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ABSTRACT. We study birational geometry of the moduli space of parabolic bundles over a
projective line, in the framework of Mori’s program. We show that the moduli space is a
Mori dream space. As a consequence, we obtain the finite generation of the algebra of type
A conformal blocks. Furthermore, we compute the H-representation of the effective cone
which was previously obtained by Belkale. For each big divisor, the associated birational
model is described in terms of moduli space of parabolic bundles.

1. INTRODUCTION

The aim of this paper is twofold. First of all, we prove the following finiteness theorem.

Theorem 1.1 (Theorem 5.3). The algebra of type A conformal blocks over a projective line is
finitely generated.

The second main result is the completion of Mori’s program for Mp(r, 0, a), the moduli
space of rank r, degree 0, a-semistable parabolic vector bundles on P1. The rank two case
was done in [25].

Theorem 1.2. Assume n > 2r. Let M := Mp(r, 0, a) for a general effective parabolic weight a.

(1) (Proposition 6.3) If ρ(M) = (r−1)n+1, which is the possible maximum, the effective cone
Eff(M) is the intersection of an explicit finite set of half-planes in N1(M)R. In particular,
for any collection of partitions λ1, · · · , λn of length s, d ≥ 0 and 0 < s < r such that the
Gromov-Witten invariant 〈ωλ1 , ωλ2 , · · · , ωλn〉d of Grassmannian Gr(s, r) is one, there is
a hyperplane supporting Eff(M).

(2) (Proposition 6.1, Section 6.3) For any D ∈ intEff(M), M(D) = Mp(r, 0,b) for some par-
abolic weight b. The projective models associated to facets of Eff(M) can be also described
in terms of moduli spaces of parabolic bundles.

(3) For a general D ∈ intEff(M), the rational contraction M 99K M(D) is a composition of
smooth blow-ups and blow-downs.

Remark 1.3. (1) When n is small, we may think of M as the target of an algebraic fiber
space Mq(r, 0, a′)→ M where the domain is the moduli space of parabolic bundles
with a larger number of parabolic points. Thus the Mori’s program for M becomes
a part of that for Mq(r, 0, a′).

Date: November 24, 2018.

1



2 HAN-BOM MOON AND SANG-BUM YOO

(2) When ρ(M) < (r − 1)n + 1, M is a divisorial contraction of Mp(r, 0, a′) for some a′.
Thus the Mori’s program for M also becomes a part of that for Mq(r, 0, a′).

(3) The H-representation in Item 1 of Theorem 1.2 was obtained by Belkale in [4, The-
orem 2.8] in a greater generality by a different method. Our approach using wall-
crossings is independent of his idea and is elementary. On the other hand, his
result indeed tells us a strong positivity: Any integral divisor class in Eff(M) is
effective.

(4) Once Item 2 of Theorem 1.2 is shown, Item 3 of Theorem 1.2 follows from a result
of Thaddeus ([29, Section 7]).

1.1. Conformal blocks. Conformal blocks were introduced by Tsuchiya, Kanie, Ueno and
Yamada to construct a two-dimensional chiral conformal field theory (WZW model) ([30,
31, 32]). For each (C,p) ∈ Mg,n, a simple Lie algebra g, a nonnegative integer `, and a
collection of dominant integral weights ~λ := (λ1, λ2, · · · , λn) such that (λi, θ) ≤ ` where
θ is the highest root, they constructed a finite dimensional vector space V†

`,~λ
of conformal

blocks.

Conformal blocks have several interesting connections in algebraic geometry. It is
known that V†

`,~λ
can be naturally identified with the space of global sections, so-called

generalized theta functions, of a certain line bundle on the moduli space of parabolic
principal G-bundles ([20, 28]). It can be also regarded as a quantum generalization of
the space of invariants ([4]). Recently, conformal blocks have been studied to construct
positive vector bundles onM0,n (see [8] and references therein).

We will focus on C = P1 and g = slr case. There is a map

V†
`,~λ
⊗ V†m,~µ → V†

`+m,~λ+~µ

which defines a commutative Pic(Mp(r, 0))-graded C-algebra structure on

V† :=
⊕
`,~λ

V†
`,~λ

where Mp(r, 0) is the moduli stack of rank r, degree 0 quasi parabolic bundles on P1

(Section 2.2). V† is called the algebra of conformal blocks and naturally identified with the
Cox ring ([17]) of Mp(r, 0).

Many fundamental questions, such as the finite generation of V†, are still widely open.
Manon has shown the finite generation for several cases by a degeneration method. In
[23], he showed that for r = 2 and a generic point configuration p, V† is generated by 2n−1

level one conformal blocks. He showed the same result for r = 3 in [21] and extended it
to a certain torus invariant subring of V† for arbitrary rank r ([22]). The finite generation
of V† for r = 2 with an arbitrary point configuration was shown in [25] by the authors.

To prove the finite generation of V†, we study birational geometry of Mp(r, 0, a), the
moduli space of rank r, degree 0, a-semistable parabolic bundles on P1, in the framework
of Mori’s program.
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1.2. Mori’s program. For a normal Q-factorial projective variety X with trivial irregu-
larity, Mori’s program, or log minimal model program, consists of the following three
steps.

(1) Compute the effective cone Eff(X) in N1(X)R.
(2) For each integral divisor D ∈ Eff(X), compute the projective model

X(D) := Proj
⊕
m≥0

H0(X,O(mD)).

(3) Study the rational contraction X 99K X(D).

However, even among very simple varieties such as a blow-up of Pn along some points,
there are examples that Mori’s program cannot be completed because of two kinds of
infinities: There may be infinitely many rational contractions, and more seriously, the
section ring

⊕
m≥0 H0(X,O(mD)) may not be finitely generated and thus X(D) is not a

variety.

A Mori dream space ([17]), MDS for short, is a special kind of variety that has no such
technical difficulties to run Mori’s program: The effective cone is polyhedral, there is a
finite chamber structure which corresponds to finitely many different projective mod-
els, and every divisor has a finitely generated section ring. In Section 5, we show that
for any parabolic weight a, the moduli space Mp(r, 0, a) of a-semistable parabolic bun-
dles is a MDS. On the other hand, under some assumption, V† can be identified with
Cox(Mp(r, 0, a)). We obtain the finite generation by [17, Proposition 2.9].

Even for a MDSX , practically it is very difficult to complete Mori’s program if ρ(X) ≥ 3
(see [10] for an example). Theorem 1.2 provides another highly non-trivial but completed
example.

1.3. Outline of the proof. We leave a brief outline of the proof of Theorem 1.1. For
simplicity, suppose that n is large enough. The main technique we employ is a careful
analysis of wall-crossings. The moduli space Mp(r, 0, a) depends on a choice of a par-
abolic weight a. For two general parabolic weights a and b, there is a birational map
Mp(r, 0, a) 99K Mp(r, 0,b) provided stable loci of these two moduli spaces are nonempty.
Then the birational map can be decomposed into finitely many explicit blow-ups and
blow-downs, and the change can be measured explicitly. Furthermore, when a is suffi-
ciently small, then Mp(r, 0, a) ∼= Fl(V )n//LSLr for some explicit linearization L. By analyz-
ing the geometry of the GIT quotient and wall-crossings, we obtain the canonical divisor
of Mp(r, 0, a) where a is dominant in the sense that Cox(Mp(r, 0)) = Cox(Mp(r, 0, a)). We
show that after finitely many flips (not blow-downs), the anticanonical divisor −K be-
comes big and nef. Because the moduli space is smooth, it is of Fano type. Therefore it is
a MDS.

1.4. Generating set. The method of the proof does not provide any explicit set of gener-
ators. It is an interesting problem to construct a generating set. Based on several results
of Manon ([21, 22, 23]), one may ask the question below. Note that the effective cone is
polyhedral, so there are finitely many extremal rays.



4 HAN-BOM MOON AND SANG-BUM YOO

Question 1.4. Is the algebra V† of conformal blocks generated by the set of effective divi-
sors whose numerical classes are the first integral points of extremal rays of Eff(Mp(r, 0))?

1.5. Organization of the paper. In Section 2, we recall some preliminaries on the mod-
uli space of parabolic bundles, conformal blocks and deformation theory. In Section 3,
we identify moduli spaces of parabolic bundles with small weights with elementary GIT
quotients. Section 4 reviews the wall-crossing analysis. In Section 5, we prove Theorem
1.1. Finally in Section 6, we prove Theorem 1.2.

Notations and conventions. We work on an algebraically closed field C of characteristic
zero. Unless there is an explicit statement, we will fix n ≥ 3 distinct points p = (p1, · · · , pn)
on P1. These points are called parabolic points. [r] denotes the set {1, 2, · · · , r}. To minimize
the introduction of cumbersome notation, mainly we will discuss parabolic bundles with
full flags only, except in Section 6.3 on degenerations of moduli spaces. The readers may
easily generalize most part of the paper, to the partial flag cases. In many literatures the
dual V`,~λ of V†

`,~λ
has been denoted by conformal blocks.

Acknowledgements. The authors thank Prakash Belkale and Young-Hoon Kiem for their
comments and suggestions on an earlier draft. The first author thanks Jinhyung Park for
helpful conversations. The first author was partially supported by the Minerva Research
Foundation.

2. MODULI SPACE OF PARABOLIC BUNDLES

In this section, we give a brief review on parabolic bundles and their moduli spaces.

2.1. Parabolic bundles and their moduli spaces.

Definition 2.1. Fix parabolic points p = (p1, p2, · · · , pn) on P1. A rank r quasi parabolic
bundle over (P1,p) is a collection of data E := (E, {W i

•}) where:

(1) E is a rank r vector bundle over P1;
(2) For each 1 ≤ i ≤ n, W i

• ∈ Fl(E|pi). In other words, W i
• is a strictly increasing

filtration of subspaces 0 ( W i
1 ( W i

2 ( · · · ( W i
r−1 ( W i

r = E|pi . In particular,
dimW i

j = j.

