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ABSTRACT. We prove a formula of log canonical models for moduli stackMg,n of pointed
stable curves which describes all Hassett’s moduli spaces of weighted pointed stable curves
in a single equation. This is a generalization of the preceding result for genus zero to all
genera.

1. INTRODUCTION

A central problem in algebraic geometry when studying a variety X is to determine all
birational models of X. One way to approach this problem is to use divisors that have
many sections. For example, for an effective divisor D on X, one can hope to define and
learn about a natural projective model

X(D) := Proj
⊕
k≥0

H0(X,O(bkDc)).

Many results in birational geometry in last several decades are about overcoming of tech-
nical difficulties such as the finite generation of the section ring. This theoretical frame-
work can also be applied to a Deligne-Mumford stack ([HH09, Appendix A]).

The moduli stacksMg andMg,n of stable curves and stable pointed curves, are impor-
tant as they give information about smooth curves and their degenerations. Moreover,
as special varieties, their coarse moduli spaces Mg and Mg,n have played a useful role
in illustrating and testing the goals of birational geometry for example the minimal model
program.

In this paper we show the following theorem, describingMg,A, the coarse moduli space
of Hassett’s moduli spaceMg,A of weighted pointed stable curves with weight datum A
([Has03]), as log canonical models ofMg,n.

Theorem 1.1. Let A = (a1, a2, · · · , an) be a weight datum satisfying 2g − 2 +
∑n

i=1 ai > 0.
Then

Mg,n(KMg,n
+ 11λ+

n∑
i=1

aiψi) ∼=Mg,A.

This is proved for genus zero in [Moo13]. In this article we establish the result in all
genera. A key step is to construct ample divisors onMg,A, for g > 0 (Proposition 4.3).

To put these results into context, we next give some history of this problem. By [HM82,
Har84], we know that for g ≥ 24, the canonical divisor KMg

is big, and by [BCHM10],
that the canonical model Mg(KMg

) exists. The hope is that one will be able to describe
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the canonical model itself as a moduli space, and this problem has attracted a great deal
of attention.

One approach has been the Hassett-Keel program. By [Mum77, p. 107], it is well known
thatMg(KMg

+D) ∼= Mg, where D =Mg −Mg is the sum of all boundary divisors. So
if we figure out the log canonical models Mg(KMg

+ αD) for 0 ≤ α ≤ 1 and find the
variation of log canonical models as we reduce the coefficient α from 1 to 0, we can finally
obtain the canonical model. While this problem is far from complete except small genera
cases ([Has05, HL10]), we have understood many different compactifications ofMg. For
example, see [HH09, HH13, FS13, Fed12, JCML12, AFSvdW13].

We can carry out a similar program forMg,n, the moduli space of pointed stable curves.
The first result in this direction is the thesis of M. Simpson ([Sim08]). He studied the log
canonical model ofM0,n assuming the F-conjecture. He proved that for a suitable range
of β,M0,n(KM0,n

+βD) is isomorphic toM0,A whereA is symmetric weight datum which
depends on β. This theorem was later proved without assuming the F-conjecture ([AS12,
FS11, KM11]). For g = 1, there are results of Smyth ([Smy11]) considering birational
models of type M1,n(sλ + t

∑n
i=1ψi − D). In this case, birational models are given by

moduli spaces of symmetric weighted curves with even worse singularities. In [Fed11]
Fedorchuk showed that for any genus g and weight datumA = (a1, a2, · · · , an) satisfying
2g − 2 +

∑n
i=1 ai > 0, there is a divisor Dg,A onMg,n such that (1) (Mg,n, Dg,A) is a lc pair

and (2)Mg,n(KMg,n
+Dg,A) ∼=Mg,A.

