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ABSTRACT. We show that the derived category of a curve is embedded into the derived
category of the moduli space of vector bundles on the curve of coprime rank and de-
gree. We also generalize the semiorthogonal decomposition constructed by Narasimhan
and Belmans-Mukhopadhyay. Finally, we produce a one-dimensional family of ACM bun-
dles over the moduli space.

1. INTRODUCTION

The purpose of this paper is to give a complete affirmative answer to two problems on
the moduli space of vector bundles on a curve. One is the embedding problem between
derived categories, and the other is the construction of nontrivial arithmetically Cohen-
Macaulay (ACM) bundles on the moduli space.

Let X be a smooth projective curve of genus g ≥ 2. Fix two positive integers r, d such
that (r, d) = 1 and 0 < d < r, and fix L ∈ Picd(X). The moduli space M(r, L) of rank r,
determinant L stable vector bundles on X is an (r2 − 1)(g − 1)-dimensional smooth Fano
variety of index two. Let E be the normalized Poincaré bundle on X ×M(r, L).

1.1. Embedding of derived category. We study the Fourier-Mukai transform ΦE : Db(X)→
Db(M(r, L)) with the kernel E . Narasimhan proved that ΦE is an embedding when r =

2 in [Nar17, Nar18], by studying the Hecke correspondence. Fonarev and Kuznetsov
proved the same result for a general X using different techniques [FK18]. Belmans and
Mukhopadhyay extended Narasimhan’s method and proved the embedding result for
r ≥ 2, d = 1 and g ≥ r + 3 in [BM19]. In this paper, we lift all the assumptions on the
rank, degree, and genus by employing birational geometry of moduli spaces of parabolic
bundles, and the theory of derived categories of variation of GIT quotients, developed by
Halpern-Leistner in [HL15] and Ballard, Favero, and Katzarkov in [BFK19].

Theorem A. The functor ΦE : Db(X)→ Db(M(r, L)) is fully faithful.
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1.2. Semiorthogonal decomposition. To put our results in context, we explain a brief
history of the question. After establishing his embedding theorem, Narasimhan made
the following conjecture, which was announced in [Lee18]. In the paper, as numerical
evidence, Lee proved that the motive of M(r, L) admits a compatible motivic decomposi-
tion. Further evidence was also provided by Gómez and Lee in [GL20]. Belmans-Galkin-
Mukhopadhyay also independently proposed the same conjecture in [BGM18], with an-
other numerical evidence in [BGM20].

Conjecture 1.1. The category Db(M(2, L)) has a semiorthogonal decomposition

Db(M(2, L)) = 〈{Db(Xk),D
b(Xk)}0≤k≤g−2,D

b(Xg−1)〉,

where Xk = Xk/Sk is the k-th symmetric product of X .

Toward the proof of Conjecture 1.1, Lee and Narasimhan showed that by analyzing
the Hecke correspondence, Db(X2) is embedded [LN21] when X is non-hyperelliptic and
g ≥ 16. After this, Tevelev-Torres and Xu-Yau showed that the above building blocks
are embedded in Db(M(2, L)) with entirely different approaches [TT21, XY21]. After an
early draft of this paper was circulated, very recently, the remaining generation part was
proved by Tevelev [Tev23].

It is natural to guess the existence of a similar decomposition for Db(M(r, L)) for general
r and d. Based on [GL20], where the motivic decomposition of M(r, L) is studied, we
expect the following statement. A more explicit version of the conjecture for r = 3 and its
evidence can be found in [GL20, Conjecture 1.9].

Conjecture 1.2. The category Db(M(r, L)) has a semiorthogonal decomposition where each inde-
composable component is the derived category of products of Xk and Jac(X).

As we can see from Brill-Noether theory, the geometry of curves is very complicated
in general. However, in the study of Db(M(r, L)), we expect a uniform decomposition,
which does not depend on each curve.

Except for g = r = 2, it seems that Db(M(r, L)) contains at least two copies of Db(pt) and
two copies of Db(X). In [BM19, Theorem B], the authors proved this is the case for d = 1

and (roughly) g ≥ 3r + 4. We extend this result for arbitrary coprime degree and give a
constant genus bound.

Theorem B. If g ≥ 6, there is a semiorthogonal decomposition

Db(M(r, L)) = 〈A, ⊥A〉

whereA = 〈O,ΦE(Db(X)),Θ,ΦE(D
b(X))⊗Θ〉, where Θ is the ample generator of Pic(M(r, L)).

We expect that Theorem B is true without the genus restriction (except g = r = 2 case),
but we have only partial result for g ≤ 5 (Theorem 9.5 and Remark 9.6).
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1.3. ACM bundles. We also discover a family of ACM bundles on M(r, L). For an n-
dimensional projective variety V with an ample line bundle A, a vector bundle F is called
ACM if Hi(V, F ⊗ Aj) = 0 for all j ∈ Z and 0 < i < n. An ACM bundle F is Ulrich
if H0(V, F ⊗ A−1) = 0 and H0(V, F ) = rank F · deg V . ACM bundles naturally appear
in matrix factorization [Eis80] and correspond to maximal Cohen-Macaulay modules in
commutative algebra [Yos90]. Ulrich bundles enable us to compute their associated Chow
forms, and Eisenbud and Schreyer conjectured that every projective variety admits an
Ulrich sheaf [ES03]. However, since the above strong cohomology vanishing is difficult to
expect and hard to verify, despite many works (see [Bea18, Cetal21, Fae13] and references
therein), very few general results are known for higher dimensional varieties, even for
the existence of ACM bundles except some trivial examples.

Theorem C. The restricted Poincaré bundle Ex is ACM with respect to Θ. Thus, there is a one-
dimensional family of ACM bundles on M(r, L), parametrized by X .

1.4. Structure of the paper. Sections 2 and 3 review several basic results about the mod-
uli space of parabolic bundles on a curve. In Section 4, we investigate the positivity of the
restricted Poincaré bundle. In Section 5, we explicitly compute the wall-crossings in the
case of two parabolic points. The result is essential in the following sections. Section 6 is
devoted to calculating cohomology groups of certain line bundles via derived categories
of the variation of GIT. Three main theorems are proved in the remaining sections.

Conventions. We work over C. In this paper, X denotes a smooth connected projec-
tive curve of genus g ≥ 2. The moduli space of rank r, determinant L (resp. degree d)
semistable vector bundles is denoted by M(r, L) (resp. M(r, d)). Unless stated explicitly,
we assume (r, d) = 1, so M(r, L) is a smooth projective variety. Let ` be the unique integer
such that `d ≡ 1 mod r and 0 < ` < r. Let Θ be the ample generator on Pic(M(r, L)). Let E
be the normalized Poincaré bundle on X×M(r, L) such that for each x ∈ X , its restriction
Ex to x × M(r, L) ∼= M(r, L) has the determinant Θ`. For a vector space W , P(W ) is the
projective space of one-dimensional quotients of W . Every algebraic stack is defined over
the fppf topology.
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projects. Especially the first author would like to express his deepest gratitude to him
for his invaluable teaching and warm encouragement for many years. He also thanks
Ludmil Katzarkov and Simons Foundation for partially supporting this work via Simons
Investigator Award-HMS. Part of this work was done while the second author was vis-
iting Stanford University. He gratefully appreciates the hospitality during his visit. The
authors also thank anonymous referees who made valuable suggestions and pointed out
computational mistakes.
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2. MODULI SPACES OF PARABOLIC BUNDLES AND THEIR BIRATIONAL GEOMETRY

This section explains the notion of parabolic vector bundles and their moduli space.
This paper only considers the parabolic structure with at most one flag for each para-
bolic point. Fix a smooth connected projective curve X and a finite ordered set x :=

(x1, x2, · · · , xk) of distinct closed points of X , so (X,x) ∈Mg,k.

Definition 2.1. A rank r parabolic bundle over (X,x) is a collection of data (E, V•) where

(1) E is a rank r vector bundle over X ;
(2) V• = (V1, V2, · · · , Vk) where Vi is a subspace of E|xi . The dimension of Vi is called

the multiplicity of Vi and denoted by mi.

The sequence m = (m1,m2, · · · ,mk) is called the multiplicity of (E, V•).

Definition 2.2. LetM(X,x)(r, L,m) (resp.M(X,x)(r, d,m)) be the moduli stack of parabolic
bundles (E, V•) over (X,x) of rank r, determinant L (resp. degree d), and multiplicity m.
If there is no confusion, we useM(r, L,m) (resp.M(r, d,m)).

The moduli stack of all bundles are non-separated Artin stack (see [Mum66, Item 4 in
Lecture 7] for an example that a locally trivial family of bundles having a nontrivial limit),
henceM(X,x)(r, L,m) is also highly non-separated. To obtain a projective coarse moduli
space that enables us to do projective birational geometry, we need to introduce a stability
condition.

For a parabolic bundle (E, V•), a parabolic subbundle (F,W•) is a pair such that F ⊂ E

is a subbundle and Wi = F |xi ∩ Vi. A parabolic quotient bundle is defined as a parabolic
bundle (E/F, Y•) such that Yi = im (Vi → E/F |xi). A parabolic weight a = (a1, a2, · · · , ak)
is a sequence of rational numbers such that 0 < ai < 1. Intuitively, we may regard a as
extra weight for the parabolic flags. For a parabolic bundle (E, V•), its parabolic degree is
pardeg(E, V•) := degE+

∑
1≤i≤kmiai. The same parabolic weight can induce the parabolic

degree for parabolic subbundles and parabolic quotient bundles of (E, V•). The parabolic
slope is µ(E, V•) := pardeg(E, V•)/rankE.

Definition 2.3. Fix a parabolic weight a. A parabolic bundle (E, V•) is a-(semi)stable if
for every parabolic subbundle (F,W•), µ(F,W•) (≤) < µ(E, V•). A parabolic weight a is
general if the a-semistability coincides with the a-stability.

Definition 2.4. Let (X,x) ∈Mg,k with g ≥ 2. LetM(r, L,m, a) (resp.M(r, d,m, a)) be the
moduli stack of rank r, determinant L (resp. degree d), a-semistable parabolic bundles
over (X,x). Let M(r, L,m, a) (resp. M(r, d,m, a)) be its good moduli space, which is a
normal projective variety of dimension (r2−1)(g−1)+

∑
mi(r−mi) (resp. r2(g−1)+1+∑

mi(r−mi)) [MS80, Theorem 4.1]. When a is general, both M(r, L,m, a) and M(r, d,m, a)

are nonsingular.
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Remark 2.5. When g ≤ 1, the moduli space behaves differently. For instance, if g = 0,
depending on a,M(r, L,m, a) may be empty. Consult [MY21].