Let Mp(r, d) be the moduli stack of rank r, degree d quasi parabolic bundles over (P1,p).
This moduli stack is a non-separated Artin stack. It is smooth, because it is a fiber bundle
with fibers isomorphic to the product of flag varieties, over the moduli stack of bundles
on a curve, which is well-known to be smooth. To obtain a proper moduli space, as in the
case of moduli spaces of ordinary vector bundles, we introduce the parabolic slope and a
stability condition, and collect semi-stable objects only. One major difference here is that
there are many different ways to define stability while there is a standard one in the case
of ordinary bundles.
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Definition 2.2. (1) A parabolic weight is a collection a = (a1•, a
2
•, · · · , an• ) of strictly de-

creasing sequences ai• = (1 > ai1 > · · · > air−1 > air ≥ 0) of rational numbers of
length r. Let |a|j :=

∑n
i=1 a

i
j and |a| :=

∑r
j=1 |a|j .

(2) A parabolic bundle is a collection E := (E, {W i
•}, a).

Definition 2.3. Let E = (E, {W i
•}, a) be a parabolic bundle.

(1) The parabolic degree of E is

pdeg E := degE + |a|.

(2) The parabolic slope of E is µ(E) = pdeg E/rkE.

Let E = (E, {W i
•}, a) be a parabolic bundle of rank r. For each subbundle F ⊂ E,

there is a natural induced flag structure W |F i• on F |pi . More precisely, let ` be the smallest
index such that dim(W i

` ∩ F |pi) = j. Then W |F ij = W i
` ∩ F |pi . Furthermore, we can

define the induced parabolic weight b = (bi•) on F |pi as bij = ai`. This collection of data
F := (F, {W |F i•},b) is called a parabolic subbundle of E . Similarly, one can define the
induced flag W/F i

• on E/F |pi , the inherited parabolic weight c, and the quotient parabolic
bundle Q := (E/F, {W/F i

•}, c).

Definition 2.4. A parabolic bundle E = (E, {W i
•}, a) is a-(semi)-stable if for every parabolic

subbundle F of E , µ(F)(≤) < µ(E).

Let Mp(r, d, a) be the moduli space of S-equivalence classes of rank r, topological degree
d a-semistable parabolic bundles over (P1,p). It is an irreducible normal projective variety
of dimension n

(
r
2

)
− r2 + 1 if it is nonempty ([24, Theorem 4.1]).

Remark 2.5. For a general parabolic weight a, we can define the normalized weight a′ as
a′ij = aij − air. It is straightforward to check that the map

Mp(r, d, a) → Mp(r, d, a′)

(E, {W i
•}, a) 7→ (E, {W i

•}, a′)

is an isomorphism. Thus we will assume that any given parabolic weight is normalized.

Finally, we leave two notions on weight data.

Definition 2.6. (1) A parabolic weight a is effective if Mp(r, d, a) is nonempty.
(2) An effective parabolic weight a is general if the a-semistability coincides with the

a-stability.

If a is general, Mp(r, d, a) is a smooth projective variety.

Remark 2.7. The notion of parabolic bundles can be naturally generalized to parabolic
bundles with partial flags. For notational simplicity, we do not describe them here. Consult
[24, Definition 1.5]. In this paper, we use moduli spaces of parabolic bundles with partial
flags only in Section 6.3 to describe projective models associated to non-big divisors. A
reader who is not interested in this topic can ignore partial flag cases.
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2.2. The algebra of conformal blocks. For an r-dimensional vector space V , the full flag
variety Fl(V ) is embedded into

∏r−1
j=1 Gr(j, V ), and every line bundle on Fl(V ) is the re-

striction of O(b•) := O(b1, b2, · · · , br−1). By the Borel-Weil theorem, if all bi’s are non-
negative, or equivalently O(b•) is effective, then H0(Fl(V ),O(b•)) is the irreducible SLr-
representation Vλ with the highest weight λ =

∑r−1
i=1 br−iωi. Fλ denotes O(b•).

Recall that Mp(r, 0) is the moduli stack of rank r, degree 0 quasi parabolic bundles over
(P1,p). The Picard group of Mp(r, 0) is isomorphic to

ZL ×
n∏
i=1

Pic(Fl(V ))

([20]). In particular, its Picard number is (r − 1)n+ 1.

The generator L is the determinant line bundle ([2, Example 3.8]) on Mp(r, 0) which
has the following functorial property: For any family of rank r quasi parabolic bundles
E = (E, {W i

•}) over S, consider the determinant bundle LS := detR1πS∗E ⊗ (detπS∗E)−1,
where πS : X×S → S is the projection to S. If p : S → Mp(r, 0) is the functorial morphism,
then p∗(L) = LS . The line bundle L has a unique section denoted by Θ. This section Θ
vanishes exactly on the locus of E = (E, {W i

•}) such that E 6= Or ([7, Section 10.2]).

Any line bundle F ∈ Pic(Mp(r, 0)) can be written uniquely as L` ⊗ ⊗ni=1Fλi where Fλi
is a line bundle associated to the integer partition λi. The space of global sections H0(F )

is identified with the space of conformal blocks V†
`,~λ

:= V†`,(λ1,··· ,λn) ([28, Corollary 6.7]). In

particular, V†
1,~0

is generated by Θ. In general, V†
`,~λ

is trivial if λi1 > ` for some 1 ≤ i ≤ n.

Note that there is a natural injective map V†
`,~λ
↪→ V†

`+1,~λ
given by the multiplication of Θ.

Moreover, when ` ≥ (
∑n

i=1

∑r−1
j=1 λ

i
j)/(r+1), V†

`,~λ
∼= V ∗SLr~λ

:= (
⊗n

i=1 V
∗
λi)

SLr ([7, Proposition
1.3]). The last space is a trivial SLr-subrepresentation of

⊗n
i=1 V

∗
λi and is called the space

of (classical) invariants. The spaces of conformal blocks define an increasing filtration on
V ∗SLr~λ

. It could be regarded as a quantum generalization of the space of invariants ([4]).

Definition 2.8. The algebra of conformal blocks is a Pic(Mp(r, 0))-graded algebra

V† :=
⊕
`,~λ

V†
`,~λ
.

Note that V† is the space of all sections of all line bundles on Mp(r, 0). In other words,
V† is the Cox ring Cox(Mp(r, 0)) of the moduli stack Mp(r, 0).

The original definition of conformal blocks uses representation theory of affine Lie al-
gebras ([32]). However, for g = 0, there is an elementary alternative description using
representation theory of semisimple Lie algebras only, obtained by Feigin, Schechtman,
and Varchenko ([13]) and independently by Beauville ([1]).

For any collection of finite dimensional irreducible SLr-representations Vλ1 , Vλ2 , · · · , Vλn
parametrized by a sequence of dominant integral weights ~λ := (λ1, λ2, · · · , λn), let V~λ :=⊗n

i=1 Vλi . We denote its SLr-invariant subspace by V SLr
~λ

. Fix an affine open subset A1 ⊂ P1
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which contains all p. Let ti ∈ C be the coordinate for pi. Let T ∈ End(V~λ) is defined by

T (v1 ⊗ v2 ⊗ · · · ⊗ vn) =
n∑
i=1

tiv1 ⊗ v2 ⊗ · · · ⊗Xθvi ⊗ · · · ⊗ vn.

Then V†
`,~λ

is the space of SLr-invariant linear maps φ : V~λ → C such that φ ◦ T `+1 = 0 ([1,
Proposition 4.1]). In particular, any conformal block can be regarded as an SLr-invariant
element for some V~λ with a certain vanishing condition depending on `.

2.3. Deformation theory. To analyze wall crossings on the moduli space in detail, we
employ some results from the deformation theory of parabolic bundles, which was inten-
sively studied by Yokogawa in [33]. In this section we summarize some relevant results.

Let E = (E, {W i
•}, a) and F = (F, {W ′i

•},b) be two parabolic bundles. A bundle mor-
phism f : E → F is called (strongly) parabolic if f(W i

j ) ⊂ W ′i
k whenever aij (≥) > bik+1.

The sheaves of parabolic morphisms and strongly parabolic morphisms are denoted by
ParHom(E ,F) and SParHom(E ,F) respectively. The spaces of their global sections are
denoted by ParHom(E ,F) and SParHom(E ,F).

Yokogawa introduced an abelian category P of parabolic OP1-modules which contains
the category of parabolic bundles as a full subcategory. P has enough injective objects, so
we can define the right derived functor Exti(E ,−) of ParHom(E ,−). Those cohomology
groups can be described in terms of ordinary cohomology groups and behave similarly.

Lemma 2.9 ([33, Theorem 3.6]).

Exti(E ,F) ∼= Hi(ParHom(E ,F)).

Lemma 2.10 ([33, Lemma 1.4]). The cohomology Ext1(E ,F) parametrizes isomorphism classes
of parabolic extensions, which are exact sequences 0→ F → G → E → 0 in P.

Also we have ‘Serre duality’:

Lemma 2.11 ([33, Proposition 3.7]).

Ext1−i(E ,F ⊗OP1(n− 2)) ∼= Hi(SParHom(F , E))∗.

3. SMALL WEIGHT CASE

When a parabolic weight a is sufficiently ‘small’, Mp(r, 0, a) can be constructed as an
elementary GIT quotient. This section is devoted to the study of such a small weight case.