Both formula in Theorem 1.1 and [Fed11] are interesting on their own. Theorem 1.1
says that the same weight datum determines the log canonical model of parameterized
curves and that of the parameter space itself. Indeed, for any weight datum A, there is
a reduction morphism ϕA : Mg,n → Mg,A ([Has03, Theorem 4.1]). For a stable curve
(C, x1, · · · , xn) ∈Mg,n, its image ϕA(C) is given by the log canonical model

C(ωC +

n∑
i=1

aixi) := Proj
⊕
k≥0

H0(C,O(bk(ωC +

n∑
i=1

aixi)c))

of C.
In Section 2 we list the definition and computational results of several tautological di-

visors. In Section 3, we prove the crucial positivity of certain divisor onMg,A. We give
the rest of the proof in Section 4.

We work on an algebraic closed field of any characteristic. All divisor classes and their
intersection computations are on moduli stacks, not on coarse moduli spaces.

Acknowledgements. We thank Valery Alexeev, Angela Gibney and an anonymous
referee for many invaluable suggestions.

2. A GLOSSARY OF DIVISORS ONMg,A

In this section, we recall definitions of tautological divisors on the moduli stackMg,A
and their push-forward/pull-back formulas. A rigorous proof can be obtained by check-
ing the change of universal family and using many test curves. Because on many litera-
tures we are able to find the proof for non-weighted cases (or special weight cases), and
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the proof is just a simple generalization of each proof, we provide several references and
leave the computation to the readers.

Definition 2.1. Fix a weight datum A = (a1, a2, · · · , an). Let [n] := {1, 2, · · · , n}. For
I ⊂ [n], let wI :=

∑
i∈I ai. Let π : Ug,A →Mg,A be the universal family and σi :Mg,A →

Ug,A for i = 1, 2, · · · , n be the universal sections. Also let ω := ωUg,A/Mg,A
be the relative

dualizing sheaf.

(1) The kappa class: κ := π∗(c
2
1(ω)). Note that our definition is different from several

others for example [AC96, AC98, ACG11].
(2) The Hodge class: λ := c1(π∗(ω)).
(3) The psi classes: For i = 1, 2, · · · , n, let Li be the line bundle onMg,A, whose fiber

over (C, x1, x2, · · · , xn) is ΩC|xi , the cotangent space at xi in C. The i-th psi class
ψi is c1(Li). On the other hand, ψi can be defined in terms of intersection theory.
ψi = π∗(ω · σi) = −π∗(σ

2
i ). The total psi class is ψ :=

∑n
i=1ψi.

(4) Boundaries of nodal curves: Take a pair (j, I) for 0 ≤ j ≤ g and I ⊂ [n]. Suppose
that if j = 0, then wI > 1. Let Dj,I ⊂ Mg,A be the closure of the locus of curves
with two irreducible components Cj,I and Cg−j,Ic such that Cj,I (resp. Cg−j,Ic) is a
smooth genus j (resp. g− j) curve and xi ∈ Cj,I if and only if i ∈ I. For a notational
convenience, setDj,I = 0when j = 0 and |I| ≤ 1. LetDirr be the closure of the locus
of irreducible nodal curves. Let Dnod be the sum of all Dj,I and Dirr.

(5) Boundaries of curves with coincident sections: Suppose that I = {i, j} and wI ≤ 1. Let
Di=j be the locus of curves with xi = xj. Di=j is equal to π∗(σi · σj). Let Dsec be the
sum of all boundaries of curves with coincident sections.

The canonical divisor KMg,A
is computed by Hassett ([Has03, Section 3.3.1]). By Mum-

ford’s relation κ = 12λ−Dnod ([Mum77, Theorem 5.10]), it has two different presentations.

Lemma 2.2 ([Has03, Section 3.3.1]).

KMg,A
=
13

12
κ−

11

12
Dnod +ψ = 13λ− 2Dnod +ψ.

Next, we present the push-forward and pull-back formulas we will often use.
Let A = (a1, a2, · · · , an) and B = (b1, b2, · · · , bn) be weight data such that ai ≥ bi for

all i = 1, 2, · · · , n. For I ⊂ [n], set wAI =
∑

i∈I ai and wBI =
∑

i∈I bi.