Example 2.6. The inequality µ(F,W•) ≤ µ(E, V•) defining the a-semistability can be un-
derstood as a perturbation of the inequality µ(F ) ≤ µ(E) for the semistability of the
underlying bundle. If (r, d = degL) = 1, the inequality is strict for all F ⊂ E, and if
each coefficient of a is sufficiently small and general, then a does not affect the stability.
Therefore, a parabolic bundle (E, V•) is a-stable if and only if the underlying bundle E
is stable. Thus, the forgetful morphismM(r, L,m, a) →M(r, L) induces a map between
coarse moduli spaces

π : M(r, L,m, a)→ M(r, L)

and π is a ×Gr(mi, r)-fibration. Indeed, for a fixed Poincaré bundle E over X ×M(r, L),

M(r, L,m, a) ∼= ×M(r,L)Gr(mi, Exi).

Example 2.7. More generally, if a = (ai) is general and one ai is sufficiently small, then
forgetting one flag does not affect on the stability calculation. Thus, there is a forgetful
morphism

π : M(X,x)(r, L,m, a)→ M(X,x′)(r, L,m
′, a′)

where x′ = x \ {xi}, m′ = m \ {mi}, and a′ = a \ {ai}. This is a Gr(mi, r)-fibration.

Example 2.8. Fix (X,x) ∈ Mg,n. Let x′ := x \ {xk}. Let m′ = (mi)1≤i≤k−1 and a′ =

(ai)1≤i≤k−1. Suppose that mk = 0 or r. Then

M(X,x)(r, L,m, a) ∼= M(X,x′)(r, L,m
′, a′).

When one of a is sufficiently close to one, there is another contraction.

Proposition 2.9. We use the notation in Example 2.8. For a general parabolic weight a = (ai),
assume that ak is sufficiently close to one. Then there exists a morphism

π1 : M(X,x)(r, L,m, a)→ M(X,x′)(r, L(−(r −mk)xk),m
′, a′).

Proof. It is sufficient to construct a morphism

M(X,x)(r, L,m, a)→M(X,x′)(r, L(−(r −mk)xk),m
′, a′)

between algebraic stacks.

Let m̃ = (m̃i) be a multiplicity such that m̃i = mi for 1 ≤ i ≤ k − 1 and m̃k = r.
By Example 2.8, there is a functorial isomorphism M(X,x)(r, L(−(r − mk)xk), m̃, a) ∼=
M(X,x′)(r, L(−(r −mk)xk),m

′, a′). Thus, it is sufficient to show that there is a morphism

M(r, L,m, a)→M(r, L(−(r −mk)xk), m̃, a).

For a stable bundle (E, V•) ∈ M(r, L,m, a), let E ′ be the kernel of the restriction map
E → E|xk → E|xk/Vxk . Then for each i 6= k, E ′|xi can be identified with E|xi . Set V ′i = Vi
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under this identification. On the other hand, the restriction f : E ′|xk → E|xk is a linear
map with image Vk. We set V ′k := f−1(Vk) = E ′|xk . Then we obtain a parabolic bundle
(E ′, V ′•) ∈M(r, L(−(r −mk)xk), m̃, a). Thus, we have a morphism

M(r, L,m, a)→M(r, L(−(r −mk)xk), m̃)

(E, V•) 7→ (E ′, V ′•).
(1)

We claim that (E ′, V ′•) is a-semistable. Then the morphism in Equation (1) factors
throughM(r, L(−(r −mk)xk), m̃, a).

Suppose not. Then there is a parabolic subbundle (F ′,W ′
•) of (E ′, V ′•) such that µ(F ′,W ′

•) >

µ(E ′, V ′•). Let rankF ′ = s, degF ′ = e, and ni = dimW ′
i . Note that nk = s.

Set d = degL. Then

µ(E, V•)− µ(E ′, V ′•) =
d+

∑
miai

r
−
d− (r −mk) +

∑
i 6=kmiai + rak

r

=
(r −mk)(1− ak)

r
.

(2)

In general, F ′ is not a subbundle of E. But there is a subbundle F of E such that F/F ′

is a sheaf supported on xk and dim(F/F ′)|xk = s − c, where c := dimF |xk ∩ Vxk . For the
induced parabolic subbundle (F,W•) of (E, V•),

µ(F,W•)− µ(F ′,W ′
•) =

e+ (s− c) +
∑

i 6=k aini + akc

s
−
e+

∑
i 6=k aini + aks

s

=
(s− c)(1− ak)

s
.

(3)

By combining (2) and (3), we have

µ(E, V•)− µ(F,W•) = µ(E ′, V ′•)− µ(F ′,W ′
•) + (1− ak)

(
r −mk

r
− s− c

s

)
.

Note that µ(E ′, V ′•) − µ(F ′,W ′
•) is independent from ak, as the coefficient of ak in each

term is one. Thus, if ak is sufficiently close to one, then the last term is negligible. By the
assumption, µ(E ′, V ′•) − µ(F ′,W ′

•) < 0 and hence the left hand side is also negative. It
violates the stability of (E, V•) and obtain a contradiction. �

Remark 2.10. The morphism in Proposition 2.9 can be understood as a generalized Hecke
correspondence. When d = k = 1 andm = r−1, up to taking the dual bundle, we obtain the
classical Hecke correspondence in the sense of [NR75, Section 4]. A difference in the d > 1

case is that M(r, L,m, a) does not admit morphisms to both M(r, L) and M(r, L(−x)), so we
need a birational modification on M(r, L,m, a). It can be explained in terms of parabolic
wall-crossing as Section 3 below.
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3. WALL-CROSSING

This section reviews how M(r, L,m, a) changes as a varies.

3.1. General theory. Let k be the number of parabolic points. Recall that a parabolic
weight is, a length k sequence of rational number a = (ai) with 0 < ai < 1. The closure of
the set of parabolic weights is [0, 1]k ⊂ Rk.

There is a wall-chamber decomposition of [0, 1]k. A parabolic bundle (E, V•) ∈ M(r, L,m, a)

is strictly semi-stable if and only if there is a maximal destabilizing subbundle (F,W•)

such that µ(F,W•) = µ(E, V•). More explicitly, this is true only if

(4)
e+

∑
niai

s
=
d+

∑
miai

r

for some 0 < s < r, e ∈ Z, and n = (ni). Here s is the rank, e is the degree, and n is the
multiplicity of (F,W•). So we require that ni ≤ min {s,mi}. Let ∆(s, e,n) be the set of
weights that satisfy (4). Note that this is an intersection of a hyperplane and [0, 1]k. We
call ∆(s, e,n) a wall if it is nonempty. We also obtain

(5) ∆(s, e,n) = ∆(r − s, d− e,m− n).

Note that ∆(s, e,n) = ∆(ts, te, tn) if ts < r for some t > 1. We call such a wall a multiple
wall, and otherwise, it is a simple wall. A wall ∆(s, e,n) is simple if and only if {s, e, ni} are
coprime and {r − s, d− e,mi − ni} are coprime.

The stability changes only if a parabolic weight a lies on one of the walls. So for each
open chamber C ⊂ [0, 1]k, for any a, a′ ∈ C, M(r, L,m, a) ∼= M(r, L,m, a′). The stability
coincides with the semistability if a ∈ (0, 1)k \

⋃
∆(s, e,n).

Let

(6) M(r, L,m, a−) oo //

π−
((

M(r, L,m, a+)

π+
vv

M(r, L,m, a)

be a wall-crossing. Suppose that a is a general point of ∆(s, e,n), and a− and a+ are two
very close weights on the opposite chambers. The contraction maps π± are birational
surjections. Let Y ± be the exceptional locus on M(r, L,m, a±) and let Y := π±(Y ±). The
subvarieties Y ± are called the wall-crossing centers. For our purpose, we need a lower
bound of the codimension of Y ±. Observe that the parabolic bundles in Y − are stable with
respect to a−, but unstable with respect to a+. Thus, Y − parametrizes unstable parabolic
bundles with respect to some weight. The codimension of the unstable locus is estimated
in [Sun00]. For an outline of the proof, see also [MY20, Section 3.2].

Theorem 3.1 ([Sun00, Proposition 5.1]). InM(r, L,m), the codimension of the unstable locus
with respect to a weight a is at least (r − 1)(g − 1) + 1.
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Corollary 3.2. The codimension of the wall-crossing center is at least (r − 1)(g − 1) + 1. In
particular, if g ≥ 2, every wall-crossing is a flip.

We say a wall-crossing is simple if:

(1) The wall ∆(s, e,n) is a simple wall and;
(2) a ∈ ∆(s, e,n) is on a unique wall.

A simple wall-crossing has an explicit description. The wall-crossing centers Y ± are irre-
ducible and their image Y ∼= M(s, e,n, a)×Pic(X) M(r − s, d− e,m− n, a) is a smooth va-
riety. For (E, V•) ∈ Y −, there is a unique maximal a-destabilizing subbundle (E−, V −• ) ∈
M(s, e,n, a), which fits into an exact sequence

0→ (E−, V −• )→ (E, V•)→ (E+, V +
• )→ 0

of parabolic bundles. The map π− is restricted to the map Y − → Y , which sends (E, V•)

to the S-equivalence class of (E, V•), which is the class of (E−, V −• )⊕ (E+, V +
• ). We denote

this class by ((E−, V −• ), (E+, V +
• )). Conversely, if x := ((E−, V −• ), (E+, V +

• )) is a general
point in Y so that both (E−, V −• ) and (E+, V +

• ) are stable, then the fiber π−1
− (x) is a projec-

tive space P(Ext1((E+, V +
• ), (E−, V −• ))∗) (see [Yok95, Section 1] for the derived functors on

the category of parabolic sheaves). A functorial description is possible. Let (E−,V−• ) (resp.
(E+,V+

• )) be the Poincaré family over M(s, e,n, a) (resp. M(r − s, d − e,m − n, a)). The
standard GIT construction and the descent method imply the existence of Poincaré bundle
([New78, Chapter 5], [HL10, Section 4.6]). Then Y − ∼= P(R1π−∗ParHom((E+,V+

• ), (E−,V−• ))∗)

and Y + ∼= P(R1π+∗ParHom((E−,V−• ), (E+,V+
• ))∗). In particular, they are projective bun-

dles over Y . Finally, it is well-known that the blow-up of M(r, L,m, a−) along Y − is
isomorphic to the blow-up of M(r, L,m, a+) along Y +.