3.1. Moduli of parabolic bundles and GIT quotient. Let πi : Fl(V )n → Fl(V ) be the
projection to the i-th factor. Any line bundle on Fl(V )n can be described as a restriction
of Lb := ⊗π∗iO(bi•). Note that there is a natural diagonal SLr-action on Fl(V )n. The GIT
stability with respect to Lb is well-known:
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Theorem 3.1 ([12, Theorem 11.1]). A point (W i
•) ∈ Fl(V )n is (semi)-stable with respect to Lb

if and only if for every proper s-dimensional subspace V ′ ⊂ V , the following inequality holds:

(1)
1

s

n∑
i=1

r−1∑
j=1

bij dim(W i
j ∩ V ′)(≤) <

1

r

(
n∑
i=1

r−1∑
j=1

jbij

)
.

Definition 3.2. LetLb be a linearization on Fl(V )n. We sayLb is effective if (Fl(V )n)ss(Lb) 6=
∅. An effective linearization Lb is general if (Fl(V )n)ss(Lb) = (Fl(V )n)s(Lb).

For a parabolic weight a, let d = (d1•, d
2
•, · · · , dn• ) be a new collection of sequences de-

fined by dij = aij − aij+1. d is called the associated difference data. Let |d|j :=
∑n

i=1 d
i
j and

|d| =
∑r−1

j=1 |d|j . Then |a|j =
∑r−1

k=j |d|k and |a| =
∑r−1

j=1 j|d|j .

Theorem 3.3. Let a be a parabolic weight and d be the associated difference data. Suppose that a
is sufficiently small in the sense that

(2)
s∑
j=1

j(r − s)|d|j +
r−1∑
j=s+1

s(r − j)|d|j ≤ r

for all 1 ≤ s ≤ r − 1. Then Mp(r, 0, a) ∼= Fl(V )n//Ld
SLr, where Ld := ⊗π∗iO(di•).

Proof. It is straightforward to check that (2) is equivalent to r
∑s

j=1 |a|j − s|a| ≤ r.

Let X = (Fl(V )n)ss(Ld). Consider a family of parabolic bundles E over X by taking the
trivial bundle, the restriction of the universal flag, and the parabolic weight a. We claim
that this is a family of a-semistable parabolic bundles. Let Ex = (E = V ⊗O, {W i

•}, a) be
the fiber over x ∈ X .

Let F be a rank s subbundle of E whose topological degree is negative. Let F be the
induced parabolic subbundle. Then µ(F) ≤ (−1 +

∑s
j=1 |a|j)/s ≤ |a|/r = µ(Ex). Thus F

is not a destabilizing subbundle. Since E does not have a positive degree subbundle, the
only possible destabilizing subbundle is of degree zero. This subbundle must be trivial
because it cannot have any positive degree factor.

Suppose that F = (V ′⊗O, {W ′i
•},b) is a rank s parabolic subbundle induced by taking

an s-dimensional subspace V ′ ⊂ V . Then

µ(F) =
1

s

n∑
i=1

r∑
j=1

aij dim(W i
j ∩ F |pi/W i

j−1 ∩ F |pi)

=
1

s

n∑
i=1

r∑
j=1

aij dim(W i
j ∩ V ′/W i

j−1 ∩ V ′) =
1

s

n∑
i=1

r−1∑
j=1

dij dim(W i
j ∩ V ′)

≤ 1

r

(
n∑
i=1

r−1∑
j=1

jdij

)
=

1

r

(
n∑
i=1

r−1∑
j=1

aij

)
= µ(Ex).

The inequality is obtained from Theorem 3.1. Therefore Ex is semistable.

By the universal property, there is an SLr-invariant morphism π : X → Mp(r, 0, a).
Therefore we have the induced map π̄ : Fl(V )n//Ld

SLr → Mp(r, 0, a). It is straightforward
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to check that π̄ is set-theoretically injective. Since it is an injective map between two
normal varieties with the same dimension and the target space is irreducible, it is an
isomorphism. �

3.2. Picard group of GIT quotient. For the later use, we compute the Picard group of the
GIT quotient.

Proposition 3.4. Suppose that n > 2r. There is a general linearization Lb = ⊗π∗iO(bi•) such that
Pic(Fl(V )n//Lb

SLr) is naturally identified with an index r sublattice of Pic(Fl(V )n) ∼= Z(r−1)n.
In particular, a general linearization which is very close to the symmetric linearization La with
aij ≡ 1 has the property.

Proof. First of all, we show that for the symmetric linearization La, the codimension of the
non-stable locus Fl(V )n \ (Fl(V )n)s(La) is at least two. If (W i

•) is not stable, then by (1),
there is an s-dimensional subspace V ′ ⊂ V such that

(3)
1

s

n∑
i=1

r−1∑
j=1

dim(W i
j ∩ V ′) ≥

n(r − 1)

2
.

Let Us ⊂ Fl(V )n be the set of flags (W i
•) which satisfy (3) for some s-dimensional sub-

space V ′ ⊂ V . Let Ũs ⊂ Gr(s, V ) × Fl(V )n be the space of pairs (V ′, (W i
•)) such that (W i

•)

satisfies (3) for V ′. There are two projections p1 : Ũs → Gr(s, V ) and p2 : Ũs → Fl(V )n.
The codimension of each fiber of p1 in Fl(V )n is dn(r − 1)/2− n(s− 1)/2e = dn(r − s)/2e
because on (3), the left hand side is n(s − 1)/2 for a general (W i

•) and as the value of the
left hand side increases by one, the codimension of the locus increases by one, too. Thus
the codimension of Ũs is at least dn(r − s)/2e. On the other hand, because p2(Ũs) = Us,
the codimension of Us is at least dn(r − s)/2e − s(r − s), which is at least two for any
1 ≤ s ≤ r − 1. The non-stable locus Fl(V )n \ (Fl(V )n)s(La) is ∪r−1s=1Us, so it is of codimen-
sion at least two.

By perturbing the linearization slightly, we can obtain a general linearization Lb. The
unstable locus with respect to Lb is contained in the non-stable locus of La. Thus it is also
of codimension at least two. In particular, Pic((Fl(V )n)s(Lb)) = Pic(Fl(V )n).

Let PicSLr((Fl(V )n)s(Lb) be the group of linearizations. There is an exact sequence

0→ Hom(SLr,C∗)→ PicSLr((Fl(V )n)s(Lb))
α→ Pic((Fl(V )n)s(Lb))→ Pic(SLr)

([12, Theorem 7.2]). Furthermore, Hom(SLr,C∗) = Pic(SLr) = 0. Thus α is an isomor-
phism.

By Kempf’s descent lemma ([11, Theorem 2.3]), an SLr-linearized line bundle L on
(Fl(V )n)s(Lb) descends to Fl(V )n//Lb

SLr if and only if for every closed orbit SLr · x,
the stabilizer Stabx ∼= µr acts on Lx trivially. (See Lemma 3.5 below.) For any Ld =

⊗ni=1Odi• ∈ Pic(Fl(V )n), the stabilizer acts on Ld,x as a multiplication of ζ
∑n
i=1

∑r−1
j=1(r−j)d

i
j

where ζ is the primitive r-th root of unity. ThusLd descends to Fl(V )n//Lb
SLr if and only if∑n

i=1

∑r−1
j=1(r− j)dij = 0 and this equation defines an index r subgroup of Pic(Fl(V )n). �
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Lemma 3.5. Let x = (W i
•) be a stable point on Fl(V )n with respect to some linearization. Then

Stabx is isomorphic to the group of r-th root of unity.

Proof. Let A ∈ Stabx. A has a finite order because Stabx is finite. Since char C = 0, the
Jordan canonical form of A cannot have any block of size larger than one. Thus we may
assume that A is a diagonal matrix. Decompose V = ⊕λVλ into eigenspaces with respect
to A. Note that any invariant space with respect to A has to be of the form ⊕λWλ where
Wλ ⊂ Vλ. Thus all W i

j are of these forms. If we take a diagonal matrix B which acts on
Vλ as a multiplication by aλ for some aλ, then B preserves all W i

j , so B ∈ Stabx. But in
this case dim Stabx is the number of distinct eigenvalues minus one. Since x has a finite
stabilizer, there is only one eigenvalue. Therefore A is a scalar matrix. �

Definition 3.6. A general linearization Lb is called a linearization with a maximal stable
locus if Fl(V )n \ (Fl(V )n)ss(Lb) is of codimension at least two, (so ρ(Fl(V )n//Lb

SLr) =
(r − 1)n).

Remark 3.7. For small n, Proposition 3.4 is not true. For instance, if r = 2, n = 4 or
r = n = 3, for a general linearization, Fl(V )n//SLr is a unirational normal curve. Thus
Fl(V )n//SLr ∼= P1.

4. WALL CROSSING ANALYSIS

Here we describe how the moduli space changes if one varies the parabolic weight.

4.1. Walls and chambers. The space of all valid normalized parabolic weights is an open
polytope

W o
r,n := {a = (aij)1≤j≤r−1,1≤i≤n | 1 > ai1 > ai2 > · · · > air−1 > 0} ⊂ R(r−1)n.

Since the weight data is normalized, air = 0. Let Wr,n be the closure of W o
r,n.

The polytopes W o
r,n and Wr,n have a natural wall-chamber structure: If two weights a

and a′ are on the same open chamber, then Mp(r, 0, a) = Mp(r, 0, a′). If a is in one of open
chambers, then a is general thus Mp(r, 0, a) is smooth. Note that it is possible that a is not
effective, so Mp(r, 0, a) = ∅.

A parabolic weight a is on a wall if there is a strictly semi-stable parabolic bundle E =

(E, {W i
•}, a). Then there is a unique destabilizing parabolic subbundleF = (F, {W |F i•},b).

For such an F ,

µ(F) =
degF +

∑n
i=1

∑r−1
j=1 a

i
j dim((W i

j ∩ F |pi)/(W i
j−1 ∩ F |pi))

rkF
=
|a|
r

= µ(E).

