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Abstract. We use geometric invariant theory (GIT) to construct
a large class of compactifications of the moduli space M0,n. These
compactifications include many previously known examples, as well
as many new ones. As a consequence of our GIT approach, we ex-
hibit explicit flips and divisorial contractions between these spaces.

1. Introduction

The moduli spaces of curves Mg,n and their Deligne-Mumford com-
pactifications M g,n are among the most ubiquitous and important ob-
jects in algebraic geometry. However, many questions about them re-
main wide open, including ones that Mumford asked several decades
ago concerning various cones of divisors [Mum77, Har87]. While ex-
ploring this topic for M0,n, Hu and Keel showed that for a sufficiently
nice space—a so-called Mori dream space—understanding these cones
and their role in birational geometry is intimately related to variations
of geometric invariant theory (GIT) quotients [Tha96, DH98, HK00].
Although it remains unsettled whether M0,n is a Mori dream space for
n ≥ 7, the underlying philosophy is applicable nonetheless.

In this paper we explore the birational geometry of M0,n and illus-
trate that VGIT plays a significant role. We construct a family of
modular compactifications of M0,n obtained as GIT quotients parame-
terizing n-pointed rational normal curves and their degenerations in a
projective space. These compactifications include M0,n, all the Hassett
spaces M0,~c, all the previously constructed GIT models, and many new
compactifications.

1.1. The setup. The Chow variety of degree d curves in Pd has an
irreducible component parameterizing rational normal curves and their
limit cycles. Denote this by Chow(1, d,Pd) and consider the locus

Ud,n := {(X, p1, . . . , pn) ∈ Chow(1, d,Pd)× (Pd)n | pi ∈ X ∀i}.

There is a natural action of SL(d+ 1) on Ud,n, and the main objects of
study in this paper are the GIT quotients Ud,n// SL(d + 1) for n ≥ 3.
These depend on a linearization L ∈ Qn+1

>0 which can be thought of as
assigning a rational weight to the curve and each of its marked points.
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A preliminary stability analysis reveals that every singular semistable
curve is a union of rational normal curves of smaller degree meeting
at singularities that are locally a union of coordinate axes (Corollary
2.4). By considering a certain class of one-parameter subgroups, we
derive bounds on the weight of marked points allowed to lie at these
singularities and in various linear subspaces (see §2.3). Moreover, we
show in Proposition 2.10 that a rational normal curve with distinct
marked points is stable for an appropriate range of linearizations, so
there is a convex cone with cross-section ∆◦ ⊂ Qn+1 parameterizing
GIT quotients that are compactifications of M0,n (cf. §2.5). These are
related to the Deligne-Mumford-Knudsen compactification as follows:

Theorem 1.1. Let d ≥ 1 and L ∈ ∆◦. Then:

(1) The GIT quotient Ud,n//LSL(d+1) is a compactification of M0,n.
(2) There is a regular birational morphism

φ : M0,n → Ud,n//L SL(d+ 1)

which preserves M0,n.

Our technique for proving this is to take an appropriate SL(d + 1)-
quotient of the Kontsevich space M0,n(Pd, d) so that every DM-stable
curve maps, in a functorial manner, to a GIT-stable curve in Pd.

1.2. Chambers, walls, and flips. For each fixed d, the space of lin-
earizations ∆◦ admits a finite wall and chamber decomposition by the
general results of VGIT [DH98, Tha96]. This endows the birational
models we obtain with a rich set of interrelations. For instance, the
quotients corresponding to open chambers map to the quotients cor-
responding to adjacent walls, and whenever a wall is crossed there is
an induced rational map which is frequently a flip. We undertake a
careful analysis of this framework in the context of Ud,n and provide a
modular description of the maps that arise.

There are two types of walls in the closure of ∆◦: interior walls
corresponding to changes in stability conditions between open cham-
bers, and exterior walls corresponding to semi-ample linearizations or
linearizations with empty stable locus.

Our main results concerning the VGIT of Ud,n are the following:

• we list all of the GIT walls;
• we classify the strictly semistable curves corresponding to a wall

between two chambers and determine the ones with closed orbit;
• we provide necessary and sufficient conditions for the map in-

duced by crossing an interior wall to be i) a divisorial contrac-
tion, ii) a flip, or iii) to contract a curve;
• we describe the morphism corresponding to each exterior wall.
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Precise statements are provided in §5 and §6. The flips we obtain
between various models of M0,n are quite novel; in fact, it appears
that no flips between moduli spaces of pointed genus zero curves have
appeared previously in the literature1. We hope that these can be
used to illuminate some previously unexplored Mori-theoretic aspects
of the birational geometry of M0,n. In particular, we note that the
existence of a modular interpretation of these flips, and of the other
VGIT maps, is reminiscent of the Hassett-Keel program which aims to
construct log canonical models of M g through a sequence of modular
flips and contractions.

1.3. Hassett’s weighted spaces. To illustrate the significance of our
unified GIT construction of birational models, consider the Hassett
moduli spaces M0,~c of weighted pointed rational curves [Has03]. For
a weight vector ~c = (c1, . . . , cn) ∈ Qn

>0 with
∑
ci > 2, this space

parameterizes nodal rational curves with smooth marked points that
are allowed to collide if their weights add up to at most 1. Hassett
showed that whenever the weights are decreased, e.g. ~c′ = (c′1, . . . , c

′
n)

with c′i ≤ ci, there is a corresponding morphism M0,~c → M0,~c′ . It
has since been discovered that these morphisms are all steps in the log
minimal model program for M0,n. Specifically, the third author shows
in [Moo11] that each Hassett space M0,~c is the log canonical model of
M0,n with respect to the sum of tautological classes ψi weighted by ~c.

If M0,n is indeed a Mori dream space, then by the results of [HK00]
it would be possible to obtain all log canonical models through VGIT.
Although proving this seems a lofty goal, we are able to deduce the
following from our present GIT construction:

Theorem 1.2. For each fixed n ≥ 3, there exists d ≥ 1 such that every
Hassett space M0,~c arises as a quotient Ud,n// SL(d+ 1). Consequently,
the log minimal model program for M0,n with respect to the ψ-classes
can be performed entirely through VGIT.

1.4. Modular compactifications. In the absence of strictly semistable
points, each birational model Ud,n// SL(d+1) is itself a fine moduli space
of pointed rational curves. Moreover, this modular interpretation ex-
tends that of the interior, M0,n. A formalism for such compactifica-
tions, in any genus, has been introduced by Smyth in [Smy09]. The
basic idea is to define a modular compactification to be an open sub-
stack of the stack of all smoothable curves that is proper over SpecZ.
Smyth shows that there are combinatorial gadgets, called extremal as-
signments, that produce modular compactifications—and that in genus

1That is, a flip in the Mori-theoretic sense of a relatively anti-ample divisor be-
coming relatively ample; see [AGS10, Theorem 7.7] for an example of a generalized
flip between compactifications.
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zero, they produce all of them. This result can be thought of as a pow-
erful step toward understanding the modular aspects of the birational
geometry of M0,n. What remains is to determine the maps between
these modular compactifications, and for this we can apply our GIT
machinery.

In Proposition 5.7, we identify the extremal assignment correspond-
ing to each GIT linearization without strictly semistable points. Al-
though this does not yield all modular compactifications (cf. §7.5), it
does yield an extensive class of them. For linearizations that admit
strictly semistable points, the corresponding stack-theoretic quotients
[U ss

d,n/ SL(d+ 1)] typically are non-separated Artin stacks—so they are
not modular in the strict sense of Smyth. However, they are close to
being modular in that they are weakly proper stacks (as in [ASW10])
parameterizing certain equivalence classes of pointed rational curves.
One might call these “weakly modular” compactifications.

Recasting the results of §1.2 in this light, we begin to see an ele-
gant structure emerge: Every open GIT chamber in ∆◦ corresponds
to a modular compactification of M0,n, whereas the walls correspond
to weakly modular compactifications. The wall-crossing maps yield re-
lations between the various Smyth spaces that arise in our GIT con-
struction. In other words, the GIT chamber decomposition determines
which modular compactifications should be thought of as “adjacent”
in the space of all such compactifications.

1.5. Previous constructions. In the early 90s, Kapranov introduced
two constructions of M0,n that have since played an important role in
many situations. He showed that M0,n is the closure in Chow(1, n −
2,Pn−2) of the locus of rational normal curves passing through n fixed
points in general position [Kap93b]. There exist linearizations such
that Un−2,n// SL(n − 1) ∼= M0,n, so setting d = n − 2 in our construc-
tion yields a similar construction to Kapranov’s—except that instead
of fixing the points, we let them vary and then quotient by the group
of projectivities. Kapranov also showed that M0,n is the inverse limit
of the GIT quotients (P1)n// SL(2), which are precisely the d = 1 case
of our construction [Kap93a]. So in a sense, our construction is in-
spired by, and yields a common generalization of, both of Kapranov’s
constructions.

Remark 1.3. Kapranov showed that for both of his constructions,
one could replace the relevant Chow variety with a Hilbert scheme
and the construction remains. Similarly, we could have used a Hilbert
scheme to define a variant of the incidence locus Ud,n. By Corollary 2.4,
however, every GIT-semistable curve in Ud,n is reduced, so the Hilbert-
Chow morphism restricts to an isomorphism over the semistable locus.
Therefore, using an asymptotic linearization on the Hilbert scheme
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would yield GIT quotients isomorphic to those we consider here with
the Chow variety.

The GIT quotients (P1)n// SL(2) have made numerous appearances
in the literature beyond Kapranov’s inverse limit result—they are even
included in Mumford’s book [MFK94] as “an elementary example” of
GIT. The papers [Sim08, GS10] introduce and investigate the d = 2
case of the GIT quotients in this paper. In [Gia10], the first author
introduces and studies GIT quotients parameterizing the configurations
of points in projective space that arise in Ud,n, for 1 ≤ d ≤ n−3. These
can be viewed as a special case of the current quotients obtained by
setting the linearization on the Chow factor to be trivial. In fact, the
GIT quotients studied here appear to include as special cases all GIT
quotients of pointed rational curves that have previously been studied.

1.6. Outline.

§2: We explain the GIT setup and prove some preliminary results.
Among these is the fact that all GIT quotients Ud,n// SL(d+ 1)
with linearization in ∆◦ are compactifications of M0,n (Prop
2.10).

§3: We develop the main tool for studying semistability in these
quotients, a weight function that controls the degrees of com-
ponents of GIT-stable curves. Using this function we explicitly
determine the GIT walls and chambers (Prop 3.11).

§4: We show that the GIT quotients Ud,n// SL(d+ 1) always receive
a birational morphism from M0,n. This map factors through a
Hassett space M0,~c for a fixed weight datum ~c determined by
the linearization (Prop 4.8).

§5: We provide a modular description of all the GIT quotients
Ud,n// SL(d+ 1) (Thm 5.8).

§6: We describe the rational maps between these spaces arising from
variation of GIT. We provide conditions for such a map to be a
divisorial contraction (Cor 6.10), a flip (Cor 6.11), or to contract
a curve (Prop 6.12).

§7: We construct several explicit examples of moduli spaces that
arise from our GIT construction. We show that every Has-
sett space M0,~c, including M0,n, can be constructed in this way
(Thm 7.1) and demonstrate an example of variation of GIT
for M0,9 (§7.3). We further demonstrate an example of a flip
between two compactifications of M0,n.

Acknowledgements. We thank K. Chung, A. Gibney, and J. Starr
for several helpful conversations regarding this work. We thank B.
Hassett for suggesting the investigation of this GIT construction as a
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continuation of M. Simpson’s thesis [Sim08], and we thank the referee
for very thorough and helpful comments on the paper.

2. GIT Preliminaries

2.1. The cone of linearizations. We are interested in the natural
action of SL(d + 1) on Ud,n ⊆ Chow(1, d,Pd)× (Pd)n. Since SL(d + 1)
has no characters, the choice of a linearization is equivalent to the choice
of an ample line bundle. Each projective space Pd has the hyperplane
class OPd(1) as an ample generator of its Picard group. The Chow
variety has a distinguished ample line bundle OChow(1) coming from
the embedding in projective space given by Chow forms. Therefore,
by taking external tensor products we obtain an Nn+1 of ample line
bundles on Chow(1, d,Pd)× (Pd)n, which we then restrict to Ud,n.

It is convenient to use fractional linearizations by tensoring with Q.
Moreover, since stability is unaffected when a linearized line bundle is
replaced by a tensor power, we can work with a transverse cross-section
of the cone of linearizations:

∆ := {(γ, c1, c2, . . . , cn) ∈ Qn+1
≥0 | (d− 1)γ +

n∑
i=1

ci = d+ 1}

As we will see (Corollary 2.6), this ensures all ci ≤ 1 whenever the
semistable locus is nonempty. This allows us to relate our construction
to previous GIT constructions as well as Hassett’s spaces, where the
point weights are similarly bounded by 1. We will later restrict to the
case that γ < 1 and ci < 1 for all i. Note that this forces n ≥ 3.