Lemma 2.3. Let ϕA,B : Mg,A → Mg,B be the reduction morphism ([Has03, Theorem 4.1]).
Then:

(1) ϕA,B∗(κ) = κ−
∑

wB
{j,k}
≤1, wA

{j,k}
>1

Dj=k.

(2) ϕA,B∗(λ) = λ.
(3) ϕA,B∗(ψi) = ψi +

∑
wB

{i,j}
≤1, wA

{i,j}
>1

Di=j.

(4) ϕA,B∗(Di,I) =


0, i = 0, |I| ≥ 3,wBI ≤ 1,
Dj=k, i = 0, I = {j, k}, wBI ≤ 1,
Di,I, otherwise.
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(5) ϕA,B∗(Dirr) = Dirr.
(6) ϕA,B∗(Dj=k) = Dj=k.
(7) ϕ∗A,B(κ) = κ+

∑
wBI ≤1, w

A
I >1

D0,I.

(8) ϕ∗A,B(λ) = λ.
(9) ϕ∗A,B(ψi) = ψi −

∑
i∈I, wBI ≤1, w

A
I >1

D0,I.

(10) ϕ∗A,B(Di,I) = Di,I.
(11) ϕ∗A,B(Dirr) = Dirr.

(12) ϕ∗A,B(Dj=k) =


Dj=k +

∑
I⊃{j,k}, wBI ≤1

D0,I, wA{j,k} ≤ 1,∑
I⊃{j,k}, wBI ≤1

D0,I, wA{j,k} > 1.

Proof. All formulas can be shown by looking at the change of universal family carefully.
For example, the universal family π : U → Mg,A is changed in codimension one only
over ∪wB

{j,k}
≤1,wA

{j,k}
>1Dj=k. On this locus, the modification of the family is just contraction

of the component containing σi. By using test curve method, we obtain item (3) and (9).
For the detail, see [FS11, Lemma 2.4, Lemma 2.8]. Items (1), (7) are obtained by the same
argument of the proof of [AC96, Section 1]. Items (4), (5), and (6) are simple set-theoretical
observations. Since ϕA,B is a composition of smooth blow-ups, items (10), (11), and (12)
are easily deduced. The rest of them come from Mumford’s relation. �

The special caseϕ(1,1,··· ,1),A :Mg,n =Mg,(1,1,··· ,1) →Mg,A is particularly important so we
treat this case separately. For notational convenience, let ϕA := ϕ(1,1,··· ,1),A.

Corollary 2.4. For ϕA :Mg,n =Mg,(1,1,··· ,1) →Mg,A,

(1) ϕA∗(κ) = κ−Dsec.
(2) ϕA∗(λ) = λ.
(3) ϕA∗(ψi) = ψi +

∑
w{i,j}≤1

Di=j.

(4) ϕA∗(Di,I) =


0, i = 0, |I| ≥ 3,wI ≤ 1,
DI, i = 0, |I| = 2,wI ≤ 1,
Di,I, otherwise.

(5) ϕA∗(Dirr) = Dirr.
(6) ϕ∗A(κ) = κ+

∑
wI≤1

D0,I.

(7) ϕ∗A(λ) = λ.
(8) ϕ∗A(ψi) = ψi −

∑
i∈I, wI≤1

D0,I.

(9) ϕ∗A(Di,I) = Di,I.
(10) ϕ∗A(Dirr) = Dirr.
(11) ϕ∗A(Dj=k) =

∑
I⊃{j,k}, wI≤1

D0,I.
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Lemma 2.5. Let ρ :Mg,A∪{ap} →Mg,A be the forgetful morphism ([Has03, Theorem 4.3]).

(1) ρ∗(κ) = κ+
∑

w{i,p}>1

D0,{i,p}.

(2) ρ∗(λ) = λ.

(3) ρ∗(ψi) =

{
ψi, w{i,p} ≤ 1,
ψi −D0,{i,p}, w{i,p} > 1.

(4) ρ∗(Di,I) = Di,I +Di,I∪{p}.
(5) ρ∗(Dirr) = Dirr.