It occurs when there are two integers d ≤ 0 and 1 ≤ s ≤ r − 1, n subsets J i ⊂ [r] of size s
such that

d+
∑n

i=1

∑
j∈Ji a

i
j

s
=
|a|
r
.
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Let J := {J1, J2, · · · , Jn}. Thus a stability wall is of the form

∆(s, d,J ) := {a ∈ W o
r,n | r(d+

n∑
i=1

∑
j∈Ji

aij) = s|a|}.

This equation is linear with respect to the variables aij . So the polytope W o
r,n is divided by

finitely many hyperplanes and each open chamber is a connected component of

W o
r,n \

(⋃
∆(s, d,J )

)
.

For J = {J1, J2, · · · , Jn}, set J c := {[r] \ J1, [r] \ J2, · · · , [r] \ Jn}. Then ∆(s, d,J ) =
∆(r − s,−d,J c). ∆(s, d, {J, J, · · · , J}) is denoted by ∆(s, d, nJ).

A wall-crossing is simple if it is a wall-crossing along the relative interior of a wall.
Because every wall-crossing can be decomposed into a finite sequence of simple wall-
crossings, it is enough to study simple wall-crossings.

Fix a wall ∆(s, d,J ) and take a general point a ∈ ∆(s, d,J ). A small open neighbor-
hood of a is divided into two pieces by the wall. Let ∆(s, d,J )+ and ∆(s, d,J )− be the
two connected components such that

r(d+
n∑
i=1

∑
j∈Ji

aij) > s|a|

and

r(d+
n∑
i=1

∑
j∈Ji

aij) < s|a|

respectively. Let a+ (resp. a−) be a point on ∆(s, d,J )+ (resp. ∆(s, d,J )−).

There are two functorial morphisms ([9, Theorem 3.1], [29, Section 7])

Mp(r, 0, a−)
φ−

''

Mp(r, 0, a+)
φ+

ww

Mp(r, 0, a).

Let Y ⊂ Mp(r, 0, a) be the locus that one of φ± : Y ± := φ±
−1

(Y ) → Y is not an isomor-
phism. That means Mp(r, 0, a−) \ Y − ∼= Mp(r, 0, a) \ Y ∼= Mp(r, 0, a+) \ Y +. We call Y ±

as the wall-crossing center. Suppose that E = (E, {W i
•}, a) is on Y . Then there is a rank

s destabilizing subbundle E+ = (E+, {W |E+
i
•},b) with µ(E+) = µ(E). We have a short

exact sequence 0 → E+ → E → E− → 0 where E− = (E− := E/E+, {W/E+i
•}, c). Then Y

parametrizes S-equivalence classes of E+⊕E−. Therefore Y ∼= Mp(s, d,b)×Mp(r−s,−d, c).

For the same data, define b± and c± by using a±. Let (E+,b±) be the universal fam-
ily on Mp(s, d,b±). Let (E−, c±) be the universal family on Mp(r − s,−d, c±). Let π+ :
Mp(s, d,b+)×Mp(r−s,−d, c+)×P1 → Mp(s, d,b+)×Mp(r−s,−d, c+) and π− : Mp(s, d,b−)×
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Mp(r − s,−d, c−)× P1 → Mp(s, d,b−)×Mp(r − s,−d, c−) be projections. The exceptional
fibers of φ− and φ+ are projective bundles

Y − = PR1π−∗ ParHom((E−, c−), (E+,b−))

and
Y + = PR1π+

∗ ParHom((E+,b+), (E−, c+))

respectively. Fiberwisely, φ− −1([E+⊕E−]) = PExt1((E−, {W/E+i
•}, c−), (E+, {W |E+

i
•},b−))

and φ+−1([E+ ⊕ E−]) = PExt1((E+, {W |E+
i
•},b+), (E−, {W/E+i

•}, c+)).

Remark 4.1. An element E = (E, {W i
•}, a−) ∈ Y − fits into a short exact sequence 0 →

(E+, {V i
•},b−) → (E, {W i

•}, a−) → (E−, {X i
•}, c−) → 0 of parabolic bundles with para-

bolic weights. Their underlying bundles also fit into 0 → E+ → E → E− → 0. Af-
ter the wall-crossing, φ+−1(φ−([E ])) is the set of parabolic bundles F which fits into the
sequence 0 → (E−, {X i

•}, c+) → F → (E+, {V i
•},b+) → 0 of parabolic bundles with

parabolic weights c+, a+. Again, their underlying bundles fit into the exact sequence
0→ E− → F → E+ → 0.

Proposition 4.2 ([29, Section 7]). Suppose that Mp(r, 0, a±) are nonempty. The blow-up of
Mp(r, 0, a−) along Y − is isomorphic to the blow-up of Mp(r, 0, a+) along Y +. In paticular,
dimY − + dimY + − dimY = dim Mp(r, 0, a)− 1.

Note that for some weight data a, the moduli space Mp(r, 0, a) may be empty.

Proposition 4.3. Suppose that Mp(r, 0, a+) = ∅. Then Mp(r, 0, a−) has a projective bundle
structure over Mp(r, 0, a) = Mp(s, d,b−)×Mp(r − s,−d, c−).

Proof. It is sufficient to show that Y − = Mp(r, 0, a−). If Y − is a proper subvariety of
Mp(r, 0, a−), Mp(r, 0, a−) \ Y − ∼= Mp(r, 0, a+) \ Y + 6= ∅. �

4.2. Scaling up. In this section, we examine a special kind of wall-crossing. Let a be a
general parabolic weight. For a positive real number c > 0, define a parabolic weight
a(c) as a(c)ij := caij . When c = ε � 1, a(c) satisfies the smallness condition in Theorem
3.3, so Mp(r, 0, a(ε)) = Fl(V )n//La(ε)

SLr. As c increases, we may cross several walls. By
perturbing if it is necessary, we may assume that all wall-crossings are simple. We call
this type of wall-crossings scaling wall-crossings.

Suppose that ∆(s, d,J ) is a wall we can meet and a0 := a(c) ∈ ∆(s, d,J ) is a general
point. Let a± = a(c ± ε). For a parabolic bundle E = (E, {W i

•}, a0) ∈ Y , let E+ be the
destabilizing subbundle with respect to a0 and E− be the quotient E/E+. The induced
weight data of E+ with respect to a± is denoted by b±, as before.

Here we would like to compute dim Ext1(E−, E+) with respect to a−. By Serre duality
(Lemma 2.11), Ext1(E−, E+) ∼= SParHom(E+ ⊗O(−(n− 2)), E−)∗. Consider the following
short exact sequence of sheaves

0→ SParHom(E+ ⊗O(−(n− 2)), E−)→ Hom(E+ ⊗O(−(n− 2)), E−)

→
⊕n

i=1 Hom(E+ ⊗O(−(n− 2))|pi , E−|pi)⊕n
i=1Npi(E+ ⊗O(−(n− 2)), E−)

→ 0
(4)
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where Np(E1, E2) is the subspace of strongly parabolic maps in Hom(E1|p, E2|p) at p ∈ P1.
For a−, µ(E−) > µ(E+). Because (E−,b−) and (E+, c−) are stable,

H1(SParHom(E+ ⊗O(−(n− 2)), E−)) = Ext0(E−, E+)∗ = ParHom(E−, E+)∗ = 0

by Lemma 2.11. Thus we have an exact sequence of vector spaces

0→ SParHom(E+ ⊗O(−(n− 2)), E−)→ Hom(E+ ⊗O(−(n− 2)), E−)

→
⊕n

i=1 Hom(E+ ⊗O(−(n− 2))|pi , E−|pi)⊕n
i=1Npi(E+ ⊗O(−(n− 2)), E−)

→ 0.
(5)

Recall that at each parabolic point pi, the intersection of E+ with E|pi is described by an
s-subset J i ⊂ [r].

Lemma 4.4. Suppose that rkE+ = s. In the above situation,

dimNpi(E+ ⊗O(−(n− 2)), E−) = dimωJi

where ωJi is the Schubert class in H∗(Gr(s, r)) associated to the increasing sequence J i.

Proof. Note that dimNpi(E+ ⊗O(−(n− 2)), E−) = dimNpi(E+, E−). At the fiber of pi, take
an ordered basis {ej} of E|pi by choosing a nonzero vector ej for each W i

j \W i
j−1. Then

E+|pi (resp. E−|pi) is spanned by {ej}j∈Ji (resp. {ej}j∈[r]\Ji). Now to construct a map in
Npi(E+, E−), ej ∈ E+|pi can be mapped into the subspace of generated by ek where k < j
and k /∈ J i. Therefore the dimension is

∑s
j=1(J

i
j − j) and this is equal to dimωJi . �

From (5) and Lemma 4.4, we obtain the following result.

Proposition 4.5. Suppose that n � 0. Let E be a parabolic bundle on Y ⊂ Mp(r, 0, a) for a
scaling wall ∆(s, d,J ). Let E+ be the destabilizing subbundle and E− = E/E+. With respect to
the parabolic weight a−,

(6) dim Ext1(E−, E+) = dim Hom(E+ ⊗O(−(n− 2)), E−)− ns(r − s) +
n∑
i=1

dimωJi .

Let a be a general parabolic weight and consider the scaling wall-crossing. For the
weight data a(ε), Mp(r, 0, a(ε)) is the GIT quotient Fl(V )n//La(ε)

SLr, and any underlying
vector bundle E of E ∈ Mp(r, 0, a(ε)) is trivial.