2.2. The Hilbert-Mumford numerical criterion. Let λ : C∗ →
SL(d + 1) be a one-parameter subgroup. As in [Mum77, 2.8], ob-
serve that λ is conjugate to a subgroup of the form diag(tri−k), where

r0 ≥ r1 ≥ · · · ≥ rd = 0 and k =
∑
ri

d+1
. Choose new coordinates

xi on Pd for which λ takes this form. Given a variety X ⊆ Pd,
let R be its homogeneous coordinate ring and I ⊆ R[t] the ideal
generated by {trixi}0≤i≤d. Following [Sch91, Lemma 1.3], we denote
by eλ(X) the normalized leading coefficient of dim(R[t]/Im)m, where
R[t] = ⊕∞i=1Ri[t] is the grading on R[t] and the normalized leading

coefficient of a polynomial
∑N

i=0 aix
i is N !aN .

The following result is a crucial first step toward the GIT stability
analysis conducted subsequently:

Proposition 2.1. A pointed curve (X, p1, . . . , pn) ∈ Ud,n is semistable
with respect to the linearization (γ, c1, . . . , cn) ∈ ∆ if, and only if, for
every non-trivial 1-PS λ with weights ri as above,

γeλ(X) +
∑

cieλ(pi) ≤ (1 + γ)
∑

ri.
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It is stable if and only if these inequalities are strict.

Proof. A pointed curve (X, p1, . . . , pn) is stable (resp. semistable) if and
only if, for every 1-PS λ, the Hilbert-Mumford index µλ(X, p1, . . . , pn)
is negative (resp. nonpositive). By [Mum77, Theorem 2.9] and its

proof, we see that for the linearization (γ,~0) we have

µλ(X) = γ(eλ(X)− 2d

d+ 1

∑
ri).

Similarly, for the linearization (0,~c), we have

µλ(p1, . . . , pn) =
∑

cieλ(pi)−
∑
ci

d+ 1

∑
ri.

By the linearity of the Hilbert-Mumford index, we therefore have

µλ(X, p1, . . . , pn) = γeλ(X) +
∑

cieλ(pi)− (
2d

d+ 1
γ +

∑
ci

d+ 1
)
∑

ri

= γeλ(X) +
∑

cieλ(pi)− (1 + γ)
∑

ri,

where the last equality follows from the assumption that the lineariza-
tion vector lies in the cross-section ∆ (cf. §2.1). �

2.3. Destabilizing one-parameter subgroups. There is one par-
ticularly simple type of 1-PS that is sufficient for most of our results.

Proposition 2.2. Consider the k-dimensional linear subspace V :=
V (xk+1, xk+2, . . . , xd) ⊂ Pd, and let λV be the 1-PS with weight vector
(1, 1, . . . 1, 0, . . . , 0), where the first k + 1 weights are all one. For X ∈
Chow(1, d,Pd), write X = X(V ) ∪ Y , where X(V ) is the union of
irreducible components of X contained in V . Then X is semistable
with respect to λV if and only if

γ(2 degX(V ) + eλ(Y )) +
∑
pi∈V

ci ≤ (k + 1)(1 + γ).

Proof. This follows from Proposition 2.1 and [Sch91, Lemma 1.2]. �

In most cases we will take V to be a subspace containing some compo-
nent of X, with each of the other irreducible components of X meeting
this subspace transversally. In this case, eλ(Y ) =

∑
Z⊂Y |Z∩V |, where

the sum is over the irreducible components of Y .
We first consider the extreme cases k = d−1 and k = 0. The former

leads to instability of degenerate curves, whereas the latter leads to
upper bounds on the weight of marked points at smooth and singular
points of semistable curves.

Proposition 2.3. A pointed curve (X, p1, . . . , pn) ∈ Ud,n is unstable if
X is contained in a hyperplane Pd−1 ⊂ Pd.
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Proof. We may assume that Pd−1 = V (xd). Consider the 1-PS in
Proposition 2.2 with V := Pd−1. Clearly X(V ) = X, Y = ∅, and∑

pi∈V ci =
∑n

i=1 ci = d+ 1− (d− 1)γ, so

γ(2 degX(V ) + eλ(Y )) +
∑
pi∈V

ci = 2dγ + (d+ 1)− (d− 1)γ

= (d+ 1)(1 + γ) > d(1 + γ),

hence λV destabilizes (X, p1, . . . , pn). �

Consequently, GIT-semistable curves are geometrically quite nice:

Corollary 2.4. A semistable pointed curve (X, p1, · · · , pn) has the fol-
lowing properties:

(1) Each irreducible component is a rational normal curve in the
projective space that it spans.

(2) The singularities are at worst multinodal (analytically locally
the union of coordinate axes in Ck).

(3) Every connected subcurve of degree e spans a Pe.

Proof. It is proved in [Art76, Lemma 13.1] that these properties hold
for all non-degenerate curves of degree d in Pd. �

By setting k = 0 in Proposition 2.2, we obtain the following:

Proposition 2.5. The total weight of the marked points at a singularity
of multiplicity m on a GIT-stable curve cannot exceed 1− (m− 1)γ.

Proof. Suppose the singularity occurs at the point p = (1, 0, . . . , 0) and
set k = 0. Then X(p) = ∅ and eλ(Y ) = µpX = m. If X is stable, then
by Proposition 2.2 we have

γm+
∑
pi=p

ci < 1 + γ,

from which the result follows. �

Corollary 2.6. The total weight of the marked points at a smooth
point, or indeed at any point, of a GIT-stable curve cannot exceed 1.

Corollary 2.7. A GIT-stable curve cannot have a singularity of mul-
tiplicity m unless γ < 1

m−1
.

Proof. This follows from the fact that the minimum total weight at a
point is zero. �

Corollary 2.8. If γ ≥ 1, then every GIT-stable curve is smooth.

It would be nice at this point to have a result saying that a pointed
curve (X, p1, . . . , pn) ∈ Ud,n is semistable if and only if, for all subcurves
Y ⊂ X, the degree of Y satisfies some formula involving γ, the weights
of the marked points on Y , and the number of intersection points |Y ∩
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X r Y |. As we will see in Proposition 3.5, such a formula exists in the
case that Y is a tail of X – that is, when |Y ∩X r Y | = 1. When |Y ∩
X r Y | > 1, however, the degree of Y also depends on the distribution
of marked points amongst the connected components of X r Y , as will
be shown in Proposition 3.6. This is enough to describe a satisfactory
stability condition, as we do in Proposition 3.7.

2.4. Existence of a stable point. To ensure that GIT quotients of
Ud,n are compactifications of M0,n, it suffices to prove that rational
normal curves with configurations of distinct points are stable. We
prove this in several steps. By Corollary 2.8, the quotients with γ ≥ 1
are rather uninteresting, so we assume henceforth that γ < 1. We begin
with the simple case where all of the weights ci are relatively small.

Lemma 2.9. Let (γ,~c) ∈ ∆ satisfy γ < 1 and 0 < ci < 1− γ ∀i. Then
every non-degenerate smooth rational curve with distinct marked points
is stable.

Proof. Let X ⊂ Pd be a rational normal curve and p1, . . . , pn distinct
points of X. Since all rational normal curves in Pd are projectively
equivalent, it suffices to show that (X, p1, . . . , pn) ∈ Ud,n is stable for
the given linearization. We will show that (X, p1, . . . , pn) is stable with
respect to the linearization (0,~c) and semistable with respect to the lin-

earization (γ,~0). It then follows from the Hilbert-Mumford numerical
criterion that (X, p1, . . . , pn) is stable with respect to the linearization
(γ,~c).

A rational normal curve has reduced degree 1, which is the minimum
possible amongst all non-degenerate curves [Mum77, Theorem 2.15]. It
follows that X is linearly semistable, hence by [Mum77, Theorem 4.12]

it is semistable with respect to the linearization (γ,~0). Now, let V ⊂ Pd
be a k-dimensional linear space. Since any collection of n distinct points
on a rational normal curve are in general linear position, we see that∑

pi∈V

ci ≤
∑
pi∈V

(1− γ) ≤ (k + 1)(1− γ) < (k + 1)

∑n
i=1 ci
d+ 1

.

Hence (p1, . . . , pn) is stable for the linearization (0,~c), by [DH98, Ex-
ample 3.3.24]. �

We now tackle the more general case.

Proposition 2.10. Let (γ,~c) ∈ ∆ satisfy γ < 1 and 0 < ci < 1,
i = 1, . . . , n. Then every smooth rational curve with distinct marked
points is stable, hence Ud,n//γ,~c SL(d+ 1) compactifies M0,n.

Proof. If ci < 1−γ for all i, then the result holds by Lemma 2.9 above.
We prove the remaining cases by induction on d, the case d = 2 having
been done in [GS10]. Let (X, p1, . . . , pn) be smooth with distinct points,



10 NOAH GIANSIRACUSA, DAVID JENSEN, AND HAN-BOM MOON

and assume without loss of generality that c1 ≥ ci for all i and that
c1 > 1− γ. Let λ : C∗ → SL(d + 1) be a 1-PS acting with normalized
weights r0 ≥ r1 ≥ · · · ≥ rd = 0 in the sense of §2.2, and write xi
for homogeneous coordinates on Pd on which λ acts diagonally. We
show in Lemma 2.11 below that it is sufficient to consider the situation
p1 = (1, 0, 0, . . . , 0), so let us consider this case now.

Let fi be the restriction of xi to X, which is a homogeneous poly-
nomial of degree d on X ∼= P1. Write π(X) ⊂ Pd−1 for the image of
X under linear projection from p1 and λ(d) : C∗ → SL(d) for the 1-PS
with weights ri, i > 0, diagonalized with respect to the homogeneous
coordinates xi, i > 0. By changing homogeneous coordinates [x, y] on
P1, we assume that p1 is the image of the point [0 : 1] ∈ P1 under the
map P1 → Pd given by the fi’s. Notice that

eλ(d)(π(pi)) = min{rj|j > 0, fj(pi) 6= 0} ≥ min{rj|fj(pi) 6= 0} = eλ(pi)

eλ(d)(π(p1)) = ra := min{rj|j > 0,
fj
x

(p1) 6= 0} ≤ r0.

We now show that

eλ(X) ≤ eλ(d)(π(X)) + r0 + ra.

To see this, note that the polynomials gi := fi
x

for i > 0 form a basis
for homogeneous polynomials of degree d − 1. Let J denote the ideal
in C[x, y] generated by the fi’s for all i > 0 and J ′ the ideal in C[x, y, t]
generated by the trifi’s for all i > 0. Then Jm consists of all polynomi-
als that vanish at [0, 1] to order at least m, so dimC[x, y]md/J

m = m.
Since the polynomials fk0 f

m−k
a , 1 ≤ k ≤ m each have different order

of vanishing at [0, 1], they are linearly independent and hence form a
basis for this vector space. Thus, if I is the ideal generated by trifi,
we see that the vector space [C[x, y, t]/Im]md, modulo those polynomi-
als that vanish at [0, 1] to order at least m, is spanned by the linearly
independent polynomials tjfk0 f

m−k
a for j < kr0 + (m − k)ra. In other

words,

dim(C[x, y, t]/Im)md ≤ dim(C[x, y, t]/(tr0k+ra(m−k)fk0 f
m−k
a , J ′m))md

≤
m∑
k=1

r0k + ra(m− k) + dim(C[x, y, t]/(trigi)
m)m(d−1)

≤
(
m+ 1

2

)
r0 +

(
m

2

)
ra + dim(C[x, y, t]/(trigi)

m)m(d−1).

Taking normalized leading coefficients, we obtain the formula above.
It follows that

γeλ(X)+
n∑
i=1

cieλ(pi) ≤ γ(eλ(d)(π(X))+r0+ra)+c1r0+
n∑
i=2

cieλ(d)(π(pi)).
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By induction, however, we know that

γeλ(d)(π(X)) + (c1 − (1− γ))ra +
n∑
i=2

cieλ(d)(π(pi)) < (1 + γ)
d∑
j=1

rj.

It follows that the expression above is smaller than

(1 + γ)
d∑
j=1

rj − (c1 − (1− γ))ra + γr0 + c1r0 + γra ≤ (1 + γ)
d∑
j=0

rj

as desired. The result then follows from Lemma 2.11 below. �

Lemma 2.11. Let X be a smooth rational normal curve, p1, . . . , pn ∈
X distinct, λ : C∗ → SL(d+1) a 1-PS, and xi coordinates on Pd so that
λ is normalized as in §2.2. Furthermore, assume that c1 ≥ ci for all i
and c1 > 1−γ. Then there is a smooth rational normal curve X ′ with n
distinct points p′1, . . . , p

′
n on X ′ and 1-PS λ′ such that p′1 = (1, 0, . . . , 0)

and
γeλ(X) +

∑
cieλ(pi) ≤ γeλ′(X

′) +
∑

cieλ′(p
′
i).