(6) ρ∗(Dj=k) =

{
Dj=k, w{j,k,p} ≤ 1,
Dj=k +D0,{j,k,p}, w{j,k,p} > 1.

Proof. The readers may find a proof of (1) for non-weighted cases in [AC96, Section 1].
Items (4), (5) and (6) are obvious. (3) is proved in [AC98, Lemma 3.1]. �

For I = {j1, j2, · · · , jr} ⊂ [n], letDi,I be a boundary of nodal curves. Set Ic = {k1, k2, · · · , ks}.
Then Di,I is isomorphic to Mi,AI ×Mg−i,AIc where AI = (aj1 , aj2 , · · · , ajr , 1) and AIc =

(ak1 , ak2 , · · · , aks , 1). Let ηi,I :Mi,AI ×Mg−i,AIc
∼= Di,I ↪→Mg,A be the inclusion. Let π` for

` = 1, 2 be the projection fromMi,AI ×Mg−i,AIc to the `-th component.

Lemma 2.6. Let p (resp. q) be the last index of AI (resp. AIc) with weight one.

(1) η∗i,I(κ) = π
∗
1(κ+ψp) + π

∗
2(κ+ψq).

(2) η∗i,I(λ) = π
∗
1(λ) + π

∗
2(λ).

(3) η∗i,I(ψj) =

{
π∗1(ψj), j ∈ I,
π∗2(ψj), j ∈ Ic.

(4) η∗i,I(Dj,J) =



−π∗1(ψp) − π
∗
2(ψq), Di,I = Dj,J,

π∗1(Dj,J), j ≤ i, J ⊂ I,Di,I 6= Dj,J,

π∗1(Dg−j,Jc), g− j ≤ i, Jc ⊂ I,Di,I 6= Dj,J,

π∗2(Dj,J), j ≤ g− i, J ⊂ Ic, Di,I 6= Dj,J,

π∗2(Dg−j,Jc), i ≤ j, I ⊂ J,Di,I 6= Dj,J,

0, otherwise.
(5) η∗i,I(Dirr) = π

∗
1(Dirr) + π

∗
2(Dirr).

(6) η∗i,I(Dj=k) =


π∗1(Dj=k), j, k ∈ I,
π∗2(Dj=k), j, k /∈ I,
0, otherwise.

Proof. The proof is similar to the case of η :Mi,|I|+1 ×Mg−i,|Ic|+1 →Mg,n, which is proved
in [AC98, p.106]. �

Let (C, x1, x2, · · · , xn, p, q) be a genus g−1,A∪{1, 1}-stable curve. By gluing p and q, we
obtain anA-stable curve of genus g. Since this gluing operation is extended to families of
curves and functorial, we obtain a morphism ξ :Mg−1,A∪{1,1} →Mg,A. Moreover, ξ is an
embedding and the image is precisely Dirr.
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Lemma 2.7. Let ξ be the gluing map and let p, q be two identified sections with weight 1.

(1) ξ∗(κ) = κ+ψp +ψq.
(2) ξ∗(λ) = λ.
(3) ξ∗(ψi) = ψi.
(4) ξ∗(Di,I) = Di,I +Di−1,I∪{p,q}.
(5) ξ∗(Dirr) = Dirr −ψp −ψq +

∑
p∈I, q/∈I

Di,I.

(6) ξ∗(Dj=k) = Dj=k.

Proof. See [AC98, Lemma 3.2]. �

Finally, for a nonempty subset I ⊂ [n], assume that wI ≤ 1. Let A ′ be a new weight
datum defined by replacing (ai)i∈I with a single rational number wI =

∑
i∈I ai. We can

define an embedding χI :Mg,A ′ →Mg,A which sends an A ′-stable curve to the A-stable
curve obtained by replacing the point of weight wI with |I| points of weight (ai)i∈I on the
same position.

Lemma 2.8. Let χI :Mg,A ′ →Mg,A be the replacing morphism. Let p be the unique index of A ′
replacing indices in I.

