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Moduli Spaces

Han-Bom Moon Birational Geometry of Moduli Spaces



Classification Problem

Problem

Find all possible mathematical objects with given conditions or axioms.

Smooth plane conics: circle, ellipse, parabola, and hyperbola

Finite dimensional vector spaces

Finite cyclic groups

Finite simple groups

Poincaré conjecture (Perelman’s theorem, $1,000,000!): a
consequence of the classification of three dimensional compact
manifolds
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Classification Problem

Question

Describe all circles on the plane.

We need to know the center (x0, y0) and the radius r.

(X − x0)2 + (Y − y0)2 = r2

The space of circles:

MC = {(x0, y0, r) ∈ R3 | r > 0} = R× R× R+ ⊂ R3

MC : the moduli space of circles.

Infinitely many objects, finite parameters.

MC is a topological space.
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Moduli Spaces

Definition

A moduli space is a space parametrizing a certain kind of geometric
object.

We may think a moduli space as a dictionary of geometric objects.
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Moduli Space of Triangles

A triangle on the plane can be described by three vertices:

v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3).

To get a triangle, three vertices v1, v2, v3 must not be collinear.

C = {(v1, v2, v3) ∈ R6 | v1, v2, v3 are collinear}

Then the moduli space MT of triangles seems to be

MT = R6 − C,

but...
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Moduli Space of Triangles

But three points v2, v3, v1 define the same triangle.

More generally, a permutation of v1, v2, v3 defines the same triangle.

There is an S3-group action on R6 − C and

MT = (R6 − C)/S3,

the quotient space (or orbit space).

Many moduli spaces are constructed in this way.

Lesson

Group action is a very important tool in the moduli theory.
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Moduli Space of Triangles

MT is not compact, because

1 Sometimes lim
t→0

(v1(t), v2(t), v3(t)) is a triple of collinear points.

2 Sometimes lim
t→0

(v1(t), v2(t), v3(t)) diverges.

We can remedy these problems by

1 allowing degenerated triangles,

2 considering triangles in a projective space P2 instead of R2.

Lesson

A compactification of a moduli space may be a moduli space of given
objects and their degenerations.
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Moduli Spaces in Algebraic Geometry

Algebraic geometry is a study of geometric figures (algebraic varieties)
which are zero sets of polynomials.

It is a nice field for moduli theory: many moduli spaces are finite
dimensional algebraic varieties.

Three typical examples in algebraic geometry

Abstract varieties: moduli space Mg of genus g Riemann surfaces (=
complex curves)

Subvarieties: moduli space Hilb(X) of subvarieties of a fixed variety
X.

Geometric structures: moduli space MX(r) of rank r vector bundles
on a fixed variety X.

Han-Bom Moon Birational Geometry of Moduli Spaces



Why do we study Moduli Spaces? - 1

Moduli spaces are explicit examples of higher dimensional varieties.

An algebraic variety in C1000 defined by 10,000 equations · · · What is its
dimension? Is it smooth? connected? nonempty?

For many moduli spaces,

1 local geometry (dimension, smoothness) ↔ homological algebra

2 global geometry (topological invariants) can be studied without
defining equations.

Laboratory mouse for algebraic geometers:

Toric varieties (varieties which can be studied combinatorially)

Moduli spaces
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Why do we study Moduli Spaces? - 2

To study geometry of parametrized objects.

Question

Show that the sum of angle defects of a triangle is always 360◦.

When we deform our triangle to smaller similar triangles, the sum of
angle defects is a constant.

For the degenerated triangle (a point), the sum is 360◦.
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Why do we study Moduli Spaces? - 3

Many mathematical problems can be solved by studying geometry of
moduli spaces.

Problem

How many lines in a three dimensional vector space intersect given 4
general lines?

1 0

2 1

3 ∞
4 none of them
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Why do we study Moduli Spaces? - 3

Solution:

ML: moduli space of lines in a three dimensional space

`1, `2, `3, `4: four given lines

Si := {` ∈ ML | ` ∩ `i 6= ∅}

Want: |S1 ∩ S2 ∩ S3 ∩ S4|

By studying the geometry of ML (via its cohomology ring), we obtain
that the answer is 2.
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Why do we study Moduli Spaces? - 3

Problem (Steiner’s problem 1848)

Find the number of conics which are tangent to given 5 general lines.

Incorrect answer of Steiner: 65 = 7776

Correct answer (Chasles 1868) : 3264

Rigorous proof: (Fulton-MacPherson 1978)
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Why do we study Moduli Spaces? - 4

They are essential in modern mathematical physics.