We show that the first wall we meet while the scaling wall-crossing is of the form
∆(s,−1, n[s]). Let ∆(s, d,J ) be the first wall. Because E does not have any positive
degree subbundle, d ≤ 0. A wall of the form ∆(s, 0,J ) does not appear while scaling.
(These walls are GIT walls.) The maximal parabolic slope we can obtain occurs when |d|
is the smallest one and J i = [s].

Furthermore, the walls ∆(s,−1, n[s]) for 2 ≤ s ≤ r − 2 do not intersect W o
r,n.

Lemma 4.6. The first wall is either ∆(1,−1, n[1]) or ∆(r − 1,−1, n[r − 1]). Moreover, only one
of them occurs during the scaling wall-crossing.



14 HAN-BOM MOON AND SANG-BUM YOO

Proof. Suppose that ∆(s,−1, n[s]) ∩ W o
r,n is nonempty and the wall actually provides a

nontrivial wall-crossing for 2 ≤ s ≤ r − 2. For notational simplicity, we may assume
that a = a(1) ∈ ∆(s,−1, n[s]). E = (E = Or, {W i

•}, a−) ∈ Y − has a parabolic subbundle
F = (F ∼= O(−1) ⊕ Os−1, {W |F i•},b−) such that W |F ij = W i

j for all i and 1 ≤ j ≤ s, and
µ(F) = µ(E) with respect to a. Then there is an (s + 1)-dimensional vector space V ′ such
that F → E factors through F → V ′⊗O → E. Let F ′ be the induced parabolic subbundle
of E whose underlying bundle is V ′ ⊗O. With respect to a− = a(1 − ε), E is stable. Thus
we have

1

s+ 1

n∑
i=1

s∑
j=1

aij = µ(F ′) < µ(E) =
1

r
|a|.

On the other hand, let F ′′ ⊂ F be any rank one trivial subbundle and let F ′′ be the para-
bolic subbundle induced by F ′′. Then we have

n∑
i=1

ais ≤ µ(F ′′) < µ(E) =
1

r
|a|.

By taking the weighted average of left sides, we have

1

r
|a| > 1

r

(
(s+ 1)

1

s+ 1

n∑
i=1

s∑
j=1

aij + (r − s− 1)
n∑
i=1

ais

)
=

1

r

n∑
i=1

(
s−1∑
j=1

aij + (r − s)ais

)
>

1

r
|a|

and this is a contradiction.

Now suppose that the first wall is ∆(1,−1, n[1]). We may assume that a ∈ ∆(1,−1, n[1]).
E = (E = Or, {W i

•}, a−) ∈ Y − has a subbundle F whose underlying bundle F is O(−1)
such that F |pi = W i

1. We can take a 2-dimensional V ′ and F ′ as before. Then

1

2

n∑
i=1

ai1 ≤ µ(F ′) < µ(E) =
1

r
|a|.

Now assume that E is also in the wall-crossing center for ∆(r − 1,−1, n[r − 1]). Then
there is a subbundle G ∼= O(−1)⊕Or−2 of E such that G|pi = W i

r−1. Let G be the induced
parabolic subbundle whose underlying bundle is G. Let V ′ be the (r − 2)-dimensional
vector space such that G = O(−1) ⊕ (V ′ ⊗ O) and let G ′ be the parabolic subbundle
associated to V ′ ⊗O. Then

1

r − 2

n∑
i=1

r−1∑
j=2

aij ≤ µ(G ′) < µ(E) =
1

r
|a|.

An weighted average of the left hand sides is µ(E). This makes a contradiction. �

Remark 4.7. The proof tells us that two wall-crossing centers Y −1 for ∆(1,−1, n[1]) and
Y −r−1 for ∆(r − 1,−1, n[r − 1]) cannot be simultaneously stable on Fl(V )n//LSLr for any
linearization L.

The first wall-crossing is always a blow-up.
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Lemma 4.8. The scaling wall-crossing along ∆(1,−1, n[1]) (resp. ∆(r − 1,−1, n[r − 1])) is a
blow-up along Y − ∼= Mp(r − 1, 1, c) (resp. Mp(r − 1,−1,b)).

Proof. By Proposition 4.2, the wall-crossing is a blow-up if and only if Y − = Y if and only
if dim Ext1(E−, E+) with respect to a− is one for E ∈ Y −.

Consider the case of ∆(1,−1, n[1]). The underlying bundle E+ is O(−1) and E− =
O(1)⊕Or−2. Thus Hom(E+⊗O(−(n−2)), E−) ∼= H0(O(n)⊕O(n−1)r−2). Because J i = [1],
dimωJi = 0. By using Proposition 4.5, it is straightforward to see that dim Ext1(E−, E+) =
1. The blow-up center is obtained from the description in Section 4.1 and the fact that
Mp(1, d,b) is a point. The other case is similar. �

Now suppose that a is a general small weight such that Mp(r, 0, a) = Fl(V )n//LaSLr and
ρ(Fl(V )n//LaSLr) = (r− 1)n. Such a weight exists by Theorem 3.3 and Proposition 3.4. By
scaling up the weight, for some c > 1, the weight data a(c) crosses either ∆(1,−1, n[1])-
wall or ∆(r − 1,−1, n[r − 1])-wall. Then for a(c+ ε), Mp(r, 0, a(c+ ε)) has Picard number
(r − 1)n + 1, which is maximal because the moduli stack Mp(r, 0) has the same Picard
number.

Definition 4.9. A general parabolic weight a is dominant if ρ(Mp(r, 0, a)) = (r − 1)n+ 1.

Such a weight is called dominant because any other Mp(r, 0,b) can be obtained as a
rational contraction of Mp(r, 0, a) (See Section 6).

When a is general, then the moduli stack Mp(r, 0)s(a) of a-stable parabolic bundles is a
Deligne-Mumford stack. We have the following diagram:

Mp(r, 0)s(a)
ι
//

p

��

Mp(r, 0)

Mp(r, 0, a)

Suppose further that a is dominant. Since Mp(r, 0)s(a) is an open substack of Mp(r, 0), the
pull-back morphism Pic(Mp(r, 0)) → Pic(Mp(r, 0)s(a)) is surjective ([16, Corollary 3.4])
and the latter is a quotient of a free abelian group of rank (r − 1)n+ 1. But since we have
a morphism p∗ : Pic(Mp(r, 0, a)) → Pic(Mp(r, 0)s(a)), which is injective ([27, Theorem
11.1.2]), Pic(Mp(r, 0, a)) is a rank (r−1)n+1 sub free abelian group of Pic(Mp(r, 0)s(a)). We
can conclude that Pic(Mp(r, 0)) ∼= Pic(Mp(r, 0)s(a)) and we may identify Pic(Mp(r, 0, a))
with a finite index subgroup of Pic(Mp(r, 0)).

It also follows that any global section of Mp(r, 0)s(a) is uniquely extended to Mp(r, 0).
Then for any L ∈ Pic(Mp(r, 0, a)),

H0(Mp(r, 0), p∗L) ∼= H0(Mp(r, 0)s(a), p∗L) ∼= H0(Mp(r, 0, a), L).

The last isomorphism follows from [27, Theorem 11.1.2].

Thus Cox(Mp(r, 0, a)) is identified with
⊕

L∈Pic(Mp(r,0,a))
H0(Mp(r, 0), p∗L). Since Pic(Mp(r, 0, a))

is a finite index subgroup of Pic(Mp(r, 0)), we can conclude that Cox(Mp(r, 0)) ∼= V† is
finitely generated if and only if Cox(Mp(r, 0, a)) is finitely generated.
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Indeed, Cox(Mp(r, 0)) can be identified with that of a projective moduli space.

Proposition 4.10. Let a be a dominant weight. Then Cox(Mp(r, 0, a)) = Cox(Mp(r, 0)).

Proof. Since a flip does not affect to the Cox ring, we may assume that Mp(r, 0, a) is a
blow-up of Fl(V )n//LSLr. Let π : Mp(r, 0, a) → Fl(V )n//LSLr be the blow-up. The excep-
tional divisor Y + parametrizes the parabolic bundles with nontrivial underlying bundles
(Remark 4.1). Thus Y + is the generalized theta divisor Θ described in Section 2.2.

We already showed that for anyL ∈ Pic(Mp(r, 0, a)), H0(Mp(r, 0, a), L) ∼= H0(Mp(r, 0), p∗L)
for p∗ : Pic(Mp(r, 0, a)) → Pic(Mp(r, 0)s(a)) ∼= Pic(Mp(r, 0)). Thus it is sufficient to show
that a line bundle L ∈ Pic(Mp(r, 0)) has a nonzero section only if L is in the image of
p∗. Suppose that σ ∈ V†

`,~λ
is a nonzero section. Note that V†

`,~λ
↪→ V†

`′,~λ
for `′ ≥ ` and

for some `′ � 0 determined by ~λ, V†
`′,~λ
∼= V ∗SLr~λ

, the space of classical invariants. Then

V ∗SLr~λ
∼= H0(Fl(V )n//LSLr, L~λ)

∼= H0(Mp(r, 0, a), π∗L~λ) for a certain line bundle L~λ. Then σ
is a section of π∗L~λ − (`′ − `)Θ, which is a line bundle on Mp(r, 0, a). �

5. THE MODULI SPACE IS A MORI DREAM SPACE

In this section, we prove Theorem 5.1. The finite generation of V† (Theorem 5.3) follows
immediately.

Theorem 5.1. For any rank r and a general parabolic weight a, Mp(r, 0, a) is of Fano type.

Recall that a Q-factorial normal varieityX is of Fano type if there is an effective Q-divisor
∆ such that −(KX + ∆) is ample and (X,∆) is a klt pair.

By [3, Corollary 1.3.2], a Q-factorial normal variety of Fano type is a Mori dream space.

Corollary 5.2. For any general parabolic weight a, Mp(r, 0, a) is a Mori dream space.