Proof. Let Vk ⊂ Pd be the k-dimensional linear space cut out by xk+1 =
xk+2 = · · · = xd = 0. We let k be the smallest integer such that
X ∩ Vk is non-empty, and write λ′ for the 1-PS acting with weights
(rk, rk, . . . , rk, rk+1, . . . , rd). Note that

∑n
i=1 cieλ(pi) =

∑n
i=1 cieλ′(pi).

We claim that eλ(X) = eλ′(X) as well. Indeed, let W denote the lin-
ear series on X ∼= P1 generated by xk, . . . , xd. By assumption, W
is basepoint-free, so it contains a basepoint-free pencil. Using the
basepoint-free pencil trick, we see that the map

W ⊗H0(X,O((m− 1)d))→ H0(X,O(md))

is surjective for all m ≥ 2. By induction on m, the map

Symm−1W ⊗H0(X,O(d))→ H0(X,O(md))

is surjective as well. It follows that dim(R[t]/Im)m depends only lin-
early on ri for all i < k. In other words, these ri’s do not contribute to
the normalized leading coefficient, so eλ(X) = eλ′(X). Moreover, since
the first k + 1 weights are same, by using an element g of PGL(d+ 1)
which preserves xk+1, · · · , xd, we can take a smooth rational normal
curve X ′ := g ·X such that eλ′(X) = eλ′(X

′) and (1, 0, 0, . . . , 0) ∈ X ′.
Next, relabel the points as follows:

p′i =

 (1, 0, 0, . . . , 0) if i = 1
p1 if pi = (1, 0, 0, . . . , 0)
pi otherwise

Note that
∑n

i=1 cieλ(pi) ≤
∑n

i=1 cieλ(p
′
i). In particular, if pi = (1, 0, 0, . . . , 0)

for some i 6= 1, then since c1 ≥ ci and r0 ≥ rj for all j, we have

r0c1 + rkci = (r0 − rk)c1 + rkci + rkc1 ≥ r0ci + rkc1.
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This concludes the proof. �

Note that if ci > 1 for any i, then no element of Ud,n is semistable by
Corollary 2.6. The only remaining case, therefore, is when ci = 1 for
some i. In this case we will see that every semistable point is strictly
semistable, and the resulting quotient is a compactification of M0,n if
and only if d is larger than the number of i’s for which equality holds.
We delay the proof of this until §6.4.

2.5. The space of effective linearizations. Recall (cf. §2.1) that
we have been working with the cross-section ∆ of the cone of lineariza-
tions defined by (d−1)γ+

∑n
i=1 ci = d+1. As we remarked earlier, the

quotients we are interested in satisfy γ < 1, since otherwise all stable
curves are isomorphic to P1. Moreover, by Corollary 2.6 we can assume
that ci ≤ 1 for all i. In fact, by Proposition 2.10 we know that if ci < 1
for all i then the linearization (γ,~c) is effective, i.e., the semistable locus
is nonempty. To avoid boundary issues such as non-ample lineariza-
tions, it is convenient to assume also that ci > 0 for all i. Therefore,
we are led to the following space of effective linearizations:

∆◦ := {(γ, c1, . . . , cn) ∈ Qn+1 | 0 < γ < 1, 0 < ci < 1, (d−1)γ+
n∑
i=1

ci = d+1}.

This is the space of linearizations of most interest to us. By Proposition
2.10, Ud.n//L SL(d+ 1) is a compactification of M0,n for any L ∈ ∆◦.

3. Degrees of components in stable curves

In this section we apply the stability results of the previous section
to get a fairly explicit description of the pointed curves (X, p1, . . . , pn)
corresponding to stable points of Ud,n. Specifically, we show that for a
generic linearization, GIT stability completely determines the degrees
of subcurves of X. This is then used to describe the walls in the GIT
chamber decomposition of ∆◦.

We begin by defining a numerical function that will be useful for
describing the degrees of subcurves. First, some notation: given a
linearization (γ,~c) and a subset I ⊂ [n], we set

cI :=
∑
i∈I

ci and c :=
n∑
i=1

ci.

3.1. Weight functions. Consider the function

ϕ : 2[n] ×∆◦ → Q ϕ(I, γ,~c) =
cI − 1

1− γ
.
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For a fixed linearization (γ,~c) ∈ ∆◦, we define

σ(I) =

 dϕ(I, γ,~c)e if 1 ≤ cI ≤ c− 1
0 if cI < 1
d if cI > c− 1

Before relating this to the degrees of subcurves in GIT stable curves,
let us make a few elementary observations:

Lemma 3.1. For any I ⊂ [n], we have σ(I) ∈ {0, 1, . . . , d}. If σ(I) =
d, then cI > c− 1.

Proof. It is enough to show that ϕ(I, γ,~c) ≤ d− 1 whenever 1 ≤ cI ≤
c− 1. But in this case we have

ϕ(I, γ,~c) =
cI − 1

1− γ
≤ c− 2

1− γ
=

(d+ 1− (d− 1)γ)− 2

1− γ
= d− 1,

so this indeed holds. �

Lemma 3.2. For any collection of disjoint subsets I1, . . . , Im ⊂ [n],

σ(
m⋃
j=1

Ij) ≥
m∑
j=1

σ(Ij).

Proof. The statement is trivial for m = 1, so assume m ≥ 2. Note
that if σ(Ij) = 0 for any j, then it does not contribute to the sum,
so we may ignore it. If there is a j with cIj > c − 1, then by the
disjointness hypothesis we have cIk < 1, and hence σ(Ik) = 0, for all
k 6= j. Therefore, we are reduced to the case that σ(Ij) = dϕ(Ij, γ,~c)e
for every j. In this case, since 1

1−γ ≥ 1, we have

m∑
j=1

σ(Ij) =
m∑
j=1

d
cIj − 1

1− γ
e <

m∑
j=1

(
cIj − 1

1− γ
+ 1

)

=

∑m
j=1 cIj − 1

1− γ
− m− 1

1− γ
+ 1 ≤

∑m
j=1 cIj − 1

1− γ

≤ d
∑m

j=1 cIj − 1

1− γ
e = dcI1∪···∪Im − 1

1− γ
e,

which by definition is σ(
⋃m
j=1 Ij). �

Perhaps most significantly, σ satisfies a convenient additivity prop-
erty for most linearizations:

Lemma 3.3. If ϕ(I, γ,~c) /∈ Z for each nonempty I ⊂ [n], then

σ(I) + σ(Ic) = d

for each I.
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Proof. If cI < 1 then cIc = c− cI > c− 1, so σ(I) + σ(Ic) = 0 + d = d.
The case cI > c− 1 is analogous, so without loss of generality assume
that cI and cIc are between 1 and c− 1. Then

σ(Ic) = dcI
c − 1

1− γ
e = d(d+ 1)− (d− 1)γ − cI − 1

1− γ
e

= dd− 1− cI − 1

1− γ
e = d− σ(I),

where the last equality uses the non-integrality assumption. �

3.2. Degrees of tails. As we show below, the function σ computes
the degree of a certain type of subcurve. For notational convenience,
given a marked curve (X, p1, . . . , pn) and a subcurve Y ⊂ X, let us set

ϕ(Y, γ,~c) = ϕ({i | pi ∈ Y }, γ,~c)
and similarly for σ(Y ).

Definition 3.4. Let X ∈ Chow(1, d,Pd). A subcurve Y ⊂ X is called

a tail if it is connected and |Y ∩X\Y | = 1.

We do not require tails to be irreducible. Moreover, the “attaching
point” of a tail need not be a node.

Proposition 3.5. For a fixed (γ,~c) ∈ ∆◦, suppose that ϕ(I, γ,~c) /∈ Z
for any nonempty I ⊂ [n]. If X is a GIT-semistable curve and E ⊂ X
a tail, then deg(E) = σ(E).

Proof. Write r := deg(E). The dimension of the linear span of E is r by
Corollary 2.4, so we may assume that E ⊂ V := V (xr+1, . . . , xd) ⊂ Pd.
Now

γ(2 degX(V ) + eλ(Y )) +
∑
pi∈V

ci ≥ γ(2r + 1) +
∑
pi∈E

ci,

so by Proposition 2.2 we have∑
pi∈E

ci ≤ (r + 1)(1 + γ)− γ(2r + 1) = r + 1− γr,

or equivalently,

r ≥
(
∑

pi∈E ci)− 1

1− γ
.

Since r is a positive integer, it follows that r ≥ σ(E). Note that if
σ(E) = d, then r > c−2

1−γ = d− 1, so the result still holds in this case.

Now, if E is a tail then so is X\E, hence

deg(X\E) ≥ σ(X\E) ≥ σ({i|pi /∈ E}).
Thus, by Lemma 3.3, deg(X\E) ≥ d − σ(E). But we know that

r + deg(X\E) = d, so the inequality r ≤ σ(E) also holds. �
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3.3. Arbitrary subcurves. Removing an irreducible component from
a semistable curve in Chow(1, d,Pd) yields a finite collection of tails.
This holds more generally for any connected subcurve. We can combine
this fact with the above result on tails to deduce the following:

Corollary 3.6. Suppose that ϕ(I, γ,~c) /∈ Z for any ∅ 6= I ⊂ [n], and
let E ⊆ X be a connected subcurve of (X, p1, . . . , pn) ∈ U ss

d,n. Then

deg(E) = d−
∑

σ(Y )

where the sum is over all connected components Y of X\E.

Proof. If Y is a connected component of X\E, then it is a tail. It
follows from Proposition 3.5 that deg(Y ) = σ(Y ). Since the total
degree of X is d, we see that deg(E) = d−

∑
σ(Y ). �

We now have enough information to completely describe stability of
pointed curves in Ud,n, though we postpone the proof of the following
result until §4.

Proposition 3.7. Let L = (γ, c1, · · · , cn) ∈ ∆ be such that U ss
d,n(L) =

U s
d,n(L). A pointed curve (X, p1, · · · , pn) ∈ Ud,n is stable with respect

to L if and only if X ⊂ Pd is non-degenerate, for any point p ∈ X
with multiplicity m,

∑
pi=p

ci < 1− (m− 1)γ, and for any tail Y ⊂ X,

deg(Y ) = σ(Y ).

3.4. GIT Walls. These results are sufficient to determine the wall-
and-chamber decomposition of ∆◦. Specifically, for any integer k with
0 ≤ k ≤ d − 1, the set ϕ(I, ·)−1(k) defines a hyperplane in ∆◦. Note
that, by additivity,

ϕ(I, ·)−1(k) = ϕ(Ic, ·)−1(d− 1− k),

but otherwise these hyperplanes are distinct.

Lemma 3.8. If (γ,~c) is not contained in any hyperplane of the form
ϕ(I, ·)−1(k), then:

(1) An irreducible tail E has at least two distinct marked points on
its smooth locus Esm.

(2) An irreducible component E with |E ∩ X\E| = 2 has at least
one marked point on Esm.

Proof. Let E ⊂ X be an irreducible tail. Since E has positive degree,
by Proposition 3.5 we have σ(E) ≥ 1, so by additivity σ(X\E) ≤ d−1,
and hence by definition we see that

∑
pi∈X\E ci ≤ c − 1. By the non-

integrality assumption this inequality must be strict, and consequently∑
pi∈Esm ci > 1. On the other hand, by Corollary 2.6, the sum of the

weights at a smooth point of E cannot exceed 1. It follows that the
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marked points on E must be supported at 2 or more points of E other
than the singular point.

Similarly, let E ⊂ X be a bridge—a component such that |E ∩
X\E| = 2. Let Y1, Y2 denote the connected components of X\E. If
the smooth part of E contains no marked points, then by Lemma 3.3
we see that σ(Y1) + σ(Y2) = d. Again, since E has positive degree, by
Corollary 3.6 this is impossible. �

Proposition 3.9. If (γ,~c) is not contained in any hyperplane of the
form ϕ(I, ·)−1(k), then every semistable pointed curve has trivial auto-
morphism group.

Proof. By Corollary 2.4, every semistable curve is a union of rational
normal curves meeting in multinodal singularities. We claim that an
automorphism f of a semistable curve (X, p1, · · · , pn) does not permute
its irreducible components nontrivially. Indeed, it is straightforward to
see that if there is a nontrivial permutation of irreducible components
of X, then there are two distinct irreducible tails E1, E2 such that
f(E1) = E2. But by (1) of Lemma 3.8, they have marked points
(say p1 and p2) on their smooth parts. This is impossible because
f(p1) = p1 ∈ E1. Thus the automorphism f induces automorphisms of
its irreducible components, which are isomorphic to P1.

It follows that such a curve (X, p1, . . . , pn) has a non-trivial auto-
morphism if and only if it contains either:

(1) an irreducible tail E with all marked points of its smooth locus
Esm supported on at most one point, or

(2) an irreducible component E with |E∩X\E| = 2 such that Esm

contains no marked points.