String theory:

Our universe is 10 dimensional · · · 4 dimensional space-time + 6
dimensional hidden space (Calabi-Yau threefold)

The fundamental objects consisting our universe are not particles,
but strings.

Important to understand the evolution of strings ≈ surfaces ≈
complex curves in CY threefolds.
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Why do we study Moduli Spaces? - 4

A quintic threefold is a zero locus of a degree 5 homogeneous polynomial
in CP4. It is a CY threefold.

Conjecture (Clemens (1984))

Let X be a general quintic threefold. For each d ∈ N, there exist only
finitely many genus 0 curves of degree d on X.

Proved for d ≤ 11.

degree number of curves

1 2,875
2 609,250
3 317,206,375
4 242,467,530,000
5 22,930,588,887,625
6 248,249,742,118,022,000
7 295,091,050,570,845,659,250
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Main Question

Question

Study the shape of moduli spaces.

My research program

1 Study birational geometry of moduli spaces.

2 Apply birational geometry to the computation of topological
invariants of various concrete moduli spaces.

3 Apply these results for the study of quantum invariants.

The art of doing mathematics consists in finding that special
case which contains all the germs of generality. - D. Hilbert
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Part II

Birational Geometry of Moduli Spaces
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Birational Geometry

Definition

Two algebraic varieties A and B are birational if they share a common
open dense subset O. Then B is called a birational model of A.

A surjective continuous map f : A→ B is called a birational map if
f |O = idO.

Geometrically, f is an algebro-geometric surgery of B.

In this situation, B is simpler than A.
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Birational Geometry - Example

Below is an example of an explicit algebro-geometric surgery, the
so-called blow-up.

Thus the circular disk is a birational model of the Möbius strip.
Han-Bom Moon Birational Geometry of Moduli Spaces



Application to Topological Invariants - Divide and Conquer

1 By applying algebro-geometric surgeries several times, we may
construct a sequence of birational maps.

X2

}} !!
X = X0

// X1
oo // X3

!!

oo // X5

}}

// X6 = X′

X4

Xi’s are birational models of X.

2 It is relatively easy to measure the difference of topological
invariants between Xi and Xi+1.

3 If it is easy to compute topological invariants of X ′, we can compute
these of X.

4 In many cases, X ′ is a quotient space of some elementary variety.

5 Apply this strategy to moduli spaces!
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Birational Geometry of Moduli Spaces

In many cases, a birational model of a moduli space is again a moduli
space of a different class of objects.

Several ways to understand a curve C ⊂ P2:

1 High school students: C is the solution set · · · x2 + y2 − 1 = 0

2 Calculus students: C is a parametrization · · · X(t) = (cos t, sin t)

3 Graduate students: C is an R[x, y]-module · · · R[x, y]/(x2 + y2 − 1)

4 Algebraists: free resolution of the ideal of C

Each viewpoint provides a different moduli space.

1 HP2(d) : moduli space of subvarieties (Hilbert)

2 KP2(d) : moduli space of maps (Kontsevich)

3 SP2(d) : moduli space of modules (Simpson)

4 BP2(d) : moduli space of objects in a derived category (Bridgeland)
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Birational Geometry of Moduli Spaces - Example

Lines in Pr:

KPr (1) = HPr (1) = SPr (1) = Gr(2, r + 1)

Conics in P2:

KP2(2)→ HP2(2) = SP2(2) = P5

Cubics in Pr:

Theorem (Kiem-M, Chung-Kiem)

M̃

yy $$

HPr (3)

��
KPr (3)

�� %%

SPr (3)

zz
P4r+3/SL2 CPr (3)
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Birational Geometry of Moduli Spaces - Example

SP2(d): moduli space of stable sheaves (≈ modules ≈ generalized vector
spaces) on P2 with Hilbert polynomial dm+ 1.

SP2(1) ∼= P2

SP2(2) ∼= P5

SP2(3) ∼= a hypersurface in P2 × P9 (Le Potier, 1993)

Theorem (Chung-M)

There is a sequence of maps

SP2(4) SεP2(4)oo // BP2(4) // P18/SL2 × SL3

where SεP2(4) is the moduli space of stable pairs.

The cohomology ring H∗(SP2(4),Q) is calculated.

dim H2i(SP2(4),Q) = 1, 2, 6, 10, 14, 15, 16, 16, · · ·

χ(SP2(4)) = 192

Related to Gopakumar-Vafa invariants in mathematical physics.
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Mori’s Program for Moduli Spaces

Mori’s program (generalized minimal model program): a theoretical
framework for the classification of all birational models.