Over a multiple wall, the wall-crossing is more complicated. Consider the wall-crossing
over a unique wall ∆(s, e,n), which is a multiple wall, such that there is t ∈ Z such that
∆(s, e,n) = ∆(ts, te, tn) with ts < r. Then the wall-crossing centers Y ± has the image
Y ∼=

⋃
M(ts, te, tn, a)×Pic(X) M(r − ts, d− te,m− tn, a) and it is a reducible variety with

nontrivial intersections and singularities. However, a general point of each irreducible
component parametrizes a pair of stable parabolic bundles, thus over a general point,
the wall-crossing is the same one with the case of a simple wall-crossing in the previous
paragraph.

3.2. GIT construction of moduli space. The moduli spaces M(r, L,m, a) can be con-
structed by GIT and each wall-crossing is indeed obtained by the variation of GIT. We
review a GIT construction of M(r, L, a) after Bhosle [Bho89].

We fix a degree one line bundleO(1) on X . Fix an integer m� 0 such that H1(E(m)) =

0 andE(m) is globally generated for every (E, V•) ∈ M(r, L, a). (Indeed, we may find such
an m that works for all a.) Let χ := h0(E(m)) = d+ r(m+ 1− g) and let Q := Quot(OχX) be
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the quot scheme parametrizing quotients ofOχX whose Hilbert polynomial is that ofE(m).
Let R ⊂ Q be a locally closed subscheme parametrizing the quotients OχX

ϕ→ F → 0 such

that H1(F ) = 0, H0(OχX)
ϕ∼= H0(F ), F is locally free, and detF ∼= L(rm). LetOχR×X → F → 0

be the universal quotient over R×X . For x1, x2, · · · , xk ∈ X , let

R̃ := ×RGr(mi,F|xi)

be the fiber product of Grassmannian bundles over R. There is a natural SLχ-action on R̃.
Note that R̃ parametrizes pairs ([OχX

ϕ→ F → 0], {Vi ⊂ F |xi}).

We can make an explicit SLχ-equivariant embedding of R̃ into a product of elementary
varieties as the following. Let Z := PHom(∧rCχ,H0(L(rm)))∗. Then for any [OχX

ϕ→ F →
0] ∈ R,

∧rCχ
∧rϕ∼= ∧rH0(F )→ H0(∧rF ) ∼= H0(L(rm))

gives a point in Z. Furthermore, for each xi, by taking the inverse image ψ−1
i (Vi) for

ψi : Cχ ∼= H0(F )→ F |xi ,

we obtain an element in Gr(χ − r + mi, χ) for xk. Therefore, we have an SLχ-equivariant
morphism

(7) R̃→ ×ZGr(χ− r +mi, χ)

([OχX
ϕ→ F → 0], {Vi ⊂ F |xi}) 7→ (∧rϕ, {ψ−1

i (Vi)}).
In [Tha96, Section 7], it was shown that this morphism is indeed an embedding. In
[Bho89], Bhosle calculated an explicit linearization A(a), depending on a, which gives
R̃ss(A(a))/SLχ ∼= M(r, L, a).

In summary, the wall-crossing of a-stability is obtained by the variation of GIT.

3.3. Mori’s program. The wall-crossing picture can be incorporated with projective bi-
rational geometry of M(r, L,m, a) in the nicest way. Let a be a general parabolic weight.
Then every rational contraction of M(r, L,m, a) can be obtained in terms of wall-crossings,
forgetful maps, and generalized Hecke correspondences. Proposition 3.3 can be recovered
from [MY20, Section 5], but for the readers’ convenience, we give the proof here.

Proposition 3.3. Let a ∈ (0, 1)k be a general parabolic weight. Then there is a linear isomorphism
between a cone over [0, 1]k and the effective cone Eff(M(r, L,m, a)) of divisors.

Proof. By the GIT construction of M(r, L,m, a) as an SLχ-quotient in Section 3.2, all of
them can be constructed as a GIT quotient of the same smooth variety R̃ with various
linearizations. Furthermore, the parabolic weights depend linearly on the choice of lin-
earization. In particular, there is a linear embedding (0, 1)k → N1,SLχ(R̃)R, where N1,SLχ(R̃)

is the space of numerical classes of SLχ-linearized line bundles on R̃. Since the character
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group of SLχ is trivial and R̃ is normal, N1,SLχ(R̃)R → N1(R̃)R is bijective [MFK94, Corol-
lary 1.6]. Applying Kempf’s descent lemma [DN89, Theorem 2.3], we have a surjective
linear map N1(R̃)R ∼= N1,SLχ(R̃)R → N1(R̃//LSLχ)R = N1(M(r, L,m, a))R. This map is bi-
jective because the unstable locus has codimension ≥ 2 (Theorem 3.1). In summary, there
is a linear embedding (0, 1)k → N1,SLχ(R̃)R → N1(M(r, L,m, a))R, which induces a linear
embedding of a cone over [0, 1]k to N1(M(r, L,m, a))R.

Now we show that the cone over the closure [0, 1]k of (0, 1)k can be identified with
Eff(M(r, L,m, a)). Recall that for any effective divisor D (or equivalently, a line bundle
O(D)) of a normal Q-factorial projective variety V , we may associate a rational contraction
V 99K V (D) where

V (D) := Proj
⊕
m≥0

H0(V,O(mD)).

Conversely, any rational contraction of V can be obtained in this way. If D ∈ int Eff(V ),
then V 99K V (D) is a birational map and if D ∈ ∂Eff(V ), V 99K V (D) is a contraction with
positive dimensional general fibers.

Note that on the boundary ∂[0, 1]k, one of the coordinates must be either zero or one. In
the first case, we can obtain a rational contraction M(r, L,m, a)→ M(r, L,m′, a′) in Exam-
ple 2.7. In the latter case, we have a generalized Hecke modification in Proposition 2.9.
All of them are contractions with positive dimensional fibers, so they must be associated
with divisors on the boundary of the effective cone. Since the effective cone is convex,
this is sufficient to obtain the result. �

4. NEF VECTOR BUNDLES

Let E be the normalized Poincaré bundle over X ×M(r, L). Recall that for any x ∈ X ,
Ex is the vector bundle on M(r, L) obtained by restricting E to x × M(r, L). We prove
the nefness of Ex and some other positivity results. A key ingredient is the birational
geometry of the moduli space of parabolic bundles with one parabolic point.

Theorem 4.1. The restricted Poincaré bundle Ex is a nef vector bundle.

Remark 4.2. The case of d = 1 of Theorem 4.1 is shown in [Nar17, Proposition 3.3] and
[BM19, Lemma 13]. So we assume d > 1. When d = 1, the numerical computation in
Lemma 4.4 is still valid. But we have ` = 1 and thus, a = 1. Therefore, the first wall-
crossing is precisely the fibration M(r, L, r − 1, ε) → M(r, L(−x)) in Proposition 2.9, that
is, a contraction in the Hecke correspondence. In particular, there is no flip.

We obtain another nef bundle immediately.

Corollary 4.3. The vector bundle E∗x ⊗Θ is nef.



DERIVED CATEGORY AND ACM BUNDLES OF MODULI SPACE 11

Proof. Fix a line bundle A of degree 1 on X. Consider the vector bundle E∗⊗ p∗A⊗ q∗Θ on
X×M(r, L), where p : X×M(r, L)→ X and q : X×M(r, L)→ M(r, L) are two projections.
From the isomorphism M(r, L) ∼= M(r, L∗) ∼= M(r, Ar ⊗ L∗), we see that E∗ ⊗ p∗A ⊗ q∗Θ
is the normalized Poincaré bundle on X ×M(r, Ar ⊗ L∗) ∼= X ×M(r, L). The restriction
of E∗ ⊗ p∗A ⊗ q∗Θ to x ×M(r, L) is isomorphic to E∗x ⊗ Θ. From Theorem 4.1, we see that
E∗x ⊗Θ is nef. �

From now on, we prove the nefness of Ex. By definition, we need to show thatOP(Ex)(1)

is nef. Observe that P(Ex) ∼= M(r, L, r−1, ε) for some very small ε > 0 (Example 2.6). Here
we use M(r, L, r − 1, a) for the place M(r, L, (r − 1), (a)).

We explicitly analyze the first wall-crossing of the moduli space M(r, L, r − 1, ε) by
increasing ε→ 1. Recall that ` is a positive integer such that `d ≡ 1 mod r and 0 < ` < r.

Lemma 4.4. Let a be the smallest parabolic weight on a wall. Then a = 1/`. Furthermore,
a maximal destabilizing subbundle has rank t` and degree te for some t ∈ Z and an integer e
satisfying `d− re = 1.

Proof. Let ∆(s, e, n) be a wall. Note that n is either s or s− 1. By Equation (5), exchanging
s by r− s if necessary, we may assume that n = s. Then from (e+ sa)/s = (d+ (r− 1)a)/r,
we have a = (sd − re)/s. Since (r, d) = 1, we can find a unique positive 0 < s < r and
e ∈ Z such that sd− re = 1, which is `.

We claim that a = (`d − re)/` = 1/` provides the first wall. Consider a wall a′ =

(s′d − re′)/s′. Setting t := s′d − re′, s′d ≡ t mod r. On the other hand, t`d ≡ t mod r. So
if t` < r, from the invertibility of d in Z/rZ, s′ = t` and e′ = te. Then a′ = t/t` = 1/` = a.
If t` ≥ r, there is a unique positive integer u such that 0 < s′ = t` − ur < r. Then
a′ = t/s′ = t/(t`− ur) > t/t` = 1/`.

This computation tells us that ∆(`, e, `) = ∆(s′, e′, s′) only if t` < r and (s′, e′) = (t`, te).
So we obtain the last assertion. �

We have the following diagram:

(8) P(Ex) = M(r, L, r − 1, ε)
π

uu

π−

**

M(r, L) M(r, L, r − 1, 1/`)

The first map π is a projective bundle and π− is a small contraction by Corollary 3.2. And
ρ(P(Ex)) = ρ(M(r, L)) + 1 = 2. Since ρ(M(r, L, r − 1, 1/`)) < ρ(M(r, L, r − 1, ε)) = 2,
ρ(M(r, L, r−1, 1/`)) = 1. Let A be an ample generator of Pic(M(r, L, r−1, 1/`)). Then π∗Θ
and π∗−A generates N1(P(Ex))R.