(1) χ∗I (κ) = κ.
(2) χ∗I (λ) = λ.

(3) χ∗I (ψi) =

{
ψi, i /∈ I,
ψp, i ∈ I.

(4) χ∗I (Dnod) = Dnod.
(5) χ∗I (Dirr) = Dirr.

(6) χ∗I (Dj=k) =


Dj=k, j, k /∈ I,
Dj=p, j /∈ I, k ∈ I,
−ψp, j, k ∈ I.

Proof. This is a restatement of [FS11, Lemma 2.9]. �

3. A POSITIVITY RESULT ON FAMILIES OF CURVES

A key step of the proof of Theorem 1.1 is to construct an ample divisor onMg,A. In this
section, we prove the following technical positivity result of a divisor, which will be used
in the proof of the main theorem.

Proposition 3.1. Fix a weight datum A = (a1, a2, · · · , an) and a positive genus g. Let B be
a complete curve. Let π : (U , σ1, σ2, · · · , σn) → B be a flat family of A-stable genus g curves.
Suppose that a general fiber of π is smooth. Then there exists a positive rational number εg,A > 0
which depends only on g and A such that

(1) (2κ+ψ) · B ≥ εg,A ·multxB

for any point x ∈ B.
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Remark 3.2. (1) Proposition 3.1 is not true when g = 0. Indeed, KM0,n
≡ 2κ + ψ

([Moo13, Lemma 2.6]). It is well-known that for n = 4, 5, KM0,n
is anti-ample. So it

intersects negatively with every curve.
(2) Proposition 3.1 does not imply that 2κ + ψ is ample on Mg,A even though the

statement is similar to Seshadri’s ampleness criterion (Theorem 3.3). For example,
for n ≥ 3 and I ⊂ [n] with |I| = 3, consider η0,I :M0,3+1 ×Mg,n−3+1 →Mg,n. Then
by Lemma 2.6, η∗0,I(2κ + ψ) = π∗1(2κ + ψ + ψp) + π

∗
2(2κ + ψ + ψq) = π∗1(KM0,4

+
ψp)+π

∗
2(2κ+ψ+ψq) = π

∗
1(OP1(−1))+π

∗
2(2κ+ψ+ψq). Therefore 2κ+ψ intersects

negatively with a boundary curve.

We will use following positivity results.

Theorem 3.3 (Seshadri’s criterion, [Laz04, Theorem 1.4.13]). Let X be a projective variety and
D be a divisor on X. ThenD is ample if and only if there exists a positive number ε > 0 such that

D · C ≥ ε ·multxC

for every point x ∈ C and every complete curve C ⊂ X.

Theorem 3.4 ([Cor93, Lemma 3.2]). There are positive integers h andM depending on g, r and
d, such that the following statement holds for any flat family π : U → B of nodal curves over any
complete curve B. Let L be a relative degree d line bundle on U . Suppose that π : (U , L) → B is
not isotrivial as a family of polarized curves. Moreover, assume that

(1) a general fiber is smooth,
(2) R1π∗(Li) = 0 for i� 0 and r := dimH0(Ub, LUb) is independent of b ∈ B,
(3) For a general b ∈ B, LUb is base-point-free, very ample and embeds Ub in Pr−1 as a Hilbert

stable subscheme.

Then ( r
2
(L · L) − d(degπ∗(L))

)
h2

+
(
(g− 1)(degπ∗(L)) −

r

2
(L ·ω)

)
h+ r deg λ ≥ 1

M
multxB

for every point x ∈ B.

Remark 3.5. (1) In [Cor93], Cornalba assumed that g ≥ 2, but in the proof of the
theorem, he did not use the genus condition. Thus this result is true without the
assumption. See [Cor93, Section 3].

(2) If d > 2g > 0, then by [Mum77, Theorem 4.15] a smooth curve is Chow stable and
hence Hilbert stable as well ([Mor80, Corollary 3.5]). Therefore if d � 0, then the
stability condition is automatic.