Theorem 5.3. The algebra V† of conformal blocks is finitely generated.

Proof. By Proposition 4.10, the Cox ring of the moduli stack Mp(r, 0) is the same with that
of Ma(r, 0, a) if a is dominant. If n > 2r, by Theorem 3.3 and Proposition 3.4, there is
a small weight b such that ρ(Mp(r, 0,b)) = (r − 1)n. During the scaling wall-crossing,
the first wall-crossing is a blow-up. Thus there is a dominant weight a = b(c). Then
Cox(Mp(r, 0)) = Cox(Mp(r, 0, a)) is finitely generated by Corollary 5.2 and [17, Theorem
2.9].

When n is small, by Lemma 5.4, for a sufficiently large point configuration q ⊃ p, there
is a morphism Mq(r, 0, a′) → Mp(r, 0, a) for some a′. Then Pic(Mp(r, 0, a)) is a subgroup
of Pic(Mq(r, 0, a′)). Let H := Hom(Pic(Mq(r, 0, a′))/Pic(Mp(r, 0, a)),C∗). There is a natural
action of H on Cox(Mq(r, 0, a′)) and by propagation of vacua ([32, Theorem 3.15]),

V† ∼=
⊕
`,~λ

V†`,(λ1,λ2,··· ,λn) ∼=
⊕
`,~λ

V†`,(λ1,λ2,··· ,λn,0,0,··· ,0) ∼= Cox(Mq(r, 0, a′))H .

A torus-invariant subring of a finitely generated algebra is finitely generated, too ([12,
Theorem 3.3]). �
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Lemma 5.4. Let a be a general effective parabolic weight. Then for any finite point configuration
q ⊃ p, there is a parabolic weight a′ such that there is a morphism Mq(r, 0, a′)→ Mp(r, 0, a).

Proof. Suppose that p = (p1, p2, · · · , pn) and q = (p1, p2, · · · , pn+m). Let a′ be a parabolic
weight such that a′i• = ai• for i ≤ n and a′ij are sufficiently small for i > n. There is a
natural ‘forgetful’ map

Mp(r, 0, a′) → Mq(r, 0, a)

(E, {W i
•}, a′) 7→ (E, {W i

•}i≤n, a).

This map is regular, because small weights (ai•)i>n do not affect on the inequalities for the
stability. �

Remark 5.5. The proof of Theorem 5.3 does not provide any explicit set of generators.
When r ≤ 3 and p is a generic configuration of points, by using a degeneration method,
Manon showed that the set of rn−1 level one conformal blocks generates V† ([21, Theorem
3], [23, Theorem 1.5]). For r ≥ 4, the set of level one conformal blocks is insufficient to
generate V†. We expect that the generic configuration assumption is not essential.

Remark 5.6. In [26], Mukai showed that a certain Gn
a-invariant ring of a polynomial ring

is finitely generated. He identified the invariant subring with the Cox ring of the moduli
space Mp(2,−1, a) for a certain a. The outline of our proof of the finite generation is a
generalization of [26]. Note that the finite generation of Cox(Mp(2,−1, a)) follows from
Corollary 5.2, because Proposition 6.7 implies that Mp(2,−1, a) is a rational contraction of
Mq(2, 0, a′).

The remaining of this section is devoted to the proof of Theorem 5.1. We start with the
computation of the canonical divisor. O(D) denotes the descent of a line bundle O(D) on
X to the GIT quotient X//G.

Lemma 5.7. LetL be a general linearization on Fl(V )n with a maximal stable locus. The canonical
divisor K of Fl(V )n//LSLr is

n⊗
i=1

π∗iO(−2,−2, · · · ,−2).

Proof. Because the canonical divisor is Sn-invariant, we have K =
⊗n

i=1 π
∗
iO(b1, · · · , br−1).

Let C̃i
j
∼= P1 ⊂ Fl(V )n be a Schubert curve that is obtained by taking a family of parabolic

bundles (Or, {W i
•}) such that W l

• for l 6= i and W i
k for k 6= j are fixed and general, but W i

j

is varying as a one-dimensional family of subspaces in W i
j+1 containing W i

j−1.Since L is a
linearization with a maximal stable locus, C̃i

j does not intersect the unstable locus whose
codimension is at least two. Thus by taking its image in Fl(V )n//LSLr, we have a curve
Ci
j . By projection formula, Ci

j ·
⊗n

i=1 π
∗
iO(b1, · · · , br−1) = bj .

Note that C̃i
j is indeed a curve on a fiber of the projection map p : Fl(V )n → Fl(V )n−1

which forgets the i-th factor. The tangent bundle of the i-th factor Fl(V ) is the quotient

0→ HomF·(V, V )⊗O → Hom(V, V )⊗O → TFl(V ) → 0
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where HomF ·(V, V ) is the space of endomorphisms which preserve the flag. The restric-
tion of the sequence to C̃i

j is isomorphic to

0→ O(r2+r−4)/2 ⊕O(−1)2 → Or2 → TFl(V )|C̃ij → 0.

So deg TFl(V )|C̃ij = 2, and thus deg TFl(V )n|C̃ij = 2. By the SLr-action, C̃i
j deforms without

fixed points. Thus along the fiber of the quotient map, the restriction of the tangent bundle
is trivial. Therefore deg TFl(V )n//LSLr |Cij = 2. So bj = Ci

j ·K = −2. �

Corollary 5.8. For a general small weight a, H0(−K) = V†(r−1)n,(λ,λ,··· ,λ) where λ = 2(
∑r−1

j=1 ωj).

Proof. By Lemma 5.7,−K = ⊗ni=1π
∗
iO(2, 2, · · · , 2). This is a product of (r−1)n line bundles

of the form π∗iO(ea)⊗ π∗jO(er−a) where ek is the standard k-th vector. Each H0(π∗iO(ea)⊗
π∗jO(er−a)) is identified with V†1,(0,··· ,0,ωr−a,0,··· ,0,ωa,0,··· ) where ωr−a is on the i-factor and ωa
is on the j-th factor ([7, Proposition 1.3]). Now by taking the tensor product of them, we
obtain the statement. �

Proposition 5.9. Let a be a dominant parabolic weight. Let M = Mp(r, 0, a). Then H0(−KM) =

V†2r,(λ,λ,··· ,λ) where λ = (2
∑r−1

j=1 ωj).

Proof. We may assume that a is the weight data right after the first wall-crossing while
the scaling wall-crossing from a(ε). By Lemma 4.8, the first wall-crossing is the blow-
up along Mp(r − 1, 1, c) or Mp(r − 1,−1,b). In particular, the codimension of the blow-
up center is (r − 1)n − 2r + 1. By the blow-up formula of canonical divisors, if K de-
notes the canonical divisor of Fl(V )n//LaSLr and if π : M → Fl(V )n//LaSLr is the blow-
up morphism, −KM = π∗(−K) − ((r − 1)n − 2r)Y +. Since Y + is the theta divisor Θ,
H0(−KM) = V†(r−1)n−((r−1)n−2r),(λ,λ,··· ,λ) = V†2r,(λ,λ,··· ,λ). �

A key theorem is the following classical result of Pauly.

Theorem 5.10 ([28, Theorem 3.3, Corollary 6.7]). Let a = (ai•) be a parabolic weight. Then
there is an ample line bundle Θa on Mp(r, 0, a) such that H0(Θa) is canonically identified with
V†`,(λ1,λ2,··· ,λn) where ` is the smallest positive integer such that `aij ∈ Z and λij = `aij .

Let ac be a parabolic weight such that (ac
i
•) = 1

r
(r − 1, r − 2, · · · , 1). By Theorem 5.10,

−KM ∈ V†2r,(λ,λ,··· ,λ) is an ample divisor on Mp(r, 0, ac). Thus Mp(r, 0, ac) is a Fano variety.

But there are two technical problems. First of all, in many cases (even for rank two), ac
lies on a wall, so it is not general. To avoid this technical difficulty, we perturb the weight
data slightly. Let ad be a general small perturbation of ac such that the set of walls that we
meet while the scaling wall crossing from ac(ε) to ac is equal to that for the scaling wall
crossing from ad(ε) to ad. Since Mp(r, 0, ad(ε)) ∼= Fl(V )n//Lad(ε)

SLr and Lad(ε) is sufficiently
close to the symmetric linearization, by Proposition 3.4, ρ(Mp(r, 0, ad(ε)) = (r − 1)n if
n > 2r.
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The second issue is that, in general, ad is not dominant. Then the fact that Mp(r, 0, ad) is
a MDS does not imply the finite generation of V†. We show that if n is sufficiently large,
however, ad is always dominant.

Proposition 5.11. Let ∆(s, d,J ) be a wall one meets while the scaling wall-crossing from ad(ε)
to ad. Suppose that n � 0. Then the wall-crossing is not a blow-down. In particular, ad is
dominant.

Proof. Let a = ad(c) be the weight on the wall, and a± are weights near the wall as be-
fore. Recall that the wall-crossing center Y − is isomorphic to PExt1(E−, E+)-bundle over
Mp(s, d,b)×Mp(r − s,−d, c).

Suppose that a general point on Y − parametrizes a parabolic bundle with a non-trivial
underlying bundle. Then Y − ⊂ Θ. If the wall-crossing is blow-down, then Y − = Θ
because Θ is an irreducible divisor. But Θ is not contracted by scaling-up by Lemma 6.2.
Thus we may assume that a general point of Y − parametrizes a parabolic bundle with a
trivial underlying bundle.