Includes classification of codimension 1 subvarieties, curves, etc.

Mori dream space ⇒ the completion of the program is possible.

Few completed examples.

Theorem (Chung-M, M-Yoo)

For the following moduli spaces, minimal model program is completed.

SP2(4)

KGr(2,n)(2)

Mp(r) · · · moduli space of rank r parabolic bundles over P1

(Giansiracusa, Gibney, Jensen, M, Swinarski)

We have worked for the case of moduli spaces Mg,n of curves.
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Part III

Application to Quantum Invariants
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Invariant Factor Problem

G : reductive group (GLr, SLr, SOr, SPr, · · · )

Vλ1 , Vλ2 , · · · , Vλn : finite dimensional irreducible G-representations

V G−→
λ

:= (Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλn)G : trivial subrepresentation

V G :=
⊕
−→
λ
V G−→
λ

: algebra of invariants

Question

1 dim V G−→
λ

=?

2 When V G−→
λ
6= 0?

3 Is V G finitely generated?

4 What is a good generating set?

Example (n = 3, G = GLr)

1 ⇔ Computation of Littlewood-Richardson coefficients

2 ⇔ Horn’s conjecture

Han-Bom Moon Birational Geometry of Moduli Spaces



Quantum Invariant

∃ quantum generalizations of invariant factors, constructed via conformal
field theory.

Input CFT Output

G: simple Lie group
p1, p2, · · · , pn ∈ P1 ⇒ V

`,
−→
λ

` ∈ Z≥0 · · · finite dimensional vector space
−→
λ = (λ1, λ2, · · · , λn)

V :=
⊕

`,
−→
λ
V
`,
−→
λ
· · · algebra of conformal blocks

Question

1 dim V
`,
−→
λ

=?

2 When V
`,
−→
λ
6= 0?

3 Is V finitely generated?

4 What is a good generating set?
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Geometric Interpretation

G = SLr.

Fl(V ): the full flag variety of V = Cr

By Borel-Weil theorem, Vλ = Γ(Fl(V ), Lλ) for some Lλ.

V−→
λ

= Γ(Fl(V )n, L−→
λ

)

V G−→
λ

= Γ(Fl(V )n, L−→
λ

)G = Γ(Fl(V )n/G,L−→
λ

)

V G =
⊕
−→
λ

V G−→
λ

=
⊕
L

Γ(Fl(V )n/G,L) = Cox(Fl(V )n/G)

· · · Cox ring, the ring of all ‘functions’ on Fl(V )n/G.

Theorem (Pauly)

V =
⊕
`,
−→
λ

V
`,
−→
λ

= Cox(Mp(r)),

where Mp(r) is the moduli space of rank r, degree 0 parabolic bundles
(highly non-Hausdorff algebraic stack).
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Parabolic Bundles

Fix n distinct points p = (p1, · · · , pn) on P1.

Definition

A rank r parabolic bundle on P1 with parabolic points p is a collection of
data (E, {W •i }) where

1 E is a rank r vector bundle on P1;

2 W •i is a full flag of E|pi .

p1 p2 pn

E

P1

W1 W2
Wn
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Moduli Space of Parabolic Bundles and Finite Generation

Theorem (M-Yoo)

The algebra V of conformal blocks is finitely generated.

Ingredients of the proof:

Stability condition

Geometric invariant theory

Minimal model program

log Fano variety

Deformation theory

Wall-crossing computation

· · ·
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Part IV

Research Plan
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Research Plan

Birational geometry of moduli spaces

Quantum invariants

Mori’s program Higher dimen-
sional varieties

Topology of
moduli spaces

Quotient varieties

Cluster algebra

Mirror symmetry
Computational Geo-

metric invariant theory

F-conjecture
Moduli space of hy-

perplane arrangementsGopakumar-
Vafa invariant
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Research Plan

Problem

Study the structure of V.

Theoretical aspects: Relation with cluster algebra and mirror
symmetry

Computational aspects: Mathematical experiments are possible (a
great source of REU projects)

Problem (F-conjecture)

Classify all curves on the moduli space Mg,n of curves.
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Research Plan

Problem

Study geometry of moduli spaces of higher dimensional varieties with
combinatorial structures (hyperplane arrangements, etc).

In many cases, the last stage of a sequence of birational maps is a
quotient space.

The first step of the computation of algebro-geometric quotient space is
a very heavy combinatorial calculation.

Problem

Develop an efficient algorithm to compute quotient spaces and
implement it as an open source computer program.
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Thank you!
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