Both cases are impossible due to Lemma 3.8. �

Corollary 3.10. If (γ,~c) is not contained in any hyperplane of the form
ϕ(I, ·)−1(k), then the corresponding GIT quotient admits no strictly
semistable points.

Proof. If U ss
d,n contains strictly semistable points, then some of these

points must have positive-dimensional stabilizer. If (X, p1, . . . , pn) is
such a curve, then since X spans Pd by Proposition 2.3, such a stabilizer
cannot fixX pointwise. It follows that (X, p1, . . . , pn) admits a positive-
dimensional family of automorphisms, contradicting Proposition 3.9.

�

Proposition 3.11. The hyperplanes ϕ(I, ·)−1(k) are the walls in the
GIT chamber decomposition of ∆◦.

Proof. By Corollary 3.10, if a linearization does not lie on any of these
hyperplanes, then it admits no strictly semistable points. Hence the
GIT walls must be contained in these hyperplanes. To see that each
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hyperplane ϕ(I, ·)−1(k) yields a wall in ∆◦, we must show that the
stable locus changes when each such hyperplane is crossed. But it is
clear from the definition that the function σ in §3.1 changes along these
hyperplanes, so by Proposition 3.5, GIT stability changes as well. �

4. From Deligne-Mumford to GIT

In this section we prove item (2) of Theorem 1.1, i.e., that the
GIT quotients Ud,n// SL(d + 1) receive a birational morphism from
the moduli space of stable curves M0,n. The main tool we use is
the Kontsevich space of stable maps M0,n(Pd, d) [FP95]. The basic
idea is as follows. The product of evaluation maps yields a mor-
phism M0,n(Pd, d) → (Pd)n. By pushing forward the fundamental
cycle of each curve under each stable map, there is also a morphism
M0,n(Pd, d)→ Chow(1, d,Pd). By functoriality, one sees that together
these yield a morphism

φ : M0,n(Pd, d)→ Ud,n ⊂ Chow(1, d,Pd)× (Pd)n.

This map is clearly SL(d + 1)-equivariant. We prove below that for a
general linearization L on Ud,n, there is a corresponding linearization
L′ on M0,n(Pd, d) such that there is an induced

(1) morphism M0,n(Pd, d)//L′ SL(d+ 1)→ Ud,n//L SL(d+ 1), and
(2) isomorphism M0,n(Pd, d)//L′ SL(d+ 1) ∼= M0,n.

This is enough to draw the desired conclusion:

Lemma 4.1. If (1) and (2) above hold for all L ∈ ∆◦ that do not lie on
a GIT wall, then for any L ∈ ∆◦ there is a regular birational morphism
M0,n → Ud,n//L SL(d+ 1).

Proof. Given L ∈ ∆◦, we can perturb it slightly to obtain a lineariza-
tion Lε such that stability and semistability coincide. By general vari-
ation of GIT, there is a birational morphism from the Lε-quotient to
the L-quotient. Using (1) and (2) we then have

M0,n
∼= M0,n(Pd, d)//L′εSL(d+1)→ Ud,n//LεSL(d+1)→ Ud,n//LSL(d+1).

Birationality of this morphism follows from Proposition 2.10. �

4.1. Equivariant maps and GIT. Here we prove a generalized form
of the result needed for item (1) above.

Lemma 4.2. Let f : X → Y be a G-equivariant birational morphism
between two projective varieties. Suppose X is normal, and let L be a
linearization on Y . Then there exists a linearization L′ on X such that

f−1(Y s(L)) ⊂ Xs(L′) ⊂ Xss(L′) ⊂ f−1(Y ss(L)).
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Proof. Take an f -ample divisor M , the existence of which is guaranteed
by [Gro61, 5.3, 5.5]. Since X is normal, some integral multiple of M
is G-linearized [MFK94, Corollary 1.6], so we may assume that M is
G-linearized. Let L′ = f ∗(Lm) ⊗M for sufficiently large m. Then L′

is ample and the above inclusions hold by [Hu96, Theorem 3.11]. �

In particular, if Y s(L) = Y ss(L), thenXs(L′) = Xss(L′) = f−1(Y s(L)).

Corollary 4.3. With the same assumptions as the previous lemma,
there is an induced morphism of quotients

f : X//L′G→ Y//LG.

Proof. By Lemma 4.2, we have f(Xss(L′)) ⊂ Y ss(L), so there is a
morphism Xss(L′) → Y//LG. This is G-invariant, so it must factor
through the categorical quotient of Xss(L′) by G, which is precisely
the GIT quotient X//L′G. �

4.2. Invariant maps and unstable divisors. In this subsection we
address item (2) above. To begin, recall that there is a forgetting-
stabilizing map π : M0,n(Pd, d) → M0,n. Since this is SL(d + 1)-
invariant, the universal property of categorical quotients implies that
there is an induced map

π : M0,n(Pd, d)//L′ SL(d+ 1)→M0,n.

for any linearization L′. The main result here is that if L ∈ ∆◦ does
not lie on a GIT wall and L′ is as in Lemma 4.2, then this induced
quotient morphism is in fact an isomorphism. In what follows, we
always consider a linearization L′ on M0,n(Pd, d)//L′ SL(d + 1) that is
of this form, so that stability and semistability coincide. To show that
π is an isomorphism, we show that it has relative Picard number zero.

We first recall some divisor classes on M0,n(Pd, d). For 0 ≤ i ≤ d
and I ⊂ [n], let Di,I be the closure of the locus of stable maps (f :
(C1 ∪ C2, p1, · · · , pn)→ Pd) such that

• the domain of f has two irreducible components C1, C2;
• pj ∈ C1 if and only if j ∈ I;
• deg f∗C1 = i (equivalently, deg f∗C2 = d− i).

It is well known that Di,I is codimension one if it is nonempty. By
definition, Di,I = Dd−i,Ic so whenever we write down Di,I , we may
assume that |I| ≤ n

2
. Note that Di,I = ∅ if and only if i = 0 and

|I| ≤ 1. Also, let

Ddeg = {f : (C, p1, · · · , pn)→ Pd | span of f(C) is not Pd},

which is a divisor as well.
First, a couple preliminary results:
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Lemma 4.4. For 0 ≤ i ≤ d and I ⊂ [n], if 1 < |I| ≤ n
2
, at most one

of Di,I for i = 0, 1, . . . , d can be stable. If |I| ≤ 1, then none of the Di,I

are stable.

Proof. By Lemma 4.2 and the stability assumption, to compute stabil-
ity of x ∈M0,n(Pd, d), it suffices to consider the stability of φ(x) ∈ Ud,n.

Choose a general point (f : (C1∪C2, p1, · · · , pn)→ Pd) in Di,I . Then
f(C1) ⊂ Pd is a degree i rational normal curve and f(C2) ⊂ Pd is a
degree d− i rational normal curve. (If i = 0, then f(C1) is a point.) By
dimension considerations, the linear spans of f(C1) and f(C2) meet at
a unique point, namely f(C1 ∩ C2). By Proposition 3.5, f(C1 ∪ C2) is
stable only if deg(f |C1) = σ(I) and deg(f |C2) = σ(Ic), so at most one
Di,I , i ∈ {0, . . . , d}, is stable. On the other hand, if I contains at most
1 marked point, then σ(I) = 0, so Di,I is not stable. �

Lemma 4.5. Let X be a normal projective variety with a linearized
SL(n)-action, and suppose that Xss = Xs. Then

Pic(X// SL(n))Q ∼= Pic(Xss)Q.

Proof. Since X is normal, by [Dol03, Theorem 7.2] we have a canonical
exact sequence

PicSL(n)(Xss)
α→ Pic(Xss)→ Pic(SL(n))

where PicSL(n)(Xss) is the group of SL(n)-linearized line bundles. Thus
α is surjective, since Pic(SL(n)) = 0. Moreover, since Hom(SL(n),C∗)
is trivial, by [MFK94, Proposition 1.4] we see that α is injective. Thus

PicSL(n)(Xss) ∼= Pic(Xss).

On the other hand, let PicSL(n)(Xss)0 be the subgroup of SL(n)-
linearized line bundles L such that the stabilizer of a point in a closed
orbit acts on L trivially. Since any point over Xss = Xs has finite stabi-
lizer, PicSL(n)(Xss)0 has finite index in PicSL(n)(Xss) and PicSL(n)(Xss)0

Q
∼=

PicSL(n)(Xss)Q. Finally, by Kempf’s descent lemma [DN89, Theorem

2.3], Pic(X// SL(n)) ∼= PicSL(n)(Xss)0. In summary, we have a sequence
of isomorphisms

Pic(Xss)Q ∼= PicSL(n)(Xss)Q ∼= PicSL(n)(Xss)0
Q
∼= Pic(X// SL(n))Q.

�

We now prove the main result.

Proposition 4.6. The map π : M0,n(Pd, d)//L′ SL(d+ 1)→M0,n is an
isomorphism.

Proof. For d = 1, this is exactly [HK00, Theorem 3.4], sinceM0,n(P1, 1) ∼=
P1[n], the Fulton-MacPherson space of P1. We prove for d ≥ 2 cases.

The space M0,n(Pd, d) is a normal variety with finite quotient sin-
gularities only [FP95, Theorem 2]. Since π is a birational morphism



20 NOAH GIANSIRACUSA, DAVID JENSEN, AND HAN-BOM MOON

between two projective varieties, it is projective. Thus there is a π-
ample line bundle A. Since π is a birational morphism between two
normal varieties,

π∗ : N1(M0,n)Q → N1(M0,n(Pd, d)//L′ SL(d+ 1))Q

is injective. If π is not an isomorphism, then there is a curve C that
is contracted by π. Note that C · A > 0. This implies that π∗ is not
surjective, so to show that π is an isomorphism it suffices to show that
the Picard numbers of both varieties are the same.

By [Kee92], the Picard number of M0,n is 2n−1−
(
n
2

)
−1. By [Pan99,

Theorem 2]), the Picard number of M0,n(Pd, d), for d ≥ 2, is (d +
1)2n−1 −

(
n
2

)
. Therefore, it suffices to show that there are d · 2n−1 + 1

numerically independent unstable divisors.
Take a partition I t Ic of [n]. Among D0,I , D1,I , . . . , Dd,I , there are

at least d unstable divisors by Lemma 4.4. It follows from [Pan99,
Lemma 1.2.3] that these are all numerically independent. Since de-
generate curves in Ud,n are unstable by Proposition 2.3, their inverse
image Ddeg is unstable, too. One checks that this divisor is indepen-
dent of the preceding divisors either by explicitly constructing a curve
in M0,n(Pd, d) or by using the formula for Ddeg in the n = 0 case in
[CHS08, Lemma 2.1] and pulling back to M0,n(Pd, d).

Combining this with Lemma 4.5, and writing ρ for the Picard num-
ber, we obtain

ρ(M0,n(Pd, d)//L′ SL(d+ 1)) = ρ(M0,n(Pd, d)s)

≤ (d+ 1)2n−1 −
(
n

2

)
− d2n−1 − 1

= 2n−1 −
(
n

2

)
− 1 = ρ(M0,n)

The opposite inequality holds due to the existence of the birational
morphism π. This completes the proof. �

From the idea of the proof of Proposition 4.6, we can obtain a proof
of the stability result in Proposition 3.7.

Proof of Proposition 3.7. Suppose that (X, p1, · · · , pn) ∈ U ss
d,n(L). Then

X ⊂ Pd is non-degenerate by Proposition 2.3. For any point p ∈ X of
multiplicity m,

∑
pi=p

ci < 1 − (m − 1)γ by Proposition 2.5. Also, for

any tail Y ⊂ X, deg(Y ) = σ(Y ) by Proposition 3.5.
Conversely, let (X, p1, · · · , pn) ∈ Ud,n be a pointed curve satisfying

the assumptions above. Let (f : (C, x1, · · · , xn) → Pd) ∈ M0,n(Pd, d)
be a stable map such that φ(f) = (X, p1, · · · , pn) where φ : M0,n(Pd, d)→
Ud,n be the cycle map. For an irreducible component D ⊂ C, if



GIT COMPACTIFICATIONS OF M0,n AND FLIPS 21

f(D) ⊂ X is not a point, we claim that D has at least three spe-
cial points (singular points and marked points). Indeed, if Y = f(D)
is a tail, then σ(f(D)) ≥ 1 or equivalently,

∑
pi∈f(D)sm ci > 1 be-

cause
∑

pi∈f(D) ci > 2− γ and on the unique singular point p of f(D),∑
pi=p

ci < 1− γ by Proposition 2.5. Since the sum of the weights at a
smooth point is at most one, there must be at least two marked points
on f(D)sm. Similarly, if f(D) is a bridge, f(D) can be regarded as a
complement of two (possibly reducible) tails E1 and E2. If there is no
marked points on f(D)sm, then

σ(E1) + σ(E2) = σ({pi ∈ E1}) + σ({pi ∈ E2}) = d

by Lemma 3.3, thus f(D) must be a point. It follows that a bridge
f(D) must have a marked point on f(D)sm. In the remaining cases,
f(D) has at least three singular points.