Let E = (E, {W i
•}, a−) be a general point on Y − and E+ = (E+, {W |Ei•},b−) (resp. E− =

(E−, {W/Ei
•}, c−)) be the destabilizing subbundle (resp. quotient bundle). Since E is

trivial, E+ (resp. E−) is a direct sum of line bundles with nonpositive (resp. nonnegative)
degrees. Thus dim Hom(E+ ⊗ O(−(n − 2)), E−) = −dr + (n − 1)s(r − s). By Proposition
4.5, with respect to a−,

dim Ext1(E−, E+) = −dr − s(r − s) +
n∑
i=1

dimωJi .

If the wall-crossing is a blow-down,

dim Ext1(E−, E+) + dim Mp(s, d,b) + dim Mp(r − s,−d, c) = dim Mp(r, 0, a).

Since dim Mp(r, d, a) = nr(r − 1)/2− r2 + 1, this is equivalent to

n∑
i=1

dimωJi = (n− 1)s(r − s) + dr − 1.

If ∆(s, d,J ) is a wall that we cross while scaling, then there is a constant 0 < c ≤ 1 such
that µ(E+) = µ(E) for the weight a = ac(c) on ∆(s, d,J ).
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Note that the weight data ac(c) is defined as ac(c)i• = c
r
(r − 1, r − 2, · · · , 1). Thus

µ(E+) =
1

s

d+
n∑
i=1

∑
j∈Ji

c

r
(r − j)

 =
1

s

(
d+

n∑
i=1

s∑
k=1

(
c− c

r
k − c

r
(J ik − k)

))

=
1

s

(
d+ cn

(
s− s(s+ 1)

2r

)
− c

r

n∑
i=1

dimωJi

)

=
1

s

(
d+ cn

(
s− s(s+ 1)

2r

)
− c

r
((n− 1)s(r − s) + dr − 1))

)
=

1

s

(
cn

(
s− s(s+ 1)

2r
− s(r − s)

r

)
+
c

r
(1 + s(r − s)) + (1− c)d

)
.

On the other hand,

µ(E) =
1

r

(
n∑
i=1

r−1∑
j=1

c

r
(r − j)

)
=
cn(r − 1)

2r
.

From µ(E+) = µ(E), we have

csn(r − 1)

2r
= cn

(
s− s(s+ 1)

2r
− s(r − s)

r

)
+
c

r
(1 + s(r − s)) + (1− c)d,

which is equivalent to

c

(
ns
s− r

2r
+

1 + s(r − s)
r

)
= −(1− c)d.

If n � 0, then the left hand side is a negative number, but the right hand side is non-
negative because d < 0. Thus there is no such 0 < c ≤ 1. �

We are ready to prove the main theorem.

Proof of Theorem 5.1. First of all, suppose that n is sufficiently large. By Proposition 5.11,
M := Mp(r, 0, ad) has Picard number (r− 1)n+ 1. Then, −KM is nef because it is a limit of
ample divisors. If the anticanonical divisor is not big, then the wall-crossing center is the
whole M, and dim Ext1(E−, E+) = dim M − dim Mp(s, d,b) − dim Mp(r − s,−d, c) + 1, or
equivalently,

∑n
i=1 dimωJi = (n− 1)s(r− s) + dr. By a similar computation as in the proof

of Proposition 5.11, one can check that such a boundary wall-crossing does not occur as
long as n is large. Thus the anticanonical divisor is also big and M is a smooth weak
Fano variety. Since −K is big, there is an ample divisor A and an effective divisor D such
that −cK = A + D for some positive integer c. So for another positive integer d > 0,
−dK = −(d − c)K + A + D and −(K + 1

d
D) = 1

d
(−(d − c)K + A). The right hand side is

ample because it is sum of a nef divisor and an ample divisor. If d � 0, (M, 1
d
D) is a klt

pair. Thus M is of Fano type.

For a general non-necessarily dominant weight a, because ad is dominant, Mp(r, 0, a)
is obtained from Mp(r, 0, ad) by taking several flips and blow-downs, but no blow-ups.
By [15, Theorem 1.1, Corollary 1.3], Mp(r, 0, a) is also of Fano type. When n is small, by
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Lemma 5.4, Mp(r, 0, a) is an image of Mq(r, 0, a′) for some large q. Thus it is of Fano type
by [15, Corollary 1.3]. �

6. MORI’S PROGRAM OF THE MODULI SPACE

We are ready to run Mori’s program of Mp(r, 0, a). In this section, n > 2r and a is a
dominant weight.

6.1. Birational models. Recall that for an integral divisor D on a projective variety X ,

X(D) := Proj
⊕
m≥0

H0(X,O(mD))

be the associated projective model. The following observation is an immediate conse-
quence of Pauly’s theorem (Theorem 5.10).

Proposition 6.1. Let D ∈ intEff(Mp(r, 0, a)). Then Mp(r, 0, a)(D) ∼= Mp(r, 0,b) for some
parabolic weight b.

In particular, all birational models of Mp(r, 0, a) obtained from Mori’s program are again
moduli spaces of parabolic bundles with some weight data.

Proof. For notational simplicity, set M = Mp(r, 0, a). We may assume that M is the blow-up
of Fl(V )n//LSLr along Mp(r− 1,−1,b) or Mp(r− 1, 1, c). Let π : M→ Fl(V )n//LSLr be the
blow-up morphism, and Y + = Θ be the exceptional divisor. With respect to such an L, by
Proposition 3.4, Pic(Fl(V )n//LSLr) is identified with an index r sublattice of Pic(Fl(V )n).
Thus any line bundle on Fl(V )n//LSLr can be uniquely written as ⊗ni=1π

∗
i F λi where F λi is

the descent of Fλi on Fl(V ) and πi : Fl(V )n → Fl(V ) is the i-th projection. Similarly, any
line bundle O(D) on M can be uniquely written as π∗ ⊗ni=1 π

∗
i F λi − kΘ for some k ∈ Z.

When k = 0,

M(D) = (Fl(V )n//LSLr)(⊗ni=1π
∗
i F λi) = Proj

⊕
m≥0

H0(Fl(V )n//LSLr,⊗ni=1π
∗
i F

m

λi)

= Proj
⊕
m≥0

H0(Fl(V )n,⊗ni=1π
∗
i F

m
λi )

SLr = Fl(V )n//⊗ni=1π
∗
i Fλi

SLr,

which is Mp(r, 0,b) for some b by Theorem 3.3.

If k < 0, then M(D) = M(π∗⊗ni=1 π
∗
i F λi−kΘ) = M(π∗⊗ni=1 π

∗
i F λi) because Θ is an excep-

tional divisor of the rational contraction M 99K M(π∗ ⊗ni=1 π
∗
i F λi)) = Fl(V )n//⊗ni=1π

∗
i Fλi

SLr.

Suppose that k > 0.

H0(M, π∗ ⊗ni=1 π
∗
i F λi) = H0(Fl(V )n//LSLr,⊗ni=1π

∗
i F λi) = H0(Fl(V )n,⊗ni=1π

∗
i Fλi)

SLr

= V†N,(λ1,λ2,··· ,λn)

for some N > 0. Thus H0(M, D) = V†N−k,(λ1,λ2,··· ,λn). If N − k > λi1 for all i, then Theorem
5.10 implies that V†N−k,(λ1,λ2,··· ,λn) is an ample linear system on Mp(r, 0,b) for some b.
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Suppose that N − k = λi1 for some i. Then for any m,

H0(mD −Θ) = V†m(N−k)−1,(mλ1,mλ2,··· ,mλn) = 0

because m(N − k)− 1 < mλi1. Thus D is on the boundary of the effective cone. �

We close this section with a lemma which was used in the proof of Proposition 5.11.

Lemma 6.2. During a scaling wall-crossing, Θ is not contracted.

Proof. Let a be a dominant weight. We may assume that M := Mp(r, 0, a) is the blow-
up of Fl(V )n//LSLr. By Proposition 6.1, the scaling wall-crossing is the computation of
M(D − cΘ) where D = π∗ ⊗ni=1 π

∗
i F λi , from c = 0 to c� 0.

Suppose that for some c > 0, M(D− cΘ) is a contraction of Θ. Then M(D− cΘ + dΘ) =
M(D− cΘ) for any d > 0. In particular, M(D− εΘ) is a contraction of Θ for 0 < ε� 1. But
D − εΘ is an ample divisor on M and we have a contradiction. �

6.2. Effective cone. The first step of Mori’s program is the computation of the effective
cone.

For some weight data b, Mp(r, 0,b) may be empty. By combining this observation with
Proposition 6.1, we can compute an H-representation of Eff(Mp(r, 0, a)). This result was
obtained by Belkale in [4] in a greater generality and with a different idea.

Set M := Mp(r, 0, a). Since M is a MDS, Eff(M) is a closed polyhedral cone. For eachD ∈
Eff(M), H0(D) is identified with V†`,(λ1,λ2,··· ,λn). There are two classes of linear inequalities
for the non-vanishing of conformal blocks:

(1) λij ≥ λij+1 (it includes λir−1 ≥ 0 by our normalization assumption);
(2) λi1 ≤ `.

The first class of inequalities comes from the effectiveness of ⊗ni=1π
∗
i Fλi on Fl(V )n. For

the second class, see [7, Section 4] for an explanation. Here we construct extra linear
inequalities.

Recall that the (genus zero) Gromov-Witten invariant counts the number of rational curves
intersecting several subvarieties. Here we employ the definition in [6] using quot scheme,
which is different from the definition using moduli spaces of stable maps ([14]). For a par-
tition λ = (r ≥ λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 0) and a complete flag W• of an r-dimension vector
space V , we obtain a Schubert subvariety Ωλ(W•) ⊂ Gr(s, V ) = Gr(s, r). Its numerical
class is independent of the choice of W•, and is denoted by ωλ ∈ H∗(Gr(s, r)). For a collec-
tion of general complete flags W i

• of V and a nonnegative integer d, the Gromov-Witten
invariant

〈ωλ1 , ωλ2 , · · · , ωλn〉d
is the number of maps f : (P1,p = (pi)) → Gr(s, r) of degree d such that f(pi) ∈ Ωλi(W

i
•)

if the number is finite, and otherwise it is zero. Since the moduli space of maps from P1

to Gr(s, r) is not proper, a rigorous definition requires a compactified space of maps, the
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quot scheme over P1, but by Moving Lemma ([6, Lemma 2.2A]), the number is equal to
the number of genuine maps from P1 to Gr(s, r).