12 KYOUNG-SEOG LEE AND HAN-BOM MOON

Definition 4.5. Fix a general point ((E−, V −), (E+, V +)) in the component M(`, e, `, 1/`)×Pic(X)

M(r− `, d−e, r− `−1, 1/`) of the wall-crossing center in M(r, L, r−1, 1/`). Let C be a line
class in the fiber π−1

− (((E−, V −), (E+, V +))) ∼= P(Ext1((E+, V +), (E−, V −))∗) (Section 3.1).

Lemma 4.6. The intersection number OP(Ex)(1) · C is zero.

Proof. The image π(P(Ext1((E+, V +), (E−, V −)))∗) = P(Ext1(E+, E−)∗) =: P parametrizes
isomorphism classes of extensions, and there is an exact sequence over X × P

0→ p∗E− ⊗ q∗OP(1)→ E ⊗ q∗OP(m)→ p∗E+ → 0

([Ram73, Lemma 2.3], [HL10, Example 2.1.12]). Here p : X × P → X and q : X × P → P
are two projections. If we restrict the exact sequence to x×C ∼= x× P1 ⊂ X × P, we have

0→ E−x ⊗OP1(1)→ Ex ⊗OP1(m)→ E+
x → 0.

Since Ex (and hence its restriction Ex) is normalized as c1(Ex) = Θ` where 0 < ` < r,
and E−x and E+

x are constant, ` = c1(E−x ⊗ OP1(1)) = c1(Ex ⊗ OP1(m)) = ` + rm. Thus,
we have m = 0. Then Ex|π(C) fits in 0 → OP1(1)` → Ex → Or−`P1 → 0. A cohomology
computation shows that this is a split extension. Therefore π−1(π(C)) = P(OP1(1)`⊕Or−`P1 ).
The parabolic flag in Ex is determined by that of E+

x and it is fixed over C. This implies
that C ∼= P(OP1) ↪→ P(OP1(1)` ⊕ Or−`P1 ). Therefore OP(Ex)(1)|C = OP(OP1 )(1) = OP1 and
OP(Ex)(1) · C = 0. �

Proof of Theorem 4.1. From ρ(P(Ex)) = 2, π∗−A · C = 0, and Lemma 4.6, we can conclude
that OP(Ex)(1) and π∗−A are proportional. OP(Ex)(1) is a positive multiple of π∗−A because
it intersects with the line class in a fiber of π : P(Ex) → M(r, L) positively. Therefore
OP(Ex)(1) is semi-ample, so OP(Ex)(1) and Ex are nef. �

The following is essentially the same computation with [Nar17, Proposition 3.1].

Lemma 4.7. Let E be the normalized Poincaré bundle on X ×M(r, L). Then

Det(E∗) := det(Rq∗(E∗))−1 ∼= Θ`(1−g)−e.

Proof. For the notational simplicity, let M := M(r, L) and M′ := M(r, L∗). Then there is an
isomorphism ψ : M→ M′. Since the isomorphism maps the unique ample generator ΘM′

to ΘM, by [Nar17, Proposition 2.1],

ΘM = ψ∗(ΘM′) = (Det(E∗))r ⊗ (det(E∗|{x}×M))−d+r(1−g) = Det(E∗)r ⊗Θ
−`(−d+r(1−g))
M .

Thus, Det(E∗) = Θ
1+`(−d+r(1−g))

r
M = Θ

−e+`(1−g)
M . �

Remark 4.8. Once we fix the parabolic points and the multiplicity, M(r, L,m, a) are all
birational, and for any general a and a′, M(r, L,m, a) and M(r, L,m, a′) are connected
by finitely many flips (Section 3). In particular, their Picard groups are identified. For a
notational simplicity, we will suppress all pull-backs (by flips and regular contractions) of
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line bundles in our notation. For instance, when there is only one parabolic point x, there
are two rational contractions π : M(r, L, r − 1, ε) → M(r, L) and π1 : M(r, L, r − 1, ε) 99K
M(r, L, r − 1, 1 − ε) → M(r, L(−x)). If there is no chance of confusion, we use A ⊗ B for
π∗A ⊗ π∗1B. We denote OP(Ex)(a) by O(a). Later, when there are two parabolic points, we
will set O(a, b) := p∗1OP(Ex)(a) ⊗ p∗2OP(E∗y )(b) where p1 : P(Ex) ×M(r,L) P(E∗y ) → P(Ex) and
p2 : P(Ex)×M(r,L) P(E∗y )→ P(E∗y ).

Lemma 4.9. Let k = (r, d− 1). On M(r, L, r − 1, a), Θk
M(r,L(−x)) = OP(Ex)(r)⊗Θ1−`

M(r,L).

Proof. The proof is a careful refinement of [Nar17, Proposition 3.3]. We may assume that
a is sufficiently small, so M(r, L, r − 1, a) ∼= P(Ex).

Let p : X×P(Ex)→ X and q : X×P(Ex)→ P(Ex) be two projections and π : X×P(Ex)→
X × M(r, L). Let ix : P(Ex) ∼= x × P(Ex) ↪→ X × P(Ex). Recall that there are two exact
sequences that appear on the construction of the Hecke correspondence:

0→ H(E)→ π#(E)→ p∗Ox ⊗ q∗OP(Ex)(1)→ 0

and

(9) 0→ π#(E∗)→ K(E)→ ix∗(OP(Ex)(−1)⊗ Tx)→ 0.

Here π#E is the pull-back of E to X × P(Ex) and Tx is the tangent space of X at x.

By [Nar17, Proposition 2.1],

Θk
M(r,L(−x)) = Θk

M(r,L∗(x)) = Det(K(E))r ⊗ (detK(E)|z×P(Ex))
1−d+r(1−g)

for any z ∈ X . From (9), we have Det(π#(E∗))⊗OP(Ex)(1) = Det(K(E)). Since Det(π#(E∗)) =

π#Det(E) and π#(E∗)|z×P(Ex)
∼= K(E)|z×P(Ex) for any z 6= x,

Det(K(E))r ⊗ (detK(E)|z×P(Ex))
1−d+r(1−g))

= Det(K(E))r ⊗ (detπ#(E∗)|z×P(Ex))
1−d+r(1−g) = Det(K(E))r ⊗Θ

−`(1−d+r(1−g))
M(r,L)

= π#(Det(E∗))r ⊗OP(Ex)(r)⊗Θ
−`(1−d+r(1−g))
M(r,L)

= Θ
r`(1−g)−re
M(r,L) ⊗OP(Ex)(r)⊗Θ

−`(1−d+r(1−g))
M(r,L) = OP(Ex)(r)⊗Θ1−`

M(r,L).

(10)

The second and the fourth equalities follow from the normalization of E and Lemma 4.7,
respectively. �

Corollary 4.10. Let k = (r, d− (r − 1)). Then Θk
M(r,L(−(r−1)y)) = OP(E∗y )(r)⊗Θ1+`

M(r,L).

Proof. Within the identification M(r, L) ∼= M(r, L∗), the normalized Poincaré bundle over
M(r, L∗) is E∗ ⊗ ΘM(r,L), and c1(E∗ ⊗ ΘM(r,L)) = c1(Θr−`

M(r,L)). So M(r, L, 1, ε) ∼= M(r, L∗, r −
1, ε) ∼= P(E∗y ⊗ ΘM(r,L)). When a → 1, we obtain a contraction M(r, L∗, r − 1, a) →
M(r, L∗(−y)) ∼= M(r, L(y)) ∼= M(r, L(−(r − 1)y)). By Lemma 4.9,

Θk
M(r,L(−(r−1)y)) = Θ

1−(r−`)
M(r,L∗)⊗OP(E∗y⊗Θ)(r) = Θ

1−(r−`)
M(r,L) ⊗OP(E∗y )(r)⊗Θr

M(r,L) = OP(E∗y )(r)⊗Θ1+`
M(r,L).
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�

From (8), we obtain the nef cones of P(Ex) and P(E∗x). The bigness in the statement
follows from Lemma 4.9 and Corollary 4.10.

Corollary 4.11. (1) The nef cone of P(Ex) = M(r, L, r − 1, ε) is generated by π∗Θ and
OP(Ex)(1). If d 6= 1, OP(Ex)(1) is big.

(2) The nef cone of P(E∗x) = M(r, L, 1, ε) is generated by π∗Θ and OP(E∗x)(1) ⊗ π∗Θ. If d 6=
r − 1, OP(E∗x)(1)⊗ π∗Θ is big.

5. MAIN EXAMPLE

From now on, we focus on the case that k = 2 and m = (r − 1, 1). We set x = (x1, x2)

and a = (a1, a2). We use M(r, L, a) for M(r, L,m, a).

5.1. Effective cone. Let ∆(s, e,n) be a wall on [0, 1]2 and let a be a general point on it. Let
(E, V•) ∈ Y ⊂ M(r, L, a) be a general polystable parabolic bundle on the wall-crossing
center. Then (E, V•) ∼= (F1,W1•)⊕ (F2,W2•) and µ(E, V•) = µ(F1,W1•) = µ(F2,W2•).

There are two possibilities. First of all, it is possible that one of Fi’s (say F1) has the
largest possible intersection with the flags ofE. That means, dimF1|x1∩V1 = dimF1|x1 = s

and dimF1|x2 ∩ V2 = dimV2 = 1. We have an equality

e+ sa1 + a2

s
=
d+ (r − 1)a1 + a2

r
,

or equivalently, sa1 + (r − s)a2 = sd − re. The slope of the line on the (a1, a2)-plane is
negative, so we will call the wall a negative wall. To intersect with the interior of [0, 1]2, it
is necessary that 0 < sd− re < r. Since these walls are ∆(s, e, (s, 1)) = ∆(r − s, d− e, (r −
s− 1, 0)), they are simple walls (Section 3.1).

The other case is that dimF1|x1 ∩ V1 = dimF1|x1 = s and dimF1|x2 ∩ V2 = 0. Then

e+ sa1

s
=
d+ (r − 1)a1 + a2

r
,

so sa1 − sa2 = sd − re. The slope of the wall ∆(s, e, (s, 0)) is one and we call it a positive
wall. The nonempty intersection with (0, 1)2 is equivalent to −s < sd − re < s. Since
(r, d) = 1, sd− re 6= 0 and there is no wall passing through the origin. See Figure 1 for an
example of the wall-chamber decomposition.

The line bundle Θ is the pull-back of Θ by M(r, L, a) 99K M(r, L).