If f(D) is a point, there exist at least three special points since f is
a stable map. Thus the domain (C, x1, · · · , xn) is already an n-pointed
stable rational curve. So π(f) = (C, x1, · · · , xn) for π : M0,n(Pd, d) →
M0,n.

Since π : M0,n(Pd, d)ss(L′)→M0,n is surjective, there exists

(f̃ : (C ′, x′1, · · · , x′n)→ Pd) ∈ π−1(C, x1, · · · , xn) ∩M0,n(Pd, d)ss(L′).

We claim that C ′ ∼= C and f̃ ∼= f up to projective equivalence. If
C ′ 6∼= C, then there exists a nontrivial contraction c : C ′ → C and
a contracted irreducible component D′ ⊂ C ′ which has at most two
special points. Note that for every (possibly reducible) tail D ⊂ C ′

we can determine deg f̃(D) by Lemma 4.4 and it must be equal to
σ(D) = σ(c(D)) = deg f(c(D)). In particular, the sum of degrees

of f̃ on the non-contracted irreducible components is already d and
deg f̃(D′) = 0. This is impossible since f̃ is a stable map so a degree
zero component must have at least three special points. The projective
equivalence of f̃ and f can be shown by induction on the number of
irreducible components, since for each irreducible component D ⊂ C,
f(D) is a rational normal curve in its span and there is a unique rational
normal curve up to projective equivalence.

Therefore, f is in the SL(d+1)-orbit of f̃ . Hence f ∈M0,n(Pd, d)ss(L′).
From φ−1(U ss

d,n(L)) = M0,n(Pd, d)ss(L′) (Lemma 4.2), we have φ(f) =
(X, p1, · · · , pn) ∈ U ss

d,n(L). �

Remark 4.7. This proof tells us that if L ∈ ∆0 is a linearization
admitting no strictly semistable points, then for the forgetting map

π : M0,n(Pd, d)ss(L′)→M0,n

restricted to the semistable locus, there is no contraction on the domain
curve.
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4.3. Relation to Hassett’s spaces. We prove here that the mor-
phism constructed above factors through a Hassett moduli space of
weighted pointed curves. First observe that for any linearization (γ,~c) ∈
∆◦, the vector ~c defines a Hassett space M0,~c.

Proposition 4.8. For any (γ,~c) ∈ ∆◦, there is a commutative triangle:

M0,n

φ
//

""EE
EE

EE
EE

Ud,n//(γ,~c) SL(d+ 1)

M0,~c

77ooooooooooooo

Proof. Recall that an F-curve is an irreducible component M0,4 ↪→
M0,n of a boundary 1-stratum, and it parameterizes a P1 with four
“legs” attached; the curve is traced out by varying the cross-ratio of
these attaching points. By a result of Alexeev (cf. [Fak09, Lemma
4.6]), it is enough to show that every F-curve contracted by the map
M0,n →M0,~c is also contracted by φ. The F-curves contracted by this
Hassett morphism are precisely those for which one of the tails carries
≥ c − 1 weight of marked points. By Proposition 3.5, for a generic
linearization these F-curves are also contracted by φ because their leg
carrying the most weight must have degree d, leaving degree zero for
the component with the four attaching points. If the linearization is not
generic, then we can obtain the result by perturbing the linearization
slightly:

M0,n →M0,~c →M0,~c−ε → Ud,n//γ′,~c−ε SL(d+ 1)→ Ud,n//γ,~c SL(d+ 1).

Everything is separated and the interior M0,n is preserved, so this com-
position coincides with φ. �

5. Modular interpretation of chambers

In the absence of strictly semistable points, i.e., for linearizations
in open GIT chambers, the GIT quotients Ud,n// SL(d + 1) are fine
moduli spaces of pointed rational curves. In this section we describe
explicitly the functors they represent. One approach is to describe each
quotient as a moduli space of polarized pointed rational curves, as in
§5.1. Another useful framework for accomplishing this is provided by
Smyth’s notion of a modular compactification [Smy09], cf. §5.2.

5.1. GIT quotient as a moduli space of polarized curves. In
this section, we provide a description of the GIT quotient as a moduli
space of abstract genus 0 polarized curves with marked points. This is
accomplished in Theorem 5.2 below. Fix d > 0, and let L = (γ,~c) ∈ ∆0

be a general linearization.
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Definition 5.1. Let B be a noetherian scheme. A family of (γ,~c)-
stable d-polarized curves over B consists of

• a flat proper morphism π : X → B whose geometric fibers are
reduced projective arithmetic genus zero curves;
• n sections s1, · · · , sn : B → X;
• a π-ample line bundle L on X of degree d

satisfying the following numerical properties:

• for b ∈ B and a point p ∈ Xb of multiplicity m,∑
si(b)=p

ci < 1− (m− 1)γ;

• for each (possibly reducible) tail C ⊂ Xb, degL|C = σ(C).

Here σ is the weight function from §3.1. Note that the last nu-
merical condition is sufficient to decide the degrees of all irreducible
components.

Two families (π1 : X1 → B, {si}, L1), (π2 : X2 → B, {ti}, L2) are
isomorphic if there exists a B-isomorphism φ : X1 → X2 such that
si ◦φ = ti and φ∗L2

∼= L1⊗π∗1M for some line bundle M over B. Note
that if L is π-ample, then L is very ample over any geometric fiber
because of the genus condition. Also it is straightforward to check that
h0(Xb, Lb) = d+ 1.

With a natural pull-back over base schemes, the category of families
of (γ,~c)-stable d-polarized curves forms a fibered category over the
category of locally noetherian schemes.

Theorem 5.2. Let Mγ,~c be the fibered category of families of (γ,~c)-
stable d-polarized rational curves. Then Mγ,~c is a Deligne-Mumford
stack. Moreover, it is represented by Ud,n//γ,~c SL(d+ 1).

Proof. The proof relies on standard arguments in moduli theory, so we
only outline it here.

First of all, for a family of (γ,~c)-stable d-polarized curves π : X →
B, one can show that H1(Xb, LXb) = 0 for all geometric fibers by a
straightforward induction on the number of irreducible components.
Thus by [Har77, Theorem III.12.11], π∗L is locally free of rank d + 1.
By Grothendieck’s descent theory, families of (γ,~c)-stable d-polarized
curves descend effectively and Isom is a sheaf. Therefore Mγ,~c is a
stack [LMB00, Definition 3.1].

Let Hilb(1, d,Pd) be the irreducible component of the Hilbert scheme
containing rational normal curves. Let

HC : Hilb(1, d,Pd)→ Chow(1, d,Pd)
be the restricted Hilbert-Chow morphism, and let H0 ⊂ Hilb(1, d,Pd)
be the open subset parameterizing reduced non-degenerate curves. Then
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the restriction HC : H0 → C0 := HC(H0) is injective. Moreover, there
is an inverse C0 → H0, because the Hilbert polynomial of fibers of the
family over C0 is constant, so the family of algebraic cycles over C0 is
flat over C0. Therefore H0

∼= C0.
Let U ⊂ Hilb(1, d,Pd)×(Pd)n be the locally closed subscheme parametriz-

ing tuples (X, p1, · · · , pn) satisfying

• X ⊂ Pd is reduced, nodal and arithmetic genus zero;
• pi ∈ X;
• (X, {pi},OX(1)) is a (γ,~c)- stable d-polarized curve.

Note that for any linearization L ∈ ∆0, U ss
d,n(L) ⊂ C0 × (Pd)n. Also by

Proposition 3.7, U ∼= U ss
d,n(L) within the identification H0

∼= C0.
Any (γ,~c)-stable d-polarized curve (X, {pi}, L) is represented by a

point in U , because L is very ample. Also by Proposition 3.9, an
isomorphism between polarized curves is induced only by Aut(Pd) ∼=
PGL(d+ 1). Therefore the map U →Mγ,~c is a principal PGL(d+ 1)-
bundle. In particular, it is representable and faithfully flat. Moreover,
the diagonal Mγ,~c → Mγ,~c × Mγ,~c is representable, separated and
quasi-compact. By Artin’s criterion ([LMB00, Theorem 10.1]), Mγ,~c

is an algebraic stack. Moreover, since the objects have no non-trivial
automorphisms, it is an algebraic space and isomorphic to its coarse
moduli space.

Finally, from the above construction and the non-existence of non-
trivial automorphisms,

Mγ,~c
∼= [U/PGL(d+ 1)] ∼= U/PGL(d+ 1) ∼= Ud,n//L SL(d+ 1),

as claimed. �

5.2. Modular Compactifications. We briefly recall here the rele-
vant results from [Smy09]. A modular compactification is defined to
be an open substack of the stack of all curves that is proper over SpecZ
[Smy09, Definition 1.1]. A main result of Smyth is that in genus zero
these are classified by certain combinatorial gadgets.

Definition 5.3. [Smy09, Definition 1.5] Let G be the set of isomor-
phism classes of dual graphs of strata in M0,n. An extremal as-
signment Z is a proper (though possibly empty) subset of vertices
Z(G) ( G for each G ∈ G such that if G ; G′ is a specialization
inducing v ; v′1 ∪ · · · ∪ v′k, then v ∈ Z(G)⇔ v′1, . . . , v

′
k ∈ Z(G′).

Smyth states an additional axiom that for any G ∈ G, the set Z(G)
is invariant under Aut(G), but in genus zero there are no nontrivial
automorphisms since G is a tree with marked points on all the leaves.

Definition 5.4. [Smy09, Definition 1.8] Let Z be an extremal assign-
ment. A reduced marked curve (X, p1, . . . , pn) is Z-stable if there
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exists (Xs, ps1, . . . , p
s
n) ∈ M0,n and a surjective morphism π : Xs � X,

π(psi ) = pi, with connected fibers such that:

(1) π maps Xs\Z(Xs) isomorphically onto its image, and
(2) if X1, . . . Xk are the irreducible components of Z(Xs), then π(Xi)

is a multinodal singularity of multiplicity |Xi ∩Xc
i |.

The beautiful culmination of Smyth’s story, in genus zero, is the
following result:

Theorem 5.5 ([Smy09]). For any extremal assignment Z, the stack
M0,n(Z) of Z-stable curves is an algebraic space and a modular com-
pactification of M0,n. There is a morphism M0,n →M0,n(Z) contract-
ing the assigned components of each DM-stable curve. Every modular
compactification is of the form M0,n(Z) for an extremal assignment Z.

5.3. Extremal assignments from GIT. For GIT situations such
that there are no strictly semistable points, the corresponding quotient
is not only a categorical quotient of the semistable locus but in fact a
geometric quotient [MFK94]. In the present situation, it is not hard
to see that in such cases the quotient Ud,n// SL(d + 1) is a modular
compactification of M0,n in the sense of [Smy09]. In particular, for each
linearization (γ,~c) in an open GIT chamber, there is a corresponding
extremal assignment. We define here an extremal assignment Zγ,~c and
then show below that it is in fact the extremal assignment associated
to the corresponding GIT quotient.

Definition 5.6. Let E ⊂ X be an irreducible component of a DM-
stable curve. Set E ∈ Zγ,~c(X) if and only if

∑
σ(Y ) = d, where the

sum is over all connected components Y of X\E.

Proposition 5.7. Let (γ,~c) ∈ ∆◦ be a linearization admitting no
strictly semistable points. Then Zγ,~c is an extremal assignment.

Proof. It suffices to show that Z := Zγ,~c satisfies the axioms of Def-
inition 5.3. We first show that Z is invariant under specialization.
Let v ∈ Z(G), and suppose that G ; G′ is a specialization with
v ; v′1 ∪ v′2 ∪ · · · ∪ v′k. To see that v′i ∈ Z for all i as well, notice that
the marked points on the connected components of G\{v′i} contain
unions of the marked points of the connected components of G\{v}.
Thus, the result follows from Lemma 3.2.

Next, suppose that v′i ∈ Z(G) for i = 1, . . . , k. We must show
that v ∈ Z(G) as well. We prove this by induction on k, the case
k = 1 being trivial. To prove the inductive step, let T be the subtree
spanned by all of the v′i and let v′ be a leaf of T . Let A1, . . . , As denote
the connected components of G′\{v′}, and let B1, . . . , Bt denote the
connected components of (G′\T )∪{v′}. By assumption,

∑s
i=1 σ(Ai) =

d, and by induction we may assume that
∑t

i=1 σ(Bi) = d. Note that
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exactly one of the Bi’s contains v′. Without loss of generality, we
assume that this is Bt. Similarly, since v′ is a leaf of T , exactly one of
the Ai’s contains T\{v′}, and we will assume that this is As. Note that
As ∪ Bt = G′, hence by additivity σ(As) + σ(Bt) = d. It follows that∑s−1

i=1 σ(Ai) +
∑t−1

i=1 σ(Bi) = d. But the components appearing in this
sum are precisely the connected components of G′\T , and the marked
points on these connected components are the same as those on the
components of G\{v}. Thus v ∈ Z.