Proposition 6.3. For each collection of partitions λ1, λ2, · · · , λn of length s and a nonpositive
integer d such that the Gromov-Witten invariant 〈ωλ1 , ωλ2 , · · · , ωλn〉−d on Gr(s, r) is one, there
is a linear inequality

(7)
1

s

d`+
n∑
i=1

∑
j∈Ji

λij

 ≤ 1

r

(
n∑
i=1

r−1∑
j=1

λij

)
.

which defines Eff(M), where J i = {r − s+ j − λij|j ∈ [s]}. Moreover, these inequalities and two
classes (1) and (2) of inequalities provide the H-represenation of Eff(M).

Proof. Let D be a general point on a facet of Eff(M), which is not one of facets described
above. Take an embedding of a small line segment γ : [−ε, ε] → N1(M)R such that γ(0) =
D and γ(x) ∈ int Eff(M) when x < 0. Let D± := γ(±ε).

Note that each x ∈ [−ε, ε] defines an R-divisorDx = L`⊗⊗ni=1Fλi , and hence a parabolic
weight ax by setting (ax)i = 1

`
(λij). We may assume that all ax are general except a0.

Because the moduli space becomes empty after changing the weight from a−ε to aε, there
is a boundary wall ∆(s, d,J ) at a0. A wall-crossing is a boundary one if and only if
a general point E = (Or, {W i

•}, a−ε) of Mp(r, 0, a−ε) has the unique detabilizing bundle
E+ = (E+, {W |E+

i
•},b−ε) of rank s such that µ(E+) = µ(E) with respect to a0. This implies

that there is a short exact sequence 0 → E+ → E → E− → 0 of bundles such that
E+|pi ∈ Ωλi(W

i
•). Therefore there is a map f : (P1,p) → Gr(s, r) of degree −d such that

f(pi) ∈ Ωλi(W
i
•). Thus 〈ωλ1 , ωλ2 , · · · , ωλn〉−d = 1. In particular, to have a nonempty moduli

space, µ(E+) ≤ µ(E), which is (7).

Now suppose that D is a divisor satisfies all of the given strict linear inequalities of
the form (7) for every collection of partitions λ1, λ2, · · · , λn with 〈ωλ1 , ωλ2 , · · · , ωλn〉−d = 1.
Let a be the associated parabolic weight data. Then for a general parabolic bundle E =
(Or, {W i

•}, a), there is no possible destabilizing bundle. Therefore E ∈ Mp(r, 0, a) and the
moduli space is nonempty. Because D is an ample divisor on Mp(r, 0, a), |mD| 6= ∅ for
some m > 0. Therefore D ∈ intEff(M). By taking the closure, we can obtain the effective
cone. �

Remark 6.4. The computation of the V-representation from the H-representation is highly
nontrivial. In [5], Belkale explains how to compute the extremal rays of the effective cone
for the quotient stack [Fl(V )3/SLr]. He informed to the authors that this computation can
be generalized to the case of arbitrary n and for Mp(r, 0, a), too.

6.3. Projective models and wall-crossing. The remaining steps of Mori’s program are
the computation of projective models M(D) for M := Mp(r, 0, a) and the study of the
rational contraction M 99K M(D). For D ∈ intEff(M), Proposition 6.1 already provides
the answer. It remains to find projective models associated to D ∈ ∂Eff(M). We content
ourselves with a description for facets of ∂Eff(M).



24 HAN-BOM MOON AND SANG-BUM YOO

The first type of facets are that associated to Gromov-Witten invariants, as described
in Section 6.2. We call this type of facets as GW facets. In this case, the boundary wall-
crossing in Proposition 4.3 gives a contraction.

Proposition 6.5. Suppose that D is a general point on a GW facet of Eff(M). Then M(D) =
Mp(s,−d,b)×Mp(r − s, d, c) for some 0 < s < r, d ≥ 0, and b and c.

The second type of facets are of the form λkj = λkj+1. This case is related to moduli spaces
of parabolic bundles with degenerated flags, which forgets j-th flag on pk. In [28], Pauly
proved Theorem 5.10 for such degenerated flags, too. The proof of the next proposition is
essentially same to that of Proposition 6.1.

Proposition 6.6. Suppose that D is a general point of the facet of Eff(M) which is given by
λkj = λkj+1. Then M(D) = Mp(r, 0,b), which is the moduli space of parabolic bundles where its
k-th flag is a partial flag of type (1, 2, · · · , ĵ, · · · , r − 1).

The last type of facets are of the type λk1 = `.

Proposition 6.7. Suppose that D is a general point on the facet λk1 = `. Then M(D) =
Mp(r,−1,b) where b is a parabolic weight such that bi = 1

`
(λi1, λ

i
2, · · · , λir−1) for i 6= k and

bk = 1
`
(λk1 − λkr−1, λk2 − λkr−1, · · · , λkr−2 − λkr−1) (the last flag is of type (2, 3, · · · , r − 1)).

Proof. By symmetry, we may assume that k = n. Let D′ be a big divisor which is suffi-
ciently close to D. Then M(D) = M(D′)(D). Thus we may replace M by M(D′). Equiva-
lently, after Theorem 5.10, we may assume that a is sufficiently close to (1

`
λi).

Let E = (E, {W i
•}, a) ∈ Mp(r, 0, a). Consider the quotient map E → E|pn/W n

r−1 → 0
and let E ′ be the kernel. Then E ′ is a vector bundle of degree −1. For pi with i < n, let
W ′i

j = W i
j . Over pn, letW ′n

j = r−1(W n
j ) where r : E ′|pn → E|pn is the restriction ofE ′ ↪→ E.

Note that dimW ′n
j = j+1. Thus we have a quasi parabolic bundle E ′ := (E ′, {W ′i

•}) whose
last flag over pn is of type (2, 3, · · · , r − 1).

We claim that E ′ is stable with respect to b. Let F ′ = (F ′, {V ′i•}, c) be a parabolic sub-
bundle of E ′. To avoid a confusion, the slope with respect to b is denoted by µb. Because
bnj = anj − anr−1,

µb(E ′) =
1

r

(
−1 +

∑
i<n

r−1∑
j=1

aij + bn1 +
r−2∑
j=1

bnj

)
= µ(E)− 1

r
− 1

r

r−1∑
j=1

anj +
1

r

(
bn1 +

r−2∑
j=1

bnj

)

= µ(E)− 1

r
+

1

r
an1 − anr−1.
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Suppose that F ′ is a rank s subbundle of E. Then ker r ∩ F ′|pn = 0. If J i denotes the
subset of indices j ∈ [r] such that W ′i

j ∩ F ′|pi 6= W ′i
j−1 ∩ F ′|pi ,

µb(F ′) =
1

s

degF ′ +
∑
i<n

∑
j∈Ji

aij +
∑
j∈Jn

bnj


=

1

s

degF ′ +
∑
i

∑
j∈Ji

aij

+
1

s

(∑
j∈Jn

(bnj − anj )

)
= µ(F ′)− anr−1.

(8)

Therefore µb(E ′) − µb(F ′) = µ(E) − µ(F ′) − 1
r

+ 1
r
an1 . Since an1 is sufficiently close to one,

µb(E ′)− µb(F ′) > 0.

If F ′ is not a subbundle of E, then there is a subbundle F of E which contains F ′ and
F/F ′ is a torsion sheaf. Since E/E ′ is of length one, F/F ′ is also of length one. Therefore
degF ′ = degF − 1. Let F be the parabolic subbundle of E whose underlying bundle is F .
By a similar computation with (8), we have

µb(F ′) = µ(F)− 1

s
+

1

s
(an1 − anr−1)− anr−1

and it is straightforward to see that µb(E ′)− µb(F ′) > 0.

Therefore the map M → Mp(r,−1,b) which sends E to E ′ is a well-defined morphism.
This is a P1-fibration and it is of relative Picard number one. It is clear that this projective
model is associated to the facet λn1 = `, or equivalently, an1 = 1. �

Because all of the birational models and projective models can be described in terms of
moduli spaces of parabolic bundles, the wall-crossings in Section 4.1 are building blocks
of the rational contraction M 99K M(D). This is in some sense very satisfactory, because
all of them are smooth blow-ups/downs and projective bundle morphisms.

6.4. Rationality. It is an old open problem determining whether the moduli space of
(parabolic) bundles with a fixed determinant over a Riemann surface is rational or not
([18, 19]). The wall-crossing toward a boundary wall was applied to show the fact that
Mp(r, 0, a) is rational in [9]. Here we leave a sketch, for a reader’s convenience.

It is sufficient to prove for the case that a is sufficiently small, so Mp(r, 0, a) = Fl(V )n//LSLr
for some L. Cross several walls of type ∆(s, 0,J ), which are indeed GIT walls. If a is suf-
ficiently close to the boundary, then by Proposition 4.3, Mp(r, 0, a) is a projective bundle
over Mp(s, 0,b) × Mp(r − s, 0, c). Thus the problem is reduced to a lower rank case. If
r = 1, the moduli space is a point, so it is trivial.

Proposition 6.8 ([9, Proposition 5.1]). The moduli space Mp(r, 0, a) is rational.
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[17] Yi Hu and Sean Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000. Dedicated to
William Fulton on the occasion of his 60th birthday. 2, 3, 16
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