Lemma 5.1. For a general weight a, the dualizing bundle of M(r, L, a) is

ω = O(−r,−r)⊗Θ−2.
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∆(3, 1, (3, 1))

∆(1, 0, (1, 1))

∆(4, 1, (4, 1))

∆(2, 0, (2, 1))
∆(2, 1, (2, 0)) = ∆(4, 2, (4, 0))

∆(3, 1, (3, 0))

∆(4, 1, (4, 0))

FIGURE 1. The wall-chamber decomposition for r = 5 and d = 2. The
thick line segment for ∆(2, 1, (2, 0)) is a multiple wall. Two arrows denote
diagonal and nearly diagonal wall crossing directions.

Proof. We may assume that a is sufficiently small and M(r, L, a) ∼= P(Ex1) ×M(r,L) P(E∗x2).
Apply the relative Euler sequence to P(Ex1)→ M(r, L) and P(Ex1)×M(r,L) P(E∗x2)→ P(Ex1).

�

Proposition 5.2. Let a be a general weight. Then Eff(M(r, L, a)) is generated by four extremal
rays

Θ,O(r, 0)⊗Θ1−`,O(0, r)⊗Θ1+`,O(r, r)⊗Θ.

Proof. By Proposition 3.3, it is sufficient to find four divisors associated to four extremal
parabolic weights. For any big Q-divisor D ∈ int Eff(M(r, L, a)), the associated birational
model

M(r, L, a)(D) := Proj
⊕
m≥0

H0(M(r, L, a),O(bmDc))

is M(r, L, a′). When a′ = (0, 0), the associated rational contraction is M(r, L) and the
associated divisor is a scalar multiple of Θ. When a′ = (1/`, 0), by Section 4, the associated
divisor is a multiple of O(1, 0). When a′ = (1, 0), the associated rational contraction is
M(r, L(−x)) and the associated divisor is a scalar multiple of O(r, 0) ⊗ Θ1−` by Lemma
4.9. For a′ = (0, 1/(r − `)), we have a multiple of O(0, 1) ⊗ Θ. Finally, for a′ = (0, 1), a
multiple of O(0, r)⊗Θ1+` is associated.
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By an elementary computation, for each point a′ = (a′1, a
′
2) ∈ [0, 1]2, the associated

divisor O(D) = O(c1, c2) ⊗ Θd can be written as a positive multiple of Θ ⊗ (O(r, 0) ⊗
Θ−`)a

′
1 ⊗ (O(0, r)⊗Θ`)a

′
2 = O(ra′1, ra

′
2)⊗Θ1−`a′1+`a′2 . A routine calculation shows that

(11) (a′1, a
′
2) =

(
c1

rd+ `c1 − `c2

,
c2

rd+ `c1 − `c2

)
.

Thus, the last extremal ray, which is associated to a′ = (1, 1), is O(r, r)⊗Θ. �

5.2. Diagonal and nearly diagonal wall-crossings. We say a wall crossing is a diagonal
one if we cross a wall ∆(s, e,n) while the weight a is increasing along the line a1 = a2. A
wall crossing is a nearly diagonal if we cross a wall ∆(s, e,n) while the weight a is increas-
ing along ra1 = (r + 1)a2. See Figure 1. We explicitly compute these wall-crossings.

Proposition 5.3. All walls that appear in diagonal or nearly diagonal wall crossings are simple.

Proof. For a negative wall ∆(s, e, (s, 1)) = ∆(r−s, d−e, (r−s−1, 0)), the greatest common
divisor for both {s, e, s, 1} and {r − s, d − e, r − s − 1, 0} are one. So every negative wall
is simple. Then all multiple walls are positive walls, and hence parallel to the diagonal
line a1 = a2. Such a wall is given by a1 − a2 = (sd− re)/s. Since (r, d) = 1, the right hand
side is nonzero and it is disjoint from the diagonal line a1 = a2. Moreover, |(sd− re)/s| ≥
1/s ≥ 1/(r − 1). It is a routine calculation to check that these walls do not intersect with
ra1 = (r + 1)a2 on [0, 1]2. �

Remark 5.4. Several walls can meet at a weight during diagonal or nearly diagonal wall
crossings. In this case, we may perturb the weight slightly, then the wall-crossing can be
decomposed into a composition of several simple wall-crossings. Thus, we may assume
that all wall-crossings are simple.

We can compute the dimension of all simple wall-crossing centers Y±. For the theoret-
ical background and details, see [MY21, Section 4]. Here we leave the computation for a
negative wall ∆(s, e, (s, 1)). We keep the notation in the diagram (6).

For a point ((E−, V −• ), (E+, V +
• )) ∈ Y0, it is sufficient to evaluate dimP(Ext1((E±, V ±• ), (E∓, V ∓• ))∗).

By the Serre duality for parabolic bundles,

Ext1((E+, V +
• ), (E−, V −• )) ∼= SParHom((E− ⊗ ω∗(−x), V −• ), (E+, V +

• ))∗

[Yok95, Proposition 3.7]. There is an exact sequence of vector spaces [MY21, Section 4.2]

0→ SParHom((E− ⊗ ω∗(−x), V −• ), (E+, V +
• ))→ Hom(E− ⊗ ω∗(−x), E+)

→
2⊕
i=1

Hom(E− ⊗ ω∗(−x)|xi , E+|xi)/Nxi((E
− ⊗ ω∗(−x), V −• ), (E+, V +

• ))→ 0,
(12)
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where Nx((E
−, V −• ), (E+, V +

• )) is the subspace of Hom(E−|x, E+|x) which is strongly par-
abolic at x. Since the parabolic weight for V −i and V +

i are the same,

Nxi((E
− ⊗ ω∗(−x), V −• ), (E+, V +

• ))

= {f ∈ Hom(E− ⊗ ω∗(−x)|xi , E+|xi) | f(E− ⊗ ω∗(−x)|xi) ⊂ V +
i , f(V −i ) = 0}.

From dimV −1 = s = rankE− and dimV +
2 = 0, dimNxi((E

− ⊗ ω∗(−x), V −• ), (E+, V +
• )) = 0

for both i = 1, 2. Now

dim Ext1((E+, V +
• ), (E−, V −• ))

= dim Hom(E− ⊗ ω∗(−x), E+)− 2s(r − s)
≥ χ(E−∗ ⊗ E+ ⊗ ω(x))− 2s(r − s) = sd− re+ s(r − s)(g − 1).

(13)

By the same method, we obtain

(14) dim Ext1((E−, V −• ), (E+, V +
• )) ≥ re− sd+ s(r − s)(g − 1) + r,

so dim Ext1((E−, V −• ), (E+, V +
• ))+dim Ext1((E+, V +

• ), (E−, V −• )) ≥ 2s(r−s)(g−1)+r. On
the other hand,

dimP(Ext1((E−, V −• ), (E+, V +
• ))∗) + dimP(Ext1((E+, V +

• ), (E−, V −• ))∗)

= dim M(r, L, a)− dim M(s, e,n, a)×Pice(X) M(r − s, d− e,m− n, a)− 1

= 2s(r − s)(g − 1) + r − 2.

Therefore, we obtain that (13) and (14) are indeed equalities. In summary:

Proposition 5.5. Let ∆(s, e, (s, 1)) be a negative wall. For the contraction map π± : M(r, L, a±)→
M(r, L, a) in (6), the dimension of the exceptional fiber of π+ (resp. π−) is (re−sd)+s(r−s)(g−
1) + r − 1 (resp. (sd− re) + s(r − s)(g − 1)− 1).

6. COHOMOLOGY VIA WALL-CROSSING OF DERIVED CATEGORY

To prove the main theorems, a critical technical step is to identify the cohomology
groups of the bundles on different birational models. Halpern-Leistner and Ballard-
Favero-Katzarkov provided a systematic way to study the derived category of a variation
of GIT [HL15, BFK19]. In this section, we review their works, in particular the quan-
tization theorem. Technically, the results treat the derived category of a quotient stack.
However, the following (well-known) lemma and its corollary show that it can be ap-
plied to the cohomology computation on the coarse moduli space. Let Dper(M) be the
category of perfect complexes over M.

Lemma 6.1. LetM be a smooth Artin stack and π : M → M be its good moduli space. Then
Lπ∗ : Dper(M)→ Db(M) is fully faithful.
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Proof. We have an isomorphism OM → Rπ∗OM from the definition of a good moduli
space. For any F •, G• ∈ Dper(M) and i ∈ Z, we have isomorphisms

Hom(Lπ∗F •, Lπ∗G•[i]) ∼= Hom(F •, Rπ∗Lπ
∗G•[i]) ∼= Hom(F •, G•[i])

by the adjunction formula and the projection formula ([HR17, Corollary 4.12], [Ols16,
Proposition 9.3.6]). Therefore we see that Lπ∗ is fully faithful. �

Corollary 6.2. We retain the same setup.

(1) If L is a vector bundle over M, then Hi(M, L) ∼= Hi(M, π∗L).
(2) If M is smooth, Lπ∗ : Db(M) → Db(M) is fully faithful. In particular, for any F • ∈

Db(M), Homi(OM, F
•) ∼= Homi(OM, Lπ∗F •).

6.1. Variation of GIT and derived category. Let V be a smooth quasi projective vari-
ety equipped with a reductive group G-action and A be a linearization. The GIT quo-
tient V//AG is the good moduli space of the quotient stack [V ss(A)/G]. Halpern-Leistner
showed that, for a collection of integers w = (wi) for each Kempf-Ness stratum of the
unstable locus, Db([V/G]) has a semiorthogonal decomposition

Db([V/G]) = 〈Db
[V us(A)/G]([V/G])<w,Gw,D

b
[V us(A)/G]([V/G])≥w)〉,

and moreover, the restriction functor i∗ : Gw → Db([V ss(A)/G]) is an equivalence of
categories [HL15, Theorem 2.10].

From now on, we assume that there is only one unstable stratum S that is a smooth
subvariety. It is determined by a one-parameter subgroup λ(t) which minimizes the nor-
malized weight wtλA/|λ| over the λ-fixed locus Z ⊂ S. Since a choice of w is arbitrary, we
may set w = 0. Under this condition, Gw is characterized as the subcategory of complexes
F • such that the λ-weights of the hypercohomology H∗(F •|Z) is supported on [w,w + η)

[HL15, Lemma 2.9]. Here η is the λ-weight of the top wedge product of N∗S/V |Z .

The following theorem is a key ingredient for our cohomology computation.

Theorem 6.3 (Quantization Theorem [HL15, Theorem 3.29]). For F • ∈ Db([V/G]), suppose
that the λ-weights ofH∗(F •|Z) are supported on (−∞, η). Then

Hi([V/G], F •) ∼= Hi([V ss(A)/G], F •|[V ss(A)/G]).