Finally, we note that Z(G) 6= G for each G, since otherwise the
specialization property proved above would imply that the graph with
one vertex corresponding to a smooth curve is in Z, which is clearly
not the case. �

Consequently, by Theorem 5.5, there is a moduli space M0,n(Zγ,~c) of
Zγ,~c-stable curves and a morphism M0,n → M0,n(Zγ,~c) contracting all
the assigned components.

Theorem 5.8. Let (γ,~c) ∈ ∆◦ be a linearization admitting no strictly
semistable points. Then

Ud,n//γ,~c SL(d+ 1) ∼=Mγ,~c
∼= M0,n(Zγ,~c).

Moreover, a curve is GIT-stable if and only if it is Zγ,~c-stable.

Proof. By Theorem 5.2, it suffices to prove an equivalence of the two
stacks Ud,n//γ,~c SL(d+ 1) and M0,n(Zγ,~c).

Consider the universal family (π : X ↪→ U ss
d,n × Pd → U ss

d,n, {si})
of pointed algebraic cycles. By forgetting the embedding structure, we
have a family of reduced curves. We show that each fiber is a Zγ,~c-stable
curve, thus there is a morphism U ss

d,n →M0,n(Zγ,~c). Indeed, for a cycle

(X, p1, · · · , pn) ⊂ Pd in U ss
d,n, take a stable map (f : (X̃, p1, · · · , pn) →

Pd) ∈ M0,n(Pd, d)ss whose image is (X, p1, · · · , pn). Then by Remark

4.7, the domain of f is a stable curve. Let ρ : X̃ → X̄ be the Zγ,~c-stable

contraction. For any component E ⊂ X̃, if
∑

Y⊂X̃\E
σ(Y ) = d where

the sum is taken for all irreducible components of X̃\E, then ρ(E) is
a point by the definition of Zγ,~c. It follows from Corollary 3.6 that
f |E must have degree 0 and hence E is contracted by f . Conversely, if∑

Y⊂X̃\E
σ(Y ) 6= d (so ρ(E) is not a point), then since deg f(X̃) = d,

deg f |E 6= 0 and hence E is not contracted. Therefore X̄ ∼= X.
Obviously the map U ss

d,n → M0,n(Zγ,~c) is PGL(d + 1)-invariant. So

we have a map Ud,n//γ,~c SL(d+ 1) ∼= U ss
d,n/PGL(d+ 1)→M0,n(Zγ,~c).

Conversely, let (π : X → B, {si}) be a family of Zγ,~c-stable curves.
By definition of Zγ,~c-stability, there is a family (πs : Xs → B, {ssi})
of stable curves such that some of its irreducible components are con-
tracted by the extremal assignment Zγ,~c. Since M0,n(Pd, d)ss → M0,n
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is a principal PGL(d + 1)-bundle, after replacing B by an étale cov-
ering B′ → B, we obtain a family of stable maps (π : Xs ×B B′ →
B′, f : Xs ×B B′ → Pd, {si}). By taking the image cycle, we obtain a
family (π̄ : X ×B B′ → B′, f̄ : X ×B B′ ↪→ Pd × B′, {si}) of pointed
algebraic cycles. So we have a morphism B′ → U ss

d,n. From the con-
struction, it is easy to see that it descends to B → U ss

d,n/PGL(d+ 1) ∼=
Ud,n//γ,~c SL(d+ 1).

We claim that this construction is independent of the choice of family
(πs : Xs → B, {ssi}) of stable curves and hence defines a morphism
M0,n(Zγ,~c)→ Ud,n//γ,~c SL(d+1). To see this, we need to check that the
contracted component of Xs by Zγ,~c-stability is also contracted by the
cycle map. The computation is identical to the previous one.

It is straightforward to see that the two morphisms constructed above
give an equivalence of categories betweenM0,n(Zγ,~c) and Ud,n//γ,~cSL(d+
1) ∼=Mγ,~c. �

6. Maps Between Moduli Spaces

In this section we describe maps between the various different quo-
tients of Ud,n. The gluing maps are related to known maps defined on
M0,n. The projection and VGIT maps, on the other hand, form a large
set of explicit maps that do not appear previously in the literature.

6.1. Gluing Maps. The first maps we consider are helpful for un-
derstanding the boundary of these moduli spaces. Recall that each of
the boundary divisors in M0,n corresponds to a subset I ⊂ [n] with
|I| = i, 2 ≤ i ≤ n

2
. Each such divisor DI is the image of a gluing map:

M0,i+1 ×M0,n−i+1 →M0,n.

In this section we describe a natural analogue of these gluing maps for
the GIT quotients Ud,n//γ,~c SL(d+ 1) ∼= M0,n(Zγ,~c).

Proposition 6.1. Let (γ,~c) ∈ ∆◦ be such that there are no strictly
semistable points, and let I ⊂ [n] be a subset such that σ(I) 6= 0, d and
write i = |I|. We write ~cI for the vector consisting of the weights ci for
all i ∈ I. Then there is a “gluing” morphism Γi such that the following
diagram commutes:

M0,i+1 ×M0,n−i+1
//

��

M0,n

��

M0,i+1(Zγ,~cI ,bI )×M0,n−i+1(Zγ,~cIc ,bIc )
Γi

// M0,n(Zγ,~c)
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where bI = (1−γ)σ(I)− (cI−1) +γ. Similarly, if σ(I) = d, then there
is a commutative diagram:

M0,i+1 ×M0,n−i+1
//

��

M0,n

��

M0,i+1(Zγ,~cI ,bI )
Γ

// M0,n(Zγ,~c).

Moreover, the horizontal maps are all injective.

Proof. First of all, we prove the existence of Γi. By using Theorem 5.8,
letMγ,~cI ,bI := M0,i+1(Zγ,~cI ,bI ) and letMγ,~cIc ,bIc := M0,n−i+1(Zγ,~cIc ,bIc ).
For a base scheme B, let (π1 : X1 → B, {sj, p}, L1) (resp. (π2 : X2 →
B, {tk, q}, L2)) be a family of (γ,~cI , bI)-stable d1-polarized curves (resp.
(γ,~cIc , bIc)-stable d2-polarized curves). Note that the gluing of two
schemes along isomorphic closed subschemes always exists in the cat-
egory of schemes. So we can glue X1 and X2 along two isomorphic
sections p and q, and obtain X. Since we glued along sections, there
is a morphism π : X → B and sections {sj, tk : B → X}. Finally, two
line bundles L1 and L2 also can be glued if we consider them as A1-
fibrations over X1 and X2. So over X, there is a line bundle L which
is of degree d := d1 + d2 over each fiber of π. This is a flat family, since
the Hilbert polynomials of fibers are constant. This construction is
functorial, thus we have a morphism of stacks fromMγ,~cI ,bI ×Mγ,~cIc ,b

c
I

to the stack of n-pointed genus zero curves.
Now we need to show that the glued family (π : X = X1 ∪p=q X2 →

B, {pi} := {sj, tk}, L) is inMγ,~c
∼= M0,n(Zγ,~c). It suffices to check this

fiberwise. So we may assume that B is a closed point. For a point
x ∈ X, if it is not the gluing point, then∑

pi=x

ci < 1− (m− 1)γ

is immediate. If x is the gluing point of p and q of multiplicity m1 and
m2 respectively,∑
pi=x

ci =
∑
sj=p

ci +
∑
tk=q

ci < 1− (m1 − 1)γ − bI + 1− (m2 − 1)γ − bIc

= 1− (m1 +m2 − 1)γ.

Since the multiplicity of x in X is m1+m2, it satisfies the first numerical
condition in Definition 5.1.

Next, since X is a gluing of two curves at one point, for a tail Y ,
Y or its complement tail X\Y is contained in one of X1 or X2. If

Y = X1 (so X\Y = X2), then degL|X1 = degL1|X1 = d cI+bI−1
1−γ e ≥

d cI−1
1−γ e = σ(X1) = d1. By the same idea, degL|X2 ≥ σ(X2) = d2.
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Now since d1 + d2 = d = degL|X1 + degL|X2 , degL|X1 = σ(X1) and
degL|X2 = σ(X2).

If Y is a proper subset of X1, then degL|Y = degL1|Y = σ(Y )
because σ(Y ) depends only on {ci}pi∈Y and γ, not on d1 or d. Finally

if X\Y is a proper subset of X1, then

degL|Y = d− degL|X\Y = d− degL1|X\Y = d− σ(X\Y ) = σ(Y ).

Note that the last equality holds because the numerical data (γ,~c)
satisfies the normalization condition (d−1)γ+

∑
ci = d+ 1, hence the

additivity lemma (Lemma 3.3) holds. Therefore all tails have correct
degrees. So it is in Mγ,~c.

Having proven the existence of the gluing morphism, to check com-
mutativity of the diagram is straightforward. We leave the simpler case
σ(I) = d to the reader. �

Remark 6.2. We would like to conclude more strongly that the gluing
maps are all embeddings, which would follow if the varieties in question
were all normal. Several of the results below about maps between
these GIT quotients could be similarly strengthened using normality.
We note here that, since the map M0,n → M0,n(Zγ,~c) has connected
fibers, the normalization map M0,n(Zγ,~c)

ν → M0,n(Zγ,~c) (equivalently,
Ud,n//γ,~c SL(d + 1)ν → Ud,n//γ,~c SL(d + 1)) is bijective. Although we
strongly suspect that it is indeed an isomorphism, at present we have
no proof.

6.2. Projection Maps. Another natural set of maps between these
moduli spaces is given by projection from the marked points.

Proposition 6.3. Let (γ,~c) ∈ ∆◦ be such that there are no strictly
semistable points, and suppose that d ≥ 2 and c1 > 1 − γ. Then
projection from p1 defines a birational morphism

πi : Ud,n//(γ,~c) SL(d+ 1)→ Ud−1,n//(γ,c1−(1−γ),c2...,cn) SL(d).

Proof. First, note that since c1 > 1 − γ, every GIT-stable curve is
smooth at p1 by Corollary 2.6. It follows that, if (X, p1, . . . , pn) is a
GIT-stable curve, then its projection πp1(X, p1, . . . , pn) is a connected
rational curve of degree d − 1 in Pd−1. We show that this projected
curve is stable for the linearization (γ, c1−(1−γ), c2 . . . , cn) if and only
if the original curve is stable for the linearization (γ, c1, . . . , cn). Indeed,
every component of πp1(X) has the same degree as its preimage, unless
its preimage contains p1, in which case the degree drops by one. It
follows that, for any tail Y ⊂ πp1(X), we have

deg(Y ) =

{
d (

∑
pi∈Y

ci)−1

1−γ e if p1 /∈ Y
d (

∑
pi∈Y

ci)−(1−γ)−1

1−γ e if p1 ∈ Y
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But this is exactly the condition for stability of points in Ud−1,n for the
linearization (γ, c1 − (1− γ), c2 . . . , cn)). �

Proposition 6.4. The projection map π1 is a bijective morphism if
and only if, for every partition {2, . . . , n} = I1 t · · · t Ik into at least 3

disjoint sets, we have
∑k

i=1 σ(Ii) 6= d− 1.

Proof. Let E ⊂ X be a component of a GIT-stable curve with respect
to the linearization (γ,~c). E is contracted by the projection map if and
only if p1 ∈ E and deg E = 1. It follows that the map is bijective if
and only if every such component has no moduli, which is equivalent to
every such component having exactly three special points, where here
a “special point” is either a singular point (regardless of the singularity
type) or a marked point (regardless of how many of the pi’s collide at
that point). By Corollary 3.6, we therefore see that π1 is a bijective
morphism if and only if the hypothesis holds. �

6.3. Wall-Crossing Maps. One of the benefits of our GIT approach
is that, by varying the choice of linearization, we obtain explicit maps
between our moduli spaces. The nature of these maps can be under-
stood using the general theory of variation of GIT.

Recall that, by Proposition 3.11, the GIT walls in ∆◦ are of the form
ϕ(I, ·)−1(k) for any given subset I ⊂ [n] and integer k. For a fixed such
I and k, we let (γ,~c) ∈ ϕ(I, ·)−1(k) = ϕ(Ic, ·)−1(d−1−k) be such that
(γ,~c) does not lie on any other walls, and we write

Ud,n//γ,~c,0 SL(d+ 1) := Ud,n//γ,~c SL(d+ 1).

Similarly, we will write Ud,n//γ,~c,+ SL(d+ 1) and Ud,n//γ,~c,− SL(d+ 1) for
the GIT quotients corresponding to the neighboring chambers, which
are contained in ϕ(I, ·)−1({x > k}) and ϕ(I, ·)−1({x < k}), respec-
tively. We will write σ+, σ− for the σ functions on either side of the
wall. Note that, for any subset A ⊂ [n], σ+(A) = σ−(A) if and only if
A 6= I, Ic. By general VGIT, there is a commutative diagram:

Ud,n//γ,~c,+ SL(d+ 1) oo //

**TTTTTTTTTTTTTTTT
Ud,n//γ,~c,− SL(d+ 1)

ttjjjjjjjjjjjjjjjj

Ud,n//γ,~c,0 SL(d+ 1) .