(3) Even if a given family of curves is isotrivial as a family of abstract curves, we can
apply the theorem if the family is not isotrivial as a family of polarized curves.

Proof of Proposition 3.1. We will divide the proof into several steps.

Step 1. It is sufficient to show the result for a weight datum n · τ = (τ, τ, · · · , τ) for
sufficiently small τ > 0 satisfying τ ≤ 1/n.
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Let ϕA,n·τ : Mg,A → Mg,n·τ be the reduction morphism. (We may take τ with the
reduction morphism as τ = min{a1, a2, · · · , an, 1n }.) By the assumption that a general fiber
of π is smooth, B := ϕA,n·τ(B) is a curve inMg,n·τ. By the projection formula and Lemma
2.3,

(2κ+ψ) · B = ϕ∗A,n·τ(2κ+ψ) · B = (2κ+ 2
∑
wI>1

D0,I +ψ− |I|
∑
wI>1

D0,I) · B

= (2κ+ψ) · B− (|I|− 2)
∑
wI>1

D0,I · B ≤ (2κ+ψ) · B,

because |I| ≥ 2 and D0,I · B ≥ 0. Thus if the result is true for the weight datum n · τ, then

(2κ+ψ) · B ≥ (2κ+ψ) · B ≥ εg,n·τ ·multϕA,n·τ(x)B ≥ εg,n·τ ·multxB.

Therefore if we define εg,A := εg,n·τ, the proposition holds.

Step 2. We can reduce the number of sections.

Let ρ : Mg,n·τ → Mg,(n−1)·τ be the forgetful morphism where n ≥ 2. There are two
possible cases. If B := ρ(B) is a curve, then by Lemma 2.5,

(2κ+ψ) · B = ρ∗(2κ+ψ) · B = (2κ+ψ) · B.

Thus (2κ+ψ) · B = (2κ+ψ) · B ≥ εg,(n−1)·τ ·multπ(x)B ≥ εg,(n−1)·τ ·multxB.
If ρ(B) is a point, then the family π : U → B is isotrivial as a family of abstract pointed

curves after forgetting the last section. Note that in our situation, deg λ = λ · B = 0 and
Dnod · B = 0, ψi · B = 0 for i = 1, 2, · · · , n− 1. Thus κ · B = 0 by Mumford’s relation. Also
(2κ+ψ) · B = ψn · B.

We will use Theorem 3.4 with L = (ω(σn))
k for sufficiently large k. Then d = 2k(g −

1) + k, r = (2k − 1)(g − 1) + k and L satisfies all assumptions in Theorem 3.4. Note that
π : (U , L) → B is not isotrivial as a family of polarized curves because the last section σn
is not a constant section. By Riemann-Roch theorem,

degπ∗(L) =
(L · L)
2

−
(L ·ω)

2
+ deg λ,

since R1π∗(L) = 0. Because (L · L) = k2ψn and (L ·ω) = kψn, degπ∗(L) =
k(k−1)
2
ψn. Now it

is straightforward to check that( r
2
(L · L) − d(degπ∗(L))

)
h2+

(
(g− 1)(degπ∗(L)) −

r

2
(L ·ω)

)
h+r deg λ =

(
gk2

2
h2 +O(h)

)
ψn

is a positive scalar multiple of ψn for sufficiently large h. Therefore by Theorem 3.4,

(2κ+ψ) · B = ψn · B ≥ α ·multxB

for some α > 0.
Thus we can find εg,n·τ > 0 by taking the minimum of α and εg,(n−1)·τ.

Step 3. ForMg,(τ)
∼=Mg,1, the proposition holds.



A FAMILY OF DIVISORS ON Mg,n AND THEIR LOG CANONICAL MODELS 9

First of all, suppose that g ≥ 2. Let ρ : Mg,1 → Mg be the forgetting morphism. If
B = ρ(B) is a curve, then

(2κ+ψ) · B = 2ρ∗(κ) · B+ψ · B = 2κ · B+ π∗(ω · σ1).
The divisor κ is ample onMg by [CH88, Theorem 1.3]. By Seshadri’s criterion (Theorem
3.3), there is a positive number α > 0 such that κ · B ≥ α · multxB for every irreducible
curve B and x ∈ B.