We apply the above result to the variation of GIT setup. Let A0 be a linearization such
that V ss(A0) 6= V s(A0). For a sufficiently small ε and a linearized ample line bundle A,
let A± := A0 ± εA. We assume that V ss(A±) = V s(A±). Assume further that V s(A±) =

V ss(A0) \ S± and S± are smooth irreducible varieties. If λ± are the one-parameter sub-
groups describing the Kempf-Ness strata S±, then λ− = λ−1

+ . Let Z ⊂ S+ ∩ S− be the
λ±-fixed locus, and η± be the λ±-weight of the top wedge product of N∗S±/V |Z .
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Theorem 6.4 ([TT21, Theorem 3.15]). If λ−-weights ofH∗(F •|Z) are supported on (−η+, η−),

Hi([V s(A−)/G], F •|[V s(A−)/G]) ∼= Hi([V ss(A0)/G], F •) ∼= Hi([V s(A+)/G], F •|[V s(A+)/G]).

The first isomorphism follows from Theorem 6.3 and the second one is from the theo-
rem and λ− = λ−1

+ . In particular, for any line bundle E on [V ss(A0)/G], if the magnitude
of the λ−-weight is ‘not too big,’ then the cohomology of E on both sides of the wall can
be identified.

6.2. Weight computation. All M(r, L, a) are constructed by GIT and they are connected
by the variation of GIT (Section 3.2). For any simple wall-crossing, the technical assump-
tions we made in Section 6.1 hold. In this section, we compute the λ−-weight wtλ−F for
every line bundle F and each simple wall that occurs during the diagonal and nearly
diagonal wall-crossings.

Take a wall ∆(s, e,n) and pick a general weight a = (a1, a2) ∈ ∆(s, e,n). Let A be an
ample divisor associated to a. Then R̃ss(A)//SLχ ∼= M(r, L, a). For two nearby weights
a± := (a1 ± ε, a2 ± ε), let A± be a line bundle such that M(r, L, a±) ∼= R̃s(A±)//SLχ.

Proposition 6.5. Let ∆(s, e,n) be a simple wall, a ∈ ∆(s, e,n), and A be an associated line
bundle. Let λ− be the one-parameter subgroup associated to the stratum S− := R̃ss(L0)\ R̃s(L−).
Over the λ−-fixed locus Z ⊂ S−,

wtλ−Θ = −χ(sd− re).

Proof. A general point in Z parametrizes a pair

([Oχ− ⊕Oχ+ ϕ→ E−(m)⊕ E+(m)→ 0], V•),

where E− (resp. E+) is a rank s (resp. r − s), degree e (resp. d − e) vector bundle, χ± =

dim H0(E±(m)), and ϕ = ϕ− ⊕ ϕ+ where ϕ± : Oχ± → E±(m) and H0(Oχ±) → H0(E±(m))

is a scalar multiple map. Because λ−(t) is a subgroup of SLχ, λ−(t)-weight on E+(m) is
uχ− and that on E−(m) is −uχ+ for some scalar u. Normalizing λ−, we may assume that
u = 1. By Riemann-Roch, it is straightforward to check that χ− = e + sm + s(1 − g) and
χ+ = (d− e) + (r − s)m+ (r − s)(1− g).

For any vector bundle E over X , Θ|[E] = Θ|[E(m)] is defined as

Det(E(m))r ⊗ detE(m)|χx = (∧χH0(E(m))∗)r ⊗ detE(m)|χx .

for some x ∈ X [Nar17, Proposition 2.1]. Its λ−-weight is

−r(−χ+χ− + χ−χ+) + χ(−sχ+ + (r − s)χ−) = −χ(sd− re).

�

Lemma 6.6. We identify the effective cone of M(r, L,m, a) with the cone over [0, 1]2, the closure of
the space of parabolic weights (Proposition 3.3). Let Ã be a line bundle on the same wall ∆(s, e,n),
including A. Then wtλ−Ã = 0.
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Proof. Recall that M(r, L, a) = R̃ss(A)//SLχ. Since A descends to M(r, L, a), by Kempf’s
descent lemma [DN89, Theorem 2.3], for any closed SLχ-orbit, the stabilizer group acts
on the fiber ofA trivially. In particular, at a point in Z, the stabilizer group λ− acts trivially
on the fiber, hence the λ−-weight is zero.

The same argument work for any small perturbation of A along ∆(s, e,n), as the stabil-
ity and the stabilizer group λ− does not change. By the linearity of weight, the same is true
for arbitrary linear combination of A and its perturbation, which covers all ∆(s, e,n). �

On the other hand, for a point z := ([Oχ− ⊕ Oχ+ → E−(m) ⊕ E+(m) → 0], V•) ∈ Z,
NS−/R̃

|z is identified with Ext1((E+, V +
• ), (E−, V −• )) and the action of λ− on NS±/R̃ss(A)|z

has weight −χ [Tha96, Section 7]. Thus, for a negative wall-crossing along ∆(s, e, (s, 1)),
we obtain

(15) η− = χ dim Ext1((E+, V +
• ), (E−, V −• )) = χ(sd− re+ s(r − s)(g − 1)),

(16) η+ = χ dim Ext1((E−, V −• ), (E+, V +
• )) = χ(re− sd+ s(r − s)(g − 1) + r).

by Proposition 5.5.

7. EMBEDDING OF DERIVED CATEGORY

In this section, we prove Theorem A.

7.1. Bondal-Orlov criterion. Let E be the normalized Poincaré bundle over X ×M(r, L).
Let p : X × M(r, L) → X , q : X × M(r, L) → M(r, L) be two projections. Consider the
Fourier-Mukai transform

ΦE : Db(X) → Db(M(r, L))

F • 7→ Rq∗(E ⊗L Lp∗F •).

The Bondal-Orlov criterion [BO95, Theorem 1.1] provides the necessary and sufficient
condition for the fully-faithfulness of a Fourier-Mukai transform between two smooth
algebraic varieties. The next theorem is a version applied to ΦE .

Theorem 7.1 (Bondal-Orlov criterion). For each x ∈ X , let Ex be the restriction of the normal-
ized Poincaré bundle on M(r, L). The functor ΦE : Db(X) → Db(M(r, L)) is fully faithful if and
only if the following conditions hold:

(1) H0(M(r, L), Ex ⊗ E∗x) ∼= C.
(2) Hi(M(r, L), Ex ⊗ E∗x) = 0 for i ≥ 2.
(3) Hi(M(r, L), Ex1 ⊗ E∗x2) = 0 for all x1 6= x2 and all i ∈ Z.
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Proof of Theorem A. Items (1) and (2) of Theorem 7.1 are proved by [BM19, Section 3], by
extending the work of Narasimhan and Ramanan in [NR75]. We show Item (3). Since

Hi(M(r, L, e),O(1, 1)) ∼= Hi(M(r, L), Ex1 ⊗ E∗x2)

for a small e = (ε, ε), it is sufficient to show that Hi(M(r, L, e),O(1, 1)) = 0.

By Proposition 5.2 and the fact that there is no divisorial contraction on the wall-
crossing (Proposition 5.5), there is a parabolic weight a such that O(r + 1, r + 1) ⊗ Θ2

is nef and big on M(r, L, a). Note that O(r + 1, r + 1) ⊗ Θ2 lies on a subspace generated
by two extremal rays Θ and O(r, r) ⊗ Θ of Eff(M(r, L, e)). To reach this line bundle, we
may run a diagonal wall-crossing. By Proposition 5.3, we encounter only negative walls,
which are all simple, to reach M(r, L, a) from M(r, L, e).

For each negative wall ∆(s, e, (s, 1)), a parabolic weight a′ = (a′1, a
′
2) lies on it if and

only if it satisfies sa′1 + (r− s)a′2 = sd− re. Furthermore, if a′ is on the diagonal, a′1 = a′2 =

(sd− re)/r. Thus, by (11) in Section 5.1, the associated line bundle is a scalar multiple of

O(sd− re, sd− re)⊗Θ.

The λ−-weight for this line bundle has to be zero by Lemma 6.6. By Proposition 6.5,

wtλ−O(1, 1) = χ.

On the other hand, since g ≥ 2 and 0 < sd − re < r, Equations (15) and (16) tell us
η± > χ. Therefore, for any simple wall intersecting the diagonal, the λ−-weight of O(1, 1)

lies on (−η−, η+). Theorem 6.4 implies that

Hi(M(r, L, a′),O(1, 1)) ∼= Hi(M(r, L, e),O(1, 1))

for any i ∈ Z and any general diagonal weight a′, including a. For i > 0,

Hi(M(r, L, a),O(1, 1)) = Hi(M(r, L, a), ω ⊗O(r + 1, r + 1)⊗Θ2) = 0

by Kawamata-Viehweg vanishing. And H0(M(r, L, a),O(1, 1)) = 0 sinceO(1, 1) /∈ Eff(M(r, L, a)).
�

8. VANISHING OF COHOMOLOGY

We prove the following vanishing result, which is used in both the computation of a
semiorthogonal decomposition of Db(M(r, L)) and the construction of ACM bundles.

Theorem 8.1. For any x ∈ X and j ≥ −1, Hi(M(r, L), Ex ⊗Θj) = 0 for all i > 0.

Proof. We divide the proof into several steps.

Step 1. Observe that

Hi(M(r, L), Ex⊗Θj) ∼= Hi(M(r, L, e),O(1, 0)⊗Θj) ∼= Hi(M(r, L, e),O(r+ 1, r)⊗Θj+2⊗ ω).
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Since
O(r + 1, r)⊗Θj+2 = (O(r, r)⊗Θ)⊗Θ

`−1
r

+(j+1) ⊗ (O(r, 0)⊗Θ1−`)
1
r ,

for j ≥ −1, O(r + 1, r)⊗Θj+2 is on the effective cone of M(r, L, e) where e = ((r + 1)ε, rε)

for a small 0 < ε � 1. Moreover, unless ` = 1 and j = −1, it lies on the interior of the
effective cone. (We will treat ` = 1, j = −1 case in Step 4.) Thus, if we take a as (possibly
a slight perturbation of) the one associated to O(r+ 1, r)⊗Θj+2, that is, ( r+1

r(j+2)+`
, r
r(j+2)+`

)

by (11), O(r + 1, r)⊗Θj+2 is nef and big on M(r, L, a). By Kawamata-Viehweg vanishing,
Hi(M(r, L, a),O(r + 1, r) ⊗ Θj+2 ⊗ ω) = 0 for i > 0. Thus, it is enough to show that
Hi(M(r, L, a),O(1, 0)⊗Θj) ∼= Hi(M(r, L, e),O(1, 0)⊗Θj) for j ≥ −1.