We now consider stability conditions at a wall. For these lineariza-
tions, a new type of semistable curve appears:

Definition 6.5. A pointed curve (X, p1, . . . , pn) ∈ Ud,n is a (γ,~c)-
bridge if:

(1) X has a degree 1 component D such that |D ∩X\D| = 2;
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(2) If we write XI , XIc for the connected components of X\D, then
XI is marked by the points in I and XIc is marked by the points
in Ic;

(3) If E ⊂ XI (resp. XIc) is a connected subcurve, then the degree
of E is equal to d −

∑
Y σ−(Y ) (resp. d −

∑
Y σ+(Y )), where

the sum is over all connected components of X\E.

Note that, by definition, deg(XI) = k and deg(XIc) = d − (k + 1),
as in the following picture:

YI

deg k + 1

XIc

deg d− (k + 1)

XI

deg k

YIc

deg d− k

XI

deg k

deg 1

D

deg d− (k + 1)

XIc

Proposition 6.6. Every (γ,~c)-bridge is GIT-semistable at the wall
ϕ(I, ·)−1(k).

Proof. Let (X, p1, . . . , pn) be a (γ,~c)-bridge. It suffices to construct a
(γ,~c,+)-stable curve (Y, q1, . . . , qn) and a 1-PS λ such that

µλ(Y, q1, . . . , qn) = 0 and

lim
t→0

λ(t) · (Y, q1, . . . , qn) = (X, p1, . . . , pn).

Let (XI , p1, . . . pm, p) denote the tail of X labeled by points in I, where
p is the “attaching point”. Note that, by Proposition 6.1 and the fact
that (γ,~c) does not lie on any walls other than ϕ(I, ·)−1(k), XI is stable
for the linearization (γ, c1, . . . , cm, γ − ε). Because the projection map
is proper and birational, there is a curve (YI , q1, . . . , qm, q), stable for
the linearization (γ, c1, . . . , cm, 1− ε), such that πq(YI) = XI .

Choose coordinates so that the span of YI is V (xk+2, . . . , xd) and
q = V (x0, . . . xk, x̂k+1, xk+2, . . . , xd). Now, let λ be the 1-PS that acts
with weights (0, . . . , 0, 1, . . . , 1), where the first k + 1 weights are all
zero. Let i : YI ↪→ Pd be the inclusion and consider the rational map

U := C× YI 99K Pd
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given by (t, r) 7→ λ(t) · i(r). Note that this map is regular everywhere
except the point (0, q). If we blow up U at this point, we obtain a
regular map Ũ → Pd whose special fiber is the union of πq(YI) = XI

and a line. Since the image of the point q is constant in this family,
we may glue on XIc to obtain a family of connected degree d curves.
By Proposition 6.1, Y = YI ∪XIc is a (γ,~c,+)-stable curve. Note that,
since (Y, q1, . . . , qn) is (γ,~c)-semistable, but its limit under the 1-PS λ is
not isomorphic to itself, we must have µλ(Y, q1, . . . , qn) = 0. It follows
that (X, p1, . . . , pn) is semistable. �

We will see that the (γ,~c)-bridges are the only “new” curves that
appear at the wall.

Proposition 6.7. A pointed curve (X, p1, . . . , pn) ∈ Ud,n is stable for
the linearization (γ,~c, 0) if and only if it is stable for the linearization
(γ,~c,+) (equivalently, (γ,~c,−)) and does not contain a tail labeled by
the points in I or Ic. It is strictly semistable if and only if it contains
a tail labeled by the points in I or Ic, and is either (γ,~c,+)-stable,
(γ,~c,−)-stable, or a (γ,~c)-bridge. Moreover, the (γ,~c)-bridges are ex-
actly the strictly semistable curves with closed orbits.

Proof. We first show that each of the curves above is (semi)stable.
It is a standard fact from variation of GIT that, if a curve is stable
for both linearizations (γ,~c,+) and (γ,~c,−), then it is stable for the
linearization (γ,~c, 0) as well. By assumption, the only wall that (γ,~c)
lies on is ϕ(I, ·)−1(k) = ϕ(Ic, ·)−1(d − 1 − k), so any curve that does
not contain a tail labeled by the points in I will be stable for one of
these linearizations if and only if it is stable for the other. Similarly,
if a curve is stable for either linearization (γ,~c,+) or (γ,~c,−), then
it is semistable for the linearization (γ,~c, 0). It therefore suffices to
show that (γ,~c)-bridges are GIT-semistable, but this was shown in
Proposition 6.6.

To see the converse, let (X, p1, . . . , pn) ∈ Ud,n be semistable for the
linearization (γ,~c, 0). Notice that the degree of each tail Y ⊂ X is
completely determined by σ unless Y is labeled by points in I or Ic.
We therefore see that, if X contains no tails labeled by points in I or
Ic, then for any connected subcurve E ⊂ X we have

deg(E) = d−
∑

σ(Y )

and (X, p1, . . . , pn) is a (γ,~c,+)-stable curve.

Similarly, suppose that X contains a subcurve E such that X\E
contains a connected component XI labeled by I but no connected
component labeled by Ic. Then the degree of XI is either k or k + 1,
and thus either

deg(E) = d− k −
∑

σ(Y )
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or

deg(E) = d− (k + 1)−
∑

σ(Y )

where the sum is over all connected components Y ⊂ X\E other than
XI . It follows that (X, p1, . . . , pn) is either (γ,~c,+)-stable or (γ,~c,−)-
stable.

The remaining case is where X contains a component E such that
X\E contains a connected component XI labeled by the points in I
and a connected component XIc labeled by the points in Ic. Since
degXI ≥ k + 1, degXIc ≥ d − (k + 1), and degE ≥ 1, we see that
the only possibility is if all three inequalities hold. Thus, E is a degree
1 subcurve of X such that |E ∩ X\E| = 2, and (X, p1, . . . , pn) is a
(γ,~c)-bridge.

Finally, note that if a semistable curve does not have a closed orbit,
then it degenerates to a semistable curve with higher-dimensional stabi-
lizer. Furthermore, a strictly semistable curve with closed orbit cannot
have a 0-dimensional stabilizer. Since (γ,~c)-bridges have 1-dimensional
stabilizers and all other semistable curves have 0-dimensional stabi-
lizers, we see that the (γ,~c)-bridges must be precisely the strictly
semistable curves with closed orbits. �

We can restate the results of Proposition 6.7 in the following way.
Each of the maps in the diagram

Ud,n//γ,~c,+ SL(d+ 1) oo //

**TTTTTTTTTTTTTTTT
Ud,n//γ,~c,− SL(d+ 1)

ttjjjjjjjjjjjjjjjj

Ud,n//γ,~c,0 SL(d+ 1)

restricts to an isomorphism away from the image of DI ⊂ M0,n. If
k 6= 0, d− 1, then along the image of this divisor, the maps restrict to
the following:

M0,i+1(Zγ,~cI ,1−ε)×M0,n−i+1(Zγ,~cIc ,γ+ε)
Γi

//

(πi+1,id)

��

Ud,n//γ,~c,+ SL(d+ 1)

��

M0,i+1(Zγ,~cI ,γ+ε)×M0,n−i+1(Zγ,~cIc ,γ+ε) // Ud,n//γ,~c,0 SL(d+ 1)

M0,i+1(Zγ,~cI ,γ+ε)×M0,n−i+1(Zγ,~cIc ,1−ε)
Γi

//

(id,πn−i+1)

OO

Ud,n//γ,~c,− SL(d+ 1)

OO

where the central map is obtained by gluing a line between the attach-
ing points.
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Similarly, if k = d− 1, the maps restrict to:

M0,i+1(Zγ,~cI ,1−ε)
Γi

//

πi+1

��

Ud,n//γ,~c,+ SL(d+ 1)

��

M0,i+1(Zγ,~cI ,γ+ε) // Ud,n//γ,~c,0 SL(d+ 1)

M0,i+1(Zγ,~cI ,γ+ε)×M0,n−i+1(Zγ,~cIc ,1−ε)
Γi

//

(id,·)

OO

Ud,n//γ,~c,− SL(d+ 1).

OO

6.4. Quotients at the Boundary of ∆◦. There are four distinct
types of top-dimensional boundary walls, corresponding to when γ = 0,
γ = 1, ci = 0 for some i, and ci = 1 for some i. In this section, we
consider each in turn.

Corollary 6.8. Suppose c1 = 1 − ε for ε � 1. Then after replacing
GIT quotients by their normalizations, the map induced by passing to
the GIT wall c1 = 1 is a projection map:

Ud,n//γ,c1,...,cn SL(d+ 1)

f
��

π1

++VVVVVVVVVVVVVVVVVVVV

Ud,n//γ− ε
d−1

,1,c2,...,cn SL(d+ 1)
∼=
g

// Ud−1,n//γ,γ−ε,c2,...,cn SL(d)

.

Proof. If we replace all GIT quotients by their normalizations, the mor-
phisms between them form algebraic fiber spaces. In particular, we can
apply the rigidity lemma ([Kol96, Proposition II.5.3]).

Note that the boundary wall c1 = 1 is equal to the hyperplane
ϕ({1}, ·)−1(0). Let X be a (γ,~c,−)-stable curve. By Proposition 6.6,
we see that there is a (γ,~c, 0)-semistable curve with closed orbit con-
sisting of the projected curve π1(X) together with a degree 1 tail L
containing p1 and attached at π(p1). Conversely, all (γ,~c, 0)-semistable
curves with closed orbits are of this form. Thus for such a curve Y , the
fiber f−1(Y ) is positive-dimensional if and only if X ∈ f−1(Y ) has a
unique irreducible tail of degree 1 containing p1 and at least two more
marked points on its smooth locus. Now it is easy to see that f−1(Y ) is
contracted by π1. Therefore, by the rigidity lemma we have a morphism
g : Ud,n//γ− ε

d−1
,1,c2,··· ,cn SL(d+ 1)→ Ud−1,n//γ,γ−ε,c2,··· ,cn SL(d).

Since the points of the GIT quotient are in bijection with the closed
orbits of semistable points, it is straightforward to check that the in-
duced horizontal map is bijective and indeed an isomorphism. �

Proposition 6.9. When γ = 1, we have the following isomorphism:

Ud,n//1,~c SL(d+ 1) ∼= (P1)n//~c SL(2).
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Proof. By Corollary 2.8, every GIT-stable curve is smooth, and by
Corollary 2.6, at most half of the total weight may collide at a marked
point. We therefore have a map

Ud,n//1,~c SL(d+ 1)→ (P1)n//~c SL(2).

On the other hand, note that Kapranov’s morphism M0,n →M0,~c+ε →
(P1)n//~c SL(2) is a composition of divisorial contractions. Thus one may
run the same argument as in Proposition 4.8 (and in [Fak09, Lemma
4.6]), thinking of (P1)n//~c SL(2) as an analogue of the Hassett space
M0,~c when

∑n
i=1 ci = 2, to see that there is a map f : (P1)n//~c SL(2)→

Ud,n//1,~c SL(d+ 1). �

With Corollary 6.8 and Proposition 6.9, we now have a complete
description of all of the boundary walls of the GIT cone ∆◦. If ci = 1 for
some i, then the corresponding map is a projection map. If γ = 1, then
the quotient is isomorphic to (P1)n//~c SL(2). On the other hand, if ci =
0 for some i, then the corresponding map is a forgetful map, whereas if
γ = 0, the quotient is isomorphic to the spaces Vd,n//~c SL(d+1) studied
in [Gia10].2

6.5. Behavior of Wall-Crossing Maps. By the above diagram, we
also have a nice description of wall-crossing behavior along the interior
walls.

Corollary 6.10. The morphism

Ud,n//γ,~c,+ SL(d+ 1)→ Ud,n//γ,~c,0 SL(d+ 1)

contracts a divisor if and only if 3 ≤ |I| ≤ n− 2 and k = 0. Similarly,
the morphism

Ud,n//γ,~c,− SL(d+ 1)→ Ud,n//γ,~c,0 SL(d+ 1)

contracts a divisor if and only if 2 ≤ |I| ≤ n− 3 and k = d− 1.

Proof. This follows directly from the diagram above. Because the map
restricts to an isomorphism away from the image of DI,Ic ⊂ M0,n, the
only divisor that could be contracted by the map is the image of this
divisor. In the diagram above, however, which details the restriction of
this map to this divisor, all of the restricted maps are birational unless
k = 0 and 3 ≤ |I| ≤ n− 2 or k = d− 1 and 2 ≤ |I| ≤ n− 3. �

Corollary 6.11. If k 6= 0, d− 1, then the rational map

Ud,n//γ,~c,+ SL(d+ 1) 99K Ud,n//γ,~c,− SL(d+ 1)

2In the latter two statements, the line bundles in question are only semi-ample
rather than ample, and hence by Mumford’s definition the corresponding GIT quo-
tients are quasi-projective rather than projective. If, however, one defines the GIT
quotient to be Proj of the invariant section ring, then these statements are fine.
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either induces a morphism on the normalizations, its inverse induces a
morphism on the normalizations, or it is a flip.