On the other hand, let π ′ : U ′ → B be the corresponding family of stable curves. Then
there is a stabilization morphism ρ̃ : U → U ′. On U ′, ω is ample by [Ara71, Proposition
3.2]. So if ρ̃ is an isomorphism, then π∗(ω·σ1) > 0. If ρ̃ is a contraction, thenω = ρ̃∗(ω)+E
where E is an exceptional curve. E is a rational curve and E · σ1 = 1. Now

π∗(ω · σ1) = π∗((ρ̃∗(ω) + E) · σ1) > 0.

If π : U → B is isotrivial after forgetting the section σ1, then by exactly same argument
with Step 2, we can obtain the inequality (1).

OnM1,1, κ = 0 and ψ1 = 1
12
λ is ample ([AC98, Theorem 2.2], note that κ1 in [AC98] is

κ+ψ1.) Therefore we obtain ε1,(1) > 0 and the inequality (1) by Seshadri’s criterion. �

4. PROOF OF THE MAIN THEOREM

In this section, we prove our main result.

Theorem 4.1. Let A = (a1, a2, · · · , an) be a weight datum satisfying 2g − 2 +
∑n

i=1 ai > 0.
Then

Mg,n(KMg,n
+ 11λ+

n∑
i=1

aiψi) ∼=Mg,A.

Remark 4.2. Theorem 4.1 is a generalization of [Moo13, Theorem 1.4] because when g = 0,
the Hodge class λ is trivial.

A key step of the proof is to construct an ample divisor onMg,A.

Proposition 4.3. Let

∆A := KMg,n
+ 11λ+

n∑
i=1

aiψi = 2κ+

n∑
i=1

(1+ ai)ψi.

Then the push-forward ϕA∗(∆A) is ample.

Proof. By using definitions of tautological divisors and several formulas in Section 2, it is
straightforward to see that

ϕA∗(∆A) = 2κ+

n∑
i=1

(1+ ai)ψi +
∑

w{j,k}≤1

w{j,k}Dj=k = π∗((ω+

n∑
i=1

aiσi)(2ω+

n∑
i=1

σi)).

A key feature of ϕA∗(∆A) is that if we restrict it to boundaries, the result is also de-
scribed by the same formula. More precisely, by Lemma 2.6,

(2) η∗i,I(ϕA∗(∆A)) = π
∗
1(ϕAI∗(∆AI)) + π

∗
2(ϕAIc∗(∆AIc )).
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Also by Lemma 2.7,

(3) ξ∗(ϕA∗(∆A)) = ϕA∪{1,1}∗(∆A∪{1,1}).

Finally, for I ⊂ [n] such that wI ≤ 1, if we write J := Ic ∪ {p} for the index set for A and p
for the replaced marked point, then with the notations for new weight datum A ′ := (a ′i)
and w ′K =

∑
i∈K a

′
i (so a ′p = wI =

∑
i∈I ai),

χ∗I (ϕA∗(∆A))

= 2κ+
∑
i∈J

(1+ a ′i)ψi +
∑

w ′{j,k}Dj=k + (|I|− 1)((1−
∑
i∈I

ai)ψp +
∑

i∈Ic,w{i,p}≤1

a ′iDi=p)

= ϕA ′∗(∆A ′) + (|I|− 1)((1− a ′i)ψp +
∑
i∈Ic

a ′iDj=p)

= ϕA ′∗(∆A ′) + (|I|− 1)π∗((ω+
∑
i∈J

a ′iσi) · σp)

(4)

(See the notation for Lemma 2.8. The computation is identical to [Moo13, (15)].)
We will use Seshadri’s criterion (Theorem 3.3) to show the ampleness of ϕA∗(∆A). For
M1,1, ϕA∗(∆A) = 2κ + 2ψ = 1