Step 2. We can move from e to a by a nearly diagonal wall-crossing (Section 5.2).
All walls that we encounter are simple wall ∆(s, e, (s, 1)) (Proposition 5.3). The wall
∆(s, e, (s, 1)) is given by sa1 + (r − s)a2 = sd − re. So if the wall actually occurs while
we move from e to a,

(17) sd− re < s
r + 1

r(j + 2) + `
+ (r − s) r

r(j + 2) + `
=

r2 + s

r(j + 2) + `
.

Step 3. For each wall ∆(s, e, (s, 1)), let λ− be the associated one-parameter subgroup.
Combining Proposition 6.5 and Lemma 6.6, we have

wtλ−
(
O(1, 0)⊗Θj

)
= χ

(
s

r
−
(
`

r
+ j

)
(sd− re)

)
.

Since 0 < sd−re < r, for any wall, it is straightforward to check that wtλ− (O(1, 0)⊗Θj) ≤
wtλ− (O(1, 0)⊗Θ−1) < χ(s/r + (sd− re)) < η− for any j ≥ −1 by comparing with (15).

Now we need to show that

(18) − η+ < wtλ−
(
O(1, 0)⊗Θj

)
for every wall ∆(s, e, (s, 1)) with the condition (17). Equation (18) is equivalent to

(
`

r
+ j + 1)(sd− re) < s(r − s)(g − 1) +

s

r
+ r.

Then

(
`

r
+ j + 1)(sd− re) < (

`

r
+ j + 1)

r2 + s

r(j + 2) + `
=

1

r
(r(j + 1) + `)

r2 + s

r(j + 2) + `

<
r2 + s

r
= r +

s

r
< s(r − s)(g − 1) +

s

r
+ r.

Thus, we have the inequality (18). Therefore, by Theorem 6.4,

Hi(M(r, L, a),O(1, 0)⊗Θj) ∼= Hi(M(r, L, e),O(1, 0)⊗Θj).

Step 4. The only remaining case is that ` = 1 (hence d = 1) and j = −1. We need
to prove Hi(M(r, L), Ex ⊗ Θ−1) = 0 for i > 0. Since d = 1, there is a contraction map
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π1 : P(Ex) = M(r, L, r − 1, ε)→ M(r, L(−x)) (Remark 4.2). Then by [BM19, Lemma 13],

Hi(M(r, L), Ex ⊗Θ−1) ∼= Hi(P(Ex),O(1)⊗Θ−1) = Hi(P(Ex), ωP(Ex) ⊗O(r + 1))

= Hi(P(Ex), ωP(Ex) ⊗ π∗1Θr+1
M(r,L(−x))).

By Kollár’s vanishing [Kol86, Theorem 2.1], Riπ1∗ωP(Ex) is torsion free for all i and

Hk(M(r, L(−x)), Riπ1∗ωP(Ex) ⊗Θr+1
M(r,L(−x))) = 0

for all k > 0. Since the Leray spectral sequence degenerates, H0(M(r, L(−x)), Riπ1∗ωP(Ex)⊗
Θr+1

M(r,L(−x)))
∼= Hi(P(Ex), ωP(Ex) ⊗ π∗1Θr+1

M(r,L(−x))). On the other hand, over the stable lo-
cus M(r, L(−x))s, π1 is a Pr−1-fibration. Checking a general fiber, we can show that
Riπ1∗ωP(Ex) = 0 for i 6= r − 1. Thus, we obtain the desired vanishing for 1 ≤ i ≤ r − 2.

For i = r − 1, since Rr−1π1∗ωP(Ex) is a torsion free sheaf, we have an injective mor-
phism Rr−1π1∗ωP(Ex) ↪→ (Rr−1π1∗ωP(Ex))

∨∨. These two are isomorphic to ωM(r,L(−x)) over
an open subset of codimension ≥ 2 [Har77, Exercise III.8.4] and the latter is reflexive.
Since M(r, L(−x)) is locally factorial [DN89, Theorem A], (Rr−1π1∗ωP(Ex))

∨∨ ∼= ωM(r,L(−x))
∼=

Θ−2r
M(r,L(−x)) [DN89, Theorem F]. We have

H0(M(r, L(−x)), Rr−1π1∗ωP(Ex) ⊗Θr+1
M(r,L(−x))) ↪→ H0(M(r, L(−x)), ωM(r,L(−x)) ⊗Θr+1

M(r,L(−x)))

= H0(M(r, L(−x)),Θ−r+1
M(r,L(−x))) = 0.

�

Remark 8.2. When g = r = 2, M(r, L) is an intersection of two quadrics in P5 and Ex is a
spinor bundle [CKL19, FK18]. From this description, it was shown that Ex is ACM for all
x ∈ X .

9. SEMIORTHOGONAL DECOMPOSITION

Since M(r, L) is an index two Fano variety of Picard number one [Ram73], O,Θ form
an exceptional collection. In this section, we prove Theorem B by showing that the excep-
tional collection and the image of Db(X) form a part of a semiorthogonal decomposition
of Db(M(r, L)). It was proved for r = 2 in [Nar17, Nar18], and for d = 1 and g ≥ 3r + 4 in
[BM19]. Since a stronger version of Theorem B is proved for r = 2 [TT21, Theorem 1.1],
we assume that r ≥ 3.

Proof of Theorem B. By Theorem A, we have four full subcategories

O,ΦE(Db(X)),Θ,ΦE(D
b(X))⊗Θ.

We will show that they are semiorthogonal in that order. We need to prove the orthogo-
nality condition. Since {C(x) | x ∈ X} form a spanning class of Db(X), {Ex | x ∈ X} (resp.
{Ex ⊗ Θ | x ∈ X}) form a spanning class of ΦE(D

b(X)) (resp. ΦE(D
b(X)) ⊗ Θ). Therefore,

it is sufficient to prove the cohomology vanishing in Theorem 9.1 below. �
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Theorem 9.1. Assume the g(X) ≥ 6. For any i ∈ Z and not necessarily distinct two points
x1, x2 ∈ X , the following cohomologies are trivial.

(1) Hi(M(r, L), E∗x1);
(2) Hi(M(r, L), Ex1 ⊗Θ−1);
(3) Hi(M(r, L), E∗x1 ⊗Θ−1);
(4) Hi(M(r, L), Ex1 ⊗ E∗x2 ⊗Θ−1).

We use Sommese’s vanishing theorem for k-ample vector bundles. On a smooth variety
V , a line bundle A on V is k-ample if it is semiample and the dimension of the fiber of the
morphism |mA| : V → PN is less than or equal to k for m � 0. A vector bundle F is
k-ample if OP(F )(1) is k-ample.

Theorem 9.2 ([Som78, Proposition 1.13], Sommese vanishing theorem). Let F be a rank r
k-ample vector bundle on V . Then we have Hi(V, ωV ⊗ F ) = 0 for i ≥ r + k.

We check the k-ampleness of bundles using the wall-crossing of moduli of parabolic
bundles. Recall that P(Ex) ∼= M(r, L, r − 1, ε). As we increase the parabolic weight ε, the
first wall arises when the parabolic weight is 1/` and the wall is of the form ∆(`, e, `)

(Lemma 4.4).

Lemma 9.3. Suppose that ` ≥ 2 and the first wall crossing is a simple one. Over M(r, L), Ex is
(g − 1)`(r − `)-ample.

Proof. The associated nef line bundle to the first small contraction π− : M(r, L, r − 1, ε)→
M(r, L, r − 1, 1/`) is OP(Ex)(1), since OP(Ex)(1) is the unique (up to power) line bundle that
is nef (Theorem 4.1) and trivially intersects with the fiber of π− (Lemma 4.6). Thus, it is
sufficient to compute the dimension of the exceptional fiber of π−.

For a point p := ((E−, V −)⊕(E+, V +)) ∈ M(r, L, r−1, 1/`), π−1
− (p) = P(Ext1((E+, V +), (E−, V −))∗).

We can compute its dimension, by modifying the exact sequence (12). After a standard
computation, we obtain dimP(Ext1((E+, V +), (E−, V −))∗) = (g − 1)`(r − `). �

Lemma 9.4. For any two points x1, x2 ∈ X , Ex1 ⊗ E∗x2 ⊗Θ is (g − 1)`(r − `)-ample.

Proof. First, suppose that 2 ≤ ` ≤ r−2. Note that E∗x2⊗Θ is a normalized Poincaré bundle
over M(r, L∗(r)), where degL∗(r) = r−d. For the wall crossing of P(Ex1) ∼= M(r, L, r−1, ε),
the first wall is ∆(`, e, `) and it is a multiple wall if and only if 2` < r (Lemma 4.4). On
the other hand, P(E∗x2 ⊗Θ) ∼= M(r, L∗(r), r − 1, ε) and its first wall is ∆(r − `, e′, r − `) and
it is a multiple wall if and only if 2(r − `) < r. But since 2` + 2(r − `) = 2r and ` - r, one
of these two walls is simple. Then we may apply Lemma 9.3 to compute the k-ampleness
of one of them. By [LN20, Corollary 3.5], we can conclude that Ex1 ⊗ E∗x2 ⊗ Θ is (at least)
(g − 1)`(r − `)-ample.
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Now suppose ` = 1 (` = r − 1 case is the same). By [Nar17, Proposition 3.3], Ex1 is
semi-ample. On the other hand, for P(E∗x2 ⊗ Θ) ∼= M(r, L∗(r), r − 1, ε), the first wall is
∆(r − 1, e, r − 1). Since 2(r − 1) > r (because r > 2), this is a simple wall, so E∗x2 ⊗ Θ is
(g−1)`(r− `) = (g−1)(r−1)-ample by Lemma 9.3. By [LN20, Theorem 3.4], Ex1⊗E∗x2⊗Θ

is (g − 1)`(r − `)-ample, too. �

Proof of Theorem 9.1. We first show Item (2). For i 6= 0, it follows from Theorem 8.1. From

H0(M(r, L), Ex1 ⊗Θ−1) ∼= H0(M(r, L, e),O(1, 0)⊗Θ−1)

and the fact that O(1, 0) ⊗ Θ−1 = Θ
`−1
r
−1 ⊗

(
O(r, 0)⊗Θ1−`) 1

r is not on Eff(M(r, L, e))

(because ` < r), it is trivial. Thus, we obtain Item (2). Since E∗x1 = E∗x1 ⊗ Θ ⊗ Θ−1 and
E∗x1 ⊗Θ is the normalized Poincaré bundle on M(r, L∗(r)) ∼= M(r, L), Item (1) follows from
Item (2). Applying Serre duality,

Hi(M(r, L), E∗x1 ⊗Θ−1) ∼= Hdim M(r,L)−i(M(r, L), Ex1 ⊗Θ⊗ ω)∗

∼= Hdim M(r,L)−i(M(r, L), Ex1 ⊗Θ−1)∗ = 0

and we obtain Item (3).

