed rational curve (C, p1, · · · , pn) is stable if

• At a singular point, locally it looks like xy = 0 in C2,

• pi’s are distinct smooth points,

• Each component of C has at least three special points.



Moduli space of stable rational curves

Moduli space of stable rational curves

Definition

M0,n is the moduli space of isomorphism classes of n-pointed stable

rational curves.

• It is a compactification of M0,n.

• It has dimension n− 3.

• It is a projective complex manifold.

• Cohomology ring is known.

• Its birational geometry is hard and very complicated.



Moduli space of stable rational curves

Why is it interesting?

1. By (Gibney-Keel-Morrison) and (Coskun-Harris-Starr), several

questions about other moduli spaces of curves are reduced to the

questions about M0,n.

2. It has many different directions of generalization.

• Moduli spaces of stable hyperplane arrangements

• Chow quotient Gr(k, n)///(C∗)n

• Cross ratio varieties for root systems

• Spaces of pointed trees of projective spaces



Moduli space of stable rational curves

Why is it interesting?

3. It has very rich combinatorial structures.

• The universal family U0,n over M0,n is isomorphic to M0,n+1.

• An irreducible component of M0,n −M0,n is isomorphic to

M0,i ×M0,j .

• Consider a hypersimplex

∆(2, n) = {(x1, · · · , xn) | 0 ≤ xi ≤ 1,
∑

xi = 2}.

There is an one-to-one correspondence between the topological

strata of M0,n and decompositions of ∆(2, n) into matroid

polytopes.

• Limit computation in M0,n ⇔ Geometry of Bruhat-Tits building

PGL2C((z))/PGL2C[[z]]



Birational geometry of moduli of stable rational curves

Part IV

Birational geometry of moduli space of stable

rational curves



Birational geometry of moduli of stable rational curves

Three ways to approach - I. Algebraic stack

Define a moduli problem set theoretically, and show that there is an

algebraic moduli space in a good algebraic category.

Theorem (Smyth, 09)

As algebraic stacks, there are many moduli spaces M0,n(Z) which are

birational to M0,n. They obtained by allowing worse singularities and

collisions of some points. They depend on certain combinatorial data Z.

• By definition, it has a modular meaning.

• Hard to obtain good geometric properties, for example projectivity.



Birational geometry of moduli of stable rational curves

Three ways to approach - I. Algebraic stack

Example. (Hassett, 03) Define a new moduli problem:

Fix a weight 0 < w ≤ 1. (C, p1, · · · , pn) is w-stable if

• At a singular point, locally it looks like xy = 0 in C2,

• pi’s are smooth points, but k ≤ 1/w points can collide.

• For each component C ′, w ·#|pts on C ′|+ #|singular pts| > 2.

The moduli space of weighted stable curves M0,A of w-stable curves is

an example of M0,n(Z).



Birational geometry of moduli of stable rational curves

Three ways to approach - II. Construction using GIT

A standard technique of construction of moduli space is taking a

quotient space of a larger moduli space.

In algebraic geometry, we use geometric invariant theory (GIT) quotient

to obtain a projective quotient space.

Theorem (Swinarski, 08)

For any weight data A, Mg,A can be constructed as a GIT quotient of

a closed subvariety of Hilb(PN )× (PN )n for a certain N .

Theorem (Giansiracusa, Jensen, M, 11)

Many of known birational models of M0,n can be constructed by a GIT

quotient Ud,n//LSLd+1 of a closed subvariety of Chow1,d(Pd)× (Pd)n.

In particular, we can prove the projectivity of some of M0,n(Z).



Birational geometry of moduli of stable rational curves

Three ways to approach - III. Mori’s theory

For a pair (X,D) of a smooth projective variety X and a divisor

(linear combination of codimension 1 subvarieties) D with some

technical assumptions, one can construct a birational model as

X(D) := Proj
⊕
m≥0

H0(X,OX(mD)).

Fakhruddin described a way to study a new family of divisors on M0,n

so called conformal block divisors originated from the conformal field

theory and the representation theory of affine Lie algebras.