12
λ is ample by [AC98, Theorem 2.2]. The case of g = 0 is

shown in [Moo13]. So we can use induction on the dimension ofMg,A.
If B is contained in a boundary of nodal curves, thenϕA∗(∆A) ·B ≥ ε ·multxB by (2) and

(3). If B is in a boundary of coincident sections, on the last line of (4), ϕA ′∗(∆A ′) is ample
by the induction hypothesis. And π∗((ω +

∑
i∈J a

′
iσi) · σp) is nef because on the family U

overB,ω+
∑

i∈J a
′
iσi is nef ([Fed11, Proposition 2.1]) and σp is effective. Thus χ∗I (ϕA∗(∆A))

is ample by (4) and we can find ε > 0 on the statement of Seshadri’s criterion.
So it is sufficient to check the case where B ∩Mg,A 6= ∅. Let π : U → B with σi : B → U

for i = 1, 2, · · · , n be a family of A-stable curves. We rewrite ϕA∗(∆A) as

ϕA∗(∆A)

= ϕA∗((ω+
∑
ai=1

σi +
∑
ai<1

aiσi)(2ω+

n∑
i=1

σi))

= ϕA∗(((1− δ)ω+
∑
ai=1

(1− δ)σi +
∑
ai<1

aiσi)(2ω+

n∑
i=1

σ))

+ δ(
∑
ai=1

σi)(2ω+

n∑
i=1

σi) + δω(2ω+

n∑
i=1

σi)

= ϕA∗(((1− δ)ω+
∑
ai=1

(1− δ)σi +
∑
ai<1

aiσi)(2ω+

n∑
i=1

σi)) + δ
∑
ai=1

ψi + δ(2κ+ψ).

On the third line, (
∑

ai=1
σi)(
∑n

i=1 σi) =
∑

ai=1
σ2i because if ai = 1, σi · σj = 0 for every

j 6= i.
Note that for there is δ > 0which depends on g and A such that

ω+
∑
ai=1

σi +
∑
ai<1

1

1− δ
aiσi
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satisfies the assumption of [Fed11, Proposition 2.1]. So it is nef on U . By [Moo13, Lemma
3.4], 2ω+

∑n
i=1 σi is effective. Thus

ϕA∗(((1− δ)ω+
∑
ai=1

(1− δ)σi +
∑
ai<1

aiσi)(2ω+

n∑
i=1

σi))

is nef on B. For the forgetful map ρ :Mg,A →Mg, let π ′ : U ′ → ρ(B) be the corresponding
family and σ ′i be the image of section σi on U ′. Then ψi = −σ2i ≥ −σ′2i = ω · σ ′i ≥ 0 by
[Ara71, Proposition 3.2]. Finally, by Proposition 3.1, there exists ε ′ > 0 depending only
on g and A such that (2κ+ψ) · B ≥ ε ′ ·multxB. For ε := ε ′δ, we have

ϕA∗(∆A) · B ≥ ε ·multxB

for all x ∈ B.
There are only finitely many boundary strata onMg,A. Therefore we can find the mini-

mum of ε for all strata ofMg,A and we obtain an ε > 0 for all curves inMg,A. �

Now Theorem 4.1 is an immediate consequence of Proposition 4.3.

Proof of Theorem 4.1. By Corollary 2.4, it is straightforward to check that

∆A = ϕ∗AϕA∗(∆A) +
∑
wI≤1

(|I|− 2)(1−wI)D0,I.

Note that D0,I with |I| ≥ 3 and wI ≤ 1 is an exceptional divisor for ϕA. Therefore ∆A is
a sum of the pull-back of an ample divisor and ϕA-exceptional effective divisors. Hence
we obtain

Mg,n(∆A) =Mg,n(ϕ
∗
AϕA∗(∆A)) =Mg,A(ϕA∗(∆A)) =Mg,A.

See [Moo13, Proof of Theorem 3.1] for the detail. �
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