We move to Item (4). By Theorem 9.2 and Lemma 9.4,

Hi(M(r, L), Ex1 ⊗ E∗x2 ⊗Θ−1) ∼= Hi(M(r, L), Ex1 ⊗ E∗x2 ⊗Θ⊗ ω) = 0

if i ≥ r2 + (g − 1)`(r − `). Serre duality tells us that

Hi(M(r, L), Ex1 ⊗ E∗x2 ⊗Θ−1) ∼= Hdim M(r,L)−i(M(r, L), E∗x1 ⊗ Ex2 ⊗Θ−1)∗ = 0

provided i ≤ (r2 − 1− `(r − `))(g − 1)− r2. Thus, if r2 + (g − 1)`(r − `) ≤ (r2 − 1− `(r −
`))(g − 1)− r2 + 1, we obtain the desired vanishing. This is equivalent to

(19)
2r2 − 1

r2 − 1− 2`(r − `)
≤ g − 1.

Since 0 < ` < r, if r ≥ 5, we have

2r2 − 1

r2 − 1− 2`(r − `)
<

2r2 − 1

r2 − 1− r2/2
=

4r2 − 1

r2 − 2
≤ 4 · 52 − 1

52 − 2
=

99

23
.

When r = 3 and 4, a direct computation gives 17/4 and 31/9, respectively. So if g ≥ 6, the
inequality (19) holds for all r ≥ 3. �

In the proof above, the genus bound is necessary only for Item (4), which is used to
prove the orthogonality of ΦE(D

b(X))⊗Θ. Thus, we obtain the following weaker version
for all g ≥ 2.

Theorem 9.5. There is a semiorthogonal decomposition Db(M(r, L)) = 〈A′, ⊥A′〉 where A′ =

〈O,ΦE(Db(X)),Θ〉.
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Remark 9.6. Whenever r and ` satisfy (19), we have the semiorthogonal decomposition of
Theorem B. Therefore the genus bound can be improved, if we restrict degL. For instance,
if d = 1 (so ` = 1) and r ≥ 6, the vanishing result holds for g ≥ 4. Our method does not
seem to work for g = 2, 3.

Remark 9.7. For d = 1, the semiorthogonal decomposition in Theorem B was obtained in
[BM19, Theorem B]. Their genus bound is weaker than ours – for instance, for r ≥ 4, they
proved it for g ≥ 3r + 4.

10. ACM BUNDLES ON M(r, L)

Besides the structure of Db(M(r, L)), another immediate application of the technique we
developed in this paper is a construction of a one-dimensional family of ACM bundles.

Definition 10.1. Let V be an n-dimensional projective variety with an ample line bundle
A. A vector bundle F on V is an ACM bundle with respect to A if Hi(V, F ⊗ Aj) = 0 for
every 1 ≤ i ≤ n − 1 and j ∈ Z. An ACM bundle F is Ulrich if H0(V, F ⊗ A−1) = 0 and
h0(V, F ) = rankF · deg V = rankF · (A)n.

For a smooth Fano variety of Picard rank one, it is straightforward to verify that every
line bundle is ACM. It is also clear that if F is ACM with respect toA, then F ⊗Ak is ACM
with respect to A for all k ∈ Z. But finding a non-trivial example of an ACM bundle is not
an easy task for higher dimensional varieties. In this section, we show that Ex is ACM.

Remark 10.2. Many authors assume that A to be very ample when they consider ACM
bundles. Because the Picard number of M(r, L) is one, Theorem C implies that Ex is ACM
for every very ample line bundle. On M(r, L), Θk is known to be very ample when k ≥
r2 + r [EP04, Theorem A], but an optimal k for the very ampleness is unknown.

Proof of Theorem C. By Serre duality,

Hi(M(r, L), Ex ⊗Θj) ∼= Hdim M(r,L)−i(M(r, L), E∗x ⊗Θ⊗Θ−j−3)∗.

The vanishing for Ex⊗Θj for j ≤ −2 follows from the vanishing for E∗x⊗Θ⊗Θj for j ≥ −1.
Since E∗x ⊗Θ is the normalized Poincaré bundle over M(r, L∗(r)) ∼= M(r, L), it is sufficient
to prove the vanishing for j ≥ −1, which is Theorem 8.1.

For two different points x1, x2 ∈ X , Ex1 6= Ex2 [LN05, Theorem]. Thus, we obtain a
one-dimensional family of ACM bundles. �

Remark 10.3. The bundle Ex is not Ulrich in general. If g = r = 2, h0(M(r, L), Ex) = 4 <

8 = 2 deg(M(r, L)). It is an interesting problem to construct Ulrich bundles on M(r, L). See
[CKL19] for an alternative construction of Ulrich bundles for g = r = 2 case.
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[LN05] H. Lange and P. E. Newstead, On Poincaré bundles of vector bundles on curves. Manuscripta
Math. 117 (2005), no. 2, 173–181. 26

[LN20] F. Laytimi and W. Nahm, Semiample and k-ample vector bundles. Comm. Algebra. 48 (2020), 783-
791. 24, 25



28 KYOUNG-SEOG LEE AND HAN-BOM MOON

[Lee18] K.-S. Lee, Remarks on motives of moduli spaces of rank 2 vector bundles on curves. Preprint,
arXiv:1806.11101. 2

[LN21] K.-S. Lee and M. S. Narasimhan, Symmetric products and moduli spaces of vector bundles of
curves. Preprint, arXiv:2106.04872. 2

[MS80] V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures.
Math. Ann. 248, 205–239 (1980). 4

[MY20] H-B. Moon and S-B. Yoo, Finite generation of the algebra of type A conformal blocks via birational
geometry II: higher genus. Proc. Lond. Math. Soc. (3) 120 (2020), no. 2, 242–264. 7, 9

[MY21] H-B. Moon and S-B. Yoo, Finite generation of the algebra of type A conformal blocks via birational
geometry. Int. Math. Res. Not. IMRN, (2021), no. 7, 4941–4974. 5, 16

[Mum66] D. Mumford, Lectures on curves on an algebraic surface. With a section by G. M. Bergman Annals of
Mathematics Studies, No. 59 Princeton University Press, Princeton, N.J., 1966. xi+200 pp. 4

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory. Third edition., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994. xiv+292 pp. 10

[Nar17] M. S. Narasimhan, Derived categories of moduli spaces of vector bundles on curves. J. Geom.
Phys. 122 (2017), 53–58. 1, 10, 12, 13, 19, 23, 25

[Nar18] M. S. Narasimhan, Derived categories of moduli spaces of vector bundles on curves II. Geometry,
algebra, number theory, and their information technology applications, 375-382, Springer Proc. Math.
Stat., 251, Springer, Cham, 2018. 1, 23

[NR75] M. S. Narasimhan and S. Ramanan, Deformations of the moduli space of vector bundles over an
algebraic curve. Ann. of Math., vol. 101, no. 3, (1975), 391–417. 6, 21

[New78] P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, volume 51 of TIFR Lectures on
Mathematics and Physics. Bombay: Tata Institute of Fundamental Research, 1978. 8

[Ols16] M. Olsson, Algebraic spaces and stacks. American Mathematical Society Colloquium Publications,
62. American Mathematical Society, Providence, RI, 2016. xi+298 pp. 18

[Ram73] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve. Math. Ann. 200 (1973),
69–84. 12, 23

[Som78] A. Sommese, Submanifolds of Abelian varieties. Math. Ann. 233 (1978), no. 3, 229–256. 24
[Sun00] X. Sun, Degeneration of moduli spaces and generalized theta functions. J. Algebraic Geom. 9 (2000),

no. 3, 459–527. 7
[Tev23] J. Tevelev, Braid and Phantom, Preprint, arXiv:2304.01825. 2
[TT21] J. Tevelev and S. Torres, The BGMN conjecture via stable pairs. Preprint, arXiv:2108.11951. 2, 19,

23
[Tha96] M. Thaddeus, Geometric invariant theory and flips. J. Amer. Math. Soc. 9 (1996), no. 3, 691–723. 9,

20
[XY21] K. Xu and S.-T. Yau, Semiorthogonal decomposition of Db(BunL2 ). Preprint, arXiv:2108.13353. 2
[Yok95] K. Yokogawa, Infinitesimal deformation of parabolic Higgs sheaves. Internat. J. Math. 6 (1995), no.

1, 125–148. 8, 16
[Yos90] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings. London Mathematical Society Lec-

ture Note Series, 146. Cambridge University Press, Cambridge, 1990. viii+177 pp. 3



DERIVED CATEGORY AND ACM BUNDLES OF MODULI SPACE 29

KYOUNG-SEOG LEE, INSTITUTE OF THE MATHEMATICAL SCIENCES OF THE AMERICAS, UNIVERSITY OF

MIAMI, 1365 MEMORIAL DRIVE, UNGAR 515, CORAL GABLES, FL 33146

Email address: kyoungseog02@gmail.com

HAN-BOM MOON, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: hmoon8@fordham.edu


	1. Introduction
	1.1. Embedding of derived category
	1.2. Semiorthogonal decomposition
	1.3. ACM bundles
	1.4. Structure of the paper
	Conventions
	Acknowledgements

	2. Moduli spaces of parabolic bundles and their birational geometry
	3. Wall-crossing
	3.1. General theory
	3.2. GIT construction of moduli space
	3.3. Mori's program

	4. Nef vector bundles
	5. Main example
	5.1. Effective cone
	5.2. Diagonal and nearly diagonal wall-crossings

	6. Cohomology via wall-crossing of derived category
	6.1. Variation of GIT and derived category
	6.2. Weight computation

	7. Embedding of derived category
	7.1. Bondal-Orlov criterion

	8. Vanishing of cohomology
	9. Semiorthogonal decomposition
	10. ACM bundles on M (r, L)
	References