Proof. Consider the diagram:

Ud,n//γ,~c,+ SL(d+ 1) oo //

f+

**TTTTTTTTTTTTTTTT
Ud,n//γ,~c,− SL(d+ 1)

f−

ttjjjjjjjjjjjjjjjj

Ud,n//γ,~c,0 SL(d+ 1) .

The result follows from [Tha96, Theorem 3.3], since if neither f+ nor
f− is bijective then both are small contractions, by the gluing diagram
above. �

Note that this is a flip in the sense of [Tha96]. That is, there exists
a Q-Cartier divisor class D on Ud,n//γ,~c,− SL(d + 1), such that O(−D)
is relatively ample over Ud,n//γ,~c,0 SL(d+ 1), and if g : Ud,n//γ,~c,− SL(d+
1) 99K Ud,n//γ,~c,+ SL(d+1) is the induced birational map, then the divi-
sor class g∗D is Q-Cartier, andO(D) is relatively ample over Ud,n//γ,~c,0 SL(d+
1).

Because of Corollary 6.11, it is interesting to ask when the wall-
crossing map is regular. Although we are unable to answer this question
at present, we can provide a condition for the map to contract no
curves. If the GIT quotients were normal, this would be sufficient
to conclude that the inverse map is regular in precisely this case (see
Remark 6.2).

Proposition 6.12. The rational map

Ud,n//γ,~c,+ SL(d+ 1) 99K Ud,n//γ,~c,− SL(d+ 1)

contracts no curves if and only if, for every partition I = I1 t · · · t Im
into at least 3 disjoint sets, we have

∑m
i=1 σ(Ii) 6= k.

Proof. By the diagrams above, the map f+ is bijective if and only if
the projection map

M0,n−i+1(Zγ,~cI ,1−ε)→M0,n−i+1(Zγ,~cI ,γ+ε)

is bijective. By Proposition 6.4, this is the case if and only if, for
every partition I = I1 t · · · t Im into at least 3 disjoint sets, we have∑m

i=1 σ(Ii) 6= k. It follows that the composite rational map (f−)−1 ◦f+

contracts no curves in precisely this case. �

7. Examples

In this section we consider examples of the quotients Ud,n//γ,~c SL(d+
1) for specific choices of (γ,~c) ∈ ∆. We will see that many previously
constructed compactifications of M0,n arise as such quotients.
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7.1. Hassett’s Spaces. In [Has03], Hassett constructs the moduli
spaces of weighted pointed stable curves M0,~c. A genus 0 marked curve
(X, p1, . . . , pn) is Hassett stable if:

(1) The singularities are at worst nodal;
(2) The are no marked points at nodes;
(3) The weight at any smooth point is at most 1, and
(4) ωX(

∑n
i=1 cipi) is ample.

Here we show that each of Hassett’s spaces arises as a quotient of Ud,n.

Theorem 7.1. Let (γ,~c) be a linearization such that there are no
strictly semistable points and 1 > γ > max{1

2
, 1− c1, . . . , 1− cn}. Then

there is an isomorphism M0,~c
∼= Ud,n//(γ,~c) SL(d+ 1).

Proof. It is enough to prove the existence of a morphism Ud,n//(γ,~c) SL(d+

1)→M0,~c preserving the interior. Indeed, both sides are separated, so
such a morphism is automatically inverse to the morphism in Proposi-
tion 4.8.

We claim that the hypotheses imply that the universal family over
the semistable locus (Ud,n)ss is a family of Hassett-stable curves for the
weight vector ~c. Indeed,

• The singularities are at worst nodal, by Corollary 2.7 and the
assumption γ > 1

2
;

• The are no marked points at nodes, by Proposition 2.5 and the
fact that γ > 1− ci for i = 1, . . . , n;
• The weight at any smooth point is at most 1, by Corollary 2.6;

and
• The ampleness condition of Hassett-stability is satisfied.

The only item here that needs explanation is the last one. Hassett-
stability, in genus zero, requires that the weight of marked points on
any component, plus the number of nodes on that component, is strictly
greater than 2. This follows by the same argument as Proposition 3.9.

Having shown that we have a family of Hassett-stable curves over
the semistable locus, the representability of this moduli space implies
that we have a morphism (Ud,n)ss → M0,~c. This is clearly SL(d + 1)-
invariant, so it descends to a morphism from the categorical quotient,
which is precisely the GIT quotient: Ud,n//(γ,~c) SL(d+ 1)→ M0,~c. The
interior M0,n is clearly preserved, so this concludes the proof. �

Corollary 7.2. For all n ≥ 3, there exists d ≥ 1 such that every Has-
sett space of n-pointed genus zero curves, including M0,n, is a quotient
of Ud,n.
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Proof. Note that there is a chamber structure on the space of weight
data ([Has03, §5]). Chambers are separated by hyperplanes

{(c1, · · · , cn)|
∑
i∈I

ci = 1}

for some I ⊂ {1, 2, · · · , n}. Therefore we can find ε > 0 satisfying the

following property: For any weight datum ~c, there is a weight datum ~c′

in the same chamber and c′i > ε for all i. Now we can take d satisfying
d+1−n
d−1

> 1− ε. Then this d satisfies

1 >
d+ 1− c
d− 1

≥ d+ 1− n
d− 1

> 1− ε ≥ max{1

2
, 1− c′1, · · · , 1− c′n},

for every weight datum ~c′. The result follows immediately from Theo-
rem 7.1, since any Hassett space with weight datum lying on a wall is
isomorphic to one with weight datum lying in an adjacent chamber. �

We note the following fact, which was remarked in the introduction:

Corollary 7.3. There exists L ∈ ∆◦ with Un−2,n//L SL(n− 1) ∼= M0,n.

Proof. The Hassett space M0,~c with ~c = (1
2

+ ε, . . . , 1
2

+ ε) is isomorphic

to M0,n (in fact they have the same universal curves) since no points are
allowed to collide. Thus, it suffices to take a linearization (γ,~c) ∈ ∆◦

with γ > 1
2
. Now, γ =

d+1−(n
2

+nε)

d−1
, so γ > 1

2
is equivalent to d >

n− 2nε− 3, so indeed for ε small enough we can take d = n− 2. �

7.2. Kontsevich-Boggi compactification. In [Kon92], Kontsevich
described certain topological modications of the moduli spaces M g,n

which for g = 0 were given an algebraic description by Boggi as an alter-
nate compactification of M0,n [Bog99]. This compactification was later
independently constructed by Smyth in [Smy09]. A genus 0 marked
curve (X, p1, . . . , pn) is Boggi-stable if:

(1) The singularities are multinodal;
(2) There are no marked points at the singular points;
(3) There are at least two points on any tail, and
(4) There are no unmarked components.

The Boggi space corresponds to the extremal assignment in which all
components without marked points are assigned. We will see that the
Boggi space also arises as a quotient of Ud,n, in the case d = n, ci = 1−ε
∀i. Note that in this case γ = 1+dε

d−1
.

Proposition 7.4. The GIT quotient Ud,n// 1+dε
d−1

, ~1−ε SL(d+1) is isomor-

phic to the Boggi space M
Bog

0,n .
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Proof. Let (X, p1, . . . , pn) ∈ M0,n be a Deligne-Mumford stable curve.
It suffices to show that a component of X is Z 1+dε

d−1
, ~1−ε-assigned if and

only if it is unmarked. Let Y ⊂ X be a tail containing k marked points.
Then

σ(Y ) = dk(1− ε)− 1

1− γ
e = k.

Hence, for any component E ⊂ X, E is assigned if and only if the total
number of points on the connected components of X\E is equal to
d = n. In other words, E is assigned if and only if it is unmarked. �

7.3. Variation of GIT. In addition to previously constructed mod-
uli spaces, our GIT approach also recovers known maps between these
moduli spaces. As an example we consider the case where n = d = 9
and the weights are symmetric – that is, ci = cj ∀i, j. By the results
above, we see that U9,9//γ,~c SL(10) is isomorphic to a Hassett space for
all γ > 1

2
, and isomorphic to the Boggi space for 1

9
< γ < 2

7
. In the

range 2
7
< γ < 1

2
, the space M

trip

0,9 = U9,9//γ,~c SL(10) is isomorphic to

M0,9, but the corresponding moduli functor is different. Specifically,
a curve consisting of three components meeting in a triple point, each
containing three marked points, is GIT-stable, while the corresponding
Deligne-Mumford stable curve obtained by replacing the triple point
with a rational triborough is not GIT-stable. We note furthermore
that since all of the moduli spaces just described are normal, the cor-
responding wall-crossing maps are all regular by Proposition 6.12. As
we increase γ from 1

9
to 1, we therefore obtain the following picture:

γ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
9

2
7

1
2

11
16

7
8

31
32 1

M
Bog

0,9

M
trip

0,9tttttttzz

M0,9
oo
∼= M

0, ~1
3

+ε

∼=
//

M
0, ~1

4
+ε

LLLLLLL

%%

M
0, ~1

5
+ε

LLLLLLL

%%

(P1)9// SL(2)
∼=

//

7.4. An Example of a Flip. While the previous example includes
several previously constructed spaces, it does not include any flips. To
see an example of a flip, we consider the case where d = 5, n = 19, and
the weights are symmetric. Let Ik denote any set of k marked points.
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When γ = 4
9

+ ε, we see that

σ(Ik) =



0 if k ≤ 4
1 if 5 ≤ k ≤ 7
2 if 8 ≤ k ≤ 9
3 if 10 ≤ k ≤ 11
4 if 12 ≤ k ≤ 14
5 if 15 ≤ k

On the other hand, when γ = 4
9
− ε, then each of these remains the

same, except for σ(I7) which becomes 2, and σ(I12), which becomes 3.
Now, consider the diagram

U5,19// 4
9

+ε, ~2
9
−ε SL(6) oo //

f+

((RRRRRRRRRRRRR
U5,19// 4

9
−ε, ~2

9
+ε

SL(6)

f−

vvlllllllllllll

U5,19// 4
9
,~2
9

SL(6) .

By Corollary 6.10, neither f+ nor f− contracts a divisor. On the other
hand, the map f+ contracts the F-curve class (10, 7, 1, 1), whereas the
map f− contracts the F-curve class (12, 5, 1, 1), so neither f+ nor f−

is trivial. (The numerical class of an F-curve is determined by the
number of marked points on each leg, whence the preceding notation.)
It follows from Corollary 6.11 that the diagram is a flip.

Finally we note that the moduli space U5,19// 4
9
,~2
9

SL(6) is not isomor-

phic to a modular compactification as in [Smy09] (this does not contra-
dict Proposition 5.7 because the linearization lies on a GIT wall, hence
there are strictly semistable points). In this sense it is truly a “new”
compactification of M0,19. To see this, consider the Deligne-Mumford
stable curve X which is a chain of 4 rational curves, each component
containing 10, 2, 2, and 5 marked points, respectively. The image of
X in the GIT quotient has three components. These components have
10, 0, and 5 marked points on their interiors, and there are 2 marked
points at each of the nodes – the two interior components of X are con-
tracted. On the other hand, the original curve is a specialization of a
Deligne-Mumford stable curve Y consisting of 3 components, contain-
ing 10, 4, and 5 marked points, respectively. Hence, if this space were
modular, then by [Smy09] the interior component of Y would have to
be contracted as well. But we see that this is not the case.



GIT COMPACTIFICATIONS OF M0,n AND FLIPS 41

2 pts 2 pts

X Y

∈M0,n

 

 

↓ ↓

∈ Ud,n// 4
9
,~2
9

SL(6)

7.5. Modular compactifications not from GIT. In the above sub-
section we saw an example of a GIT compactification of M0,n which is
not modular in the sense of [Smy09]. On the other hand, there are also
examples of modular compactifications which do not arise from our
GIT construction. For instance, consider a partition [n] = I t J tK
into three nonempty subsets. It is easy to see that assigning a tail if and
only if the marked points on it are indexed entirely by I or entirely by
J yields an extremal assignment. Suppose this assignment is given by a
geometric quotient of Ud,n. If a tail has only two marked points, pi1 , pi2 ,
both indexed by I, then by Proposition 3.5 we have σ({i1, i2}) = 0 and
so ci1 + ci2 < 1. Similarly, considering a tail with two points pj1 , pj2
both indexed by J forces ci1 + ci2 < 1. Without loss of generality write
ci1 ≤ ci2 and cj1 ≤ cj2 . Then ci1 + cj1 < 1, so σ({i1, j1}) = 0, and
hence a tail with only pi1 and pj1 would be contracted, contradicting
the definition of the extremal assignment.
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