Question

Is there any connection between these three approaches?



Birational geometry of moduli of stable rational curves

Interaction of three approaches - several results

For (C, p1, · · · , pn) ∈M0,n, take a cotangent space of C at pi.

It forms a rank 1 bundle Li on M0,n.

ψi := c1(Li)

Theorem (M, 11)

Let A = (a1, a2, · · · , an) be a weight datum.

M0,n(K +

n∑
i=1

aiψi) ∼= M0,A

where K is the canonical divisor of M0,n.



Birational geometry of moduli of stable rational curves

Interaction of three approaches - several results

Theorem (Jensen, Gibney, M, Swinarski, 12)

For any nontrivial symmetric sl2 weight 1 conformal block divisor

D(sl2, `, (1, 1, · · · , 1)),

M0,n(D(sl2, `, (1, 1, · · · , 1))) ∼= Ud,n//(γ,w)SLd+1,

where d = bn2 c − `, γ = `−1
`+1 , and w = 1

`+1 .



Birational geometry of moduli of stable rational curves

Application to geometry of moduli spaces

Theorem (M, 11)

There is an explicit inductive algorithm to compute Poincaré

polynomial Pt(M0,A) =
∑
k≥0 dimHk(M0,A,Q)tk of M0,A.

M0,5·1 1 + 5t2 + t4

M0,6·1 1 + 16t2 + 16t4 + t6

M0,7·1 1 + 42t2 + 127t4 + 42t6 + t8

M0,7·1/3 1 + 7t2 + 22t4 + 7t6 + t8

M0,8·1 1 + 99t2 + 715t4 + 715t6 + 99t8 + t10

M0,8·1/3 1 + 43t2 + 99t6 + 99t8 + 43t8 + t10

M0,9·1 1 + 219t2 + 3292t4 + 7723t6 + 3292t8 + 219t10 + t12

M0,9·1/3 1 + 135t2 + 604t4 + 975t6 + 604t8 + 135t10 + t12

M0,9·1/4 1 + 9t2 + 37t4 + 93t6 + 37t8 + 9t10 + t12

M0,10·1 1 + 466t2 + 13333t4 + 63173t6 + 63173t8 + 13333t10 + 466t12 + t14

M0,10·1/3 1 + 346t2 + 3553t4 + 8173t6 + 8173t8 + 3553t10 + 346t12 + t14

M0,10·1/4 1 + 136t2 + 298t4 + 508t6 + 508t8 + 298t10 + 136t12 + t14



Birational geometry of moduli of stable rational curves

Application to geometry of moduli spaces

M0(Pr, d): moduli space of stable maps of genus 0 to Pr of degree d.

· · · a compactification of the moduli space of smooth rational curves in

Pr.

Theorem (Kiem, M, 10)

H∗(M0(Pr, 2),Q) = Q[ξ, α2, ρ]/〈(ρ+ 2α+ ξ)r+1 + (ρ− 2α+ ξ)r+1, ξr+1ρ

(ρ+ 2α+ ξ)r+1 − ξr+1

ρ+ 2α
+

(ρ− 2α+ ξ)r+1 − ξr+1

ρ− 2α
〉

H∗(M0(P∞, 3),Q) = Q[ξ, α2, ρ31, ρ
2
2, ρ3, σ]/〈α2ρ31, ρ

3
1σ, σ

2 − α2ρ23〉

Pt(M0(Pr, 3)) =

(
1− t2r+10

1− t6 + 2
t4 − t2r+4

1− t4

)
(1− t2r+2)2(1− t2r)
(1− t2)2(1− t4)
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Current projects

1. ALL known birational moduli spaces of M0,n are contractions of

M0,n.

Problem

Construct a modular flip of M0,n.

One way is to combine the idea of KKO compactification,

Fulton-MacPherson space.

2. There are interesting combinatorial problems related to

• projectivity of Smyth’s spaces (⇔ combinatorics of matroid

decompositions),

• effective divisors on M0,n (⇔ combinatorics of multinomials).
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Thank you!
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