Homework 5 Model Solution

Section 14.1.

- 14.1.9 Let $g(x, y) = \cos(x + 2y)$.
 - (a) Evaluate g(2, -1).

$$g(2, -1) = \cos(2 + 2(-1)) = \cos 0 = 1$$

(b) Find the domain of *g*.

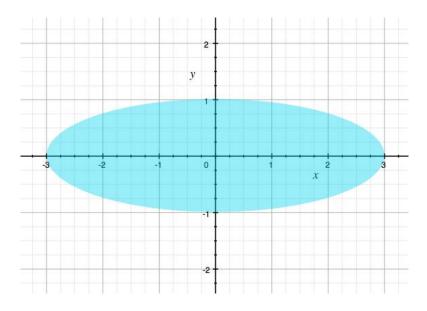
Cosine is defined for all real numbers. So x and y can be arbitrary numbers. Therefore the domain is whole \mathbb{R}^2 .

(c) Find the range of *g*.

The range of cosine is [-1, 1]. So the range of g is [-1, 1] as well.

14.1.15 Find and sketch the domain of $f(x, y) = \ln(9 - x^2 - 9y^2)$.

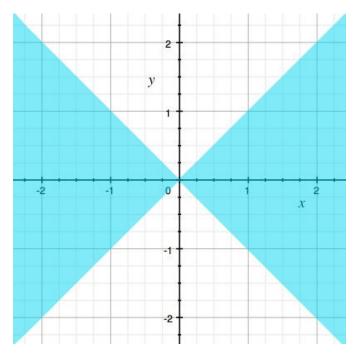
 $\ln t$ is defined only if t > 0. So $9 - x^2 - 9y^2 > 0$ or $x^2 + 9y^2 < 9$. Therefore the domain is the interior of an ellipse defined by $x^2 + 9y^2 = 9$.



14.1.16 Find and sketch the domain of the function of $f(x, y) = \sqrt{x^2 - y^2}$.

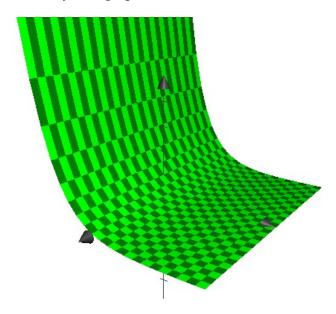
The inside of a square root must be nonnegative. So f(x, y) is defined only if $x^2 - y^2 \ge 0$. In other words, the domain is $x^2 - y^2 \ge 0$.

Note that $x^2 - y^2 = (x + y)(x - y) = 0$. Therefore the boundary is the union of two diagonal lines passing through the origin. The domain does contain the boundaries.



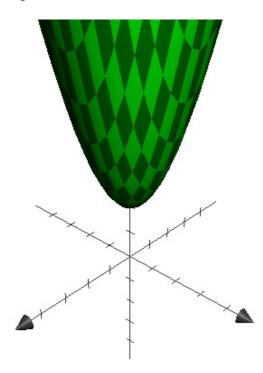
14.1.26 Sketch the graph of $f(x, y) = e^{-y}$.

Because the function f(x, y) does not depends on x, the section of the graph of f by a plane x = a is always the graph of $z = e^{-y}$.



14.1.28 Sketch the graph of $f(x, y) = 1 + 2x^2 + 2y^2$.

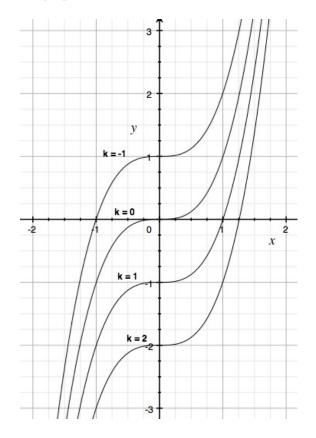
Note that $1 + 2x^2 + 2y^2 = 1 + 2r^2$. So the graph of f is the rotation of the graph $z = 1 + 2r^2$ (which is a parabola) about *z*-axis.



14.1.44 Draw a contour map of $f(x, y) = x^3 - y$ showing several level curves.

$$x^3 - y = k \Leftrightarrow y = x^3 - k$$

So a level curve is the graph of $y = x^3 - k$.



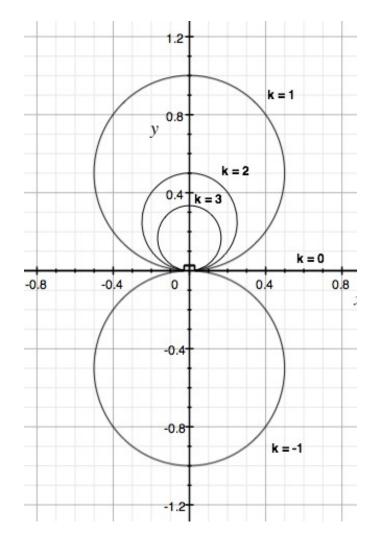
14.1.50 Draw a contour map of $f(x, y) = \frac{y}{x^2 + y^2}$ showing several level curves.

if
$$k \neq 0$$
,

$$\frac{y}{x^2 + y^2} = k \Leftrightarrow y = k(x^2 + y^2) \Leftrightarrow kx^2 + ky^2 - y = 0$$

$$\Leftrightarrow x^2 + y^2 - \frac{1}{k}y = 0 \Leftrightarrow x^2 + \left(y - \frac{1}{2k}\right)^2 = \left(\frac{1}{2k}\right)^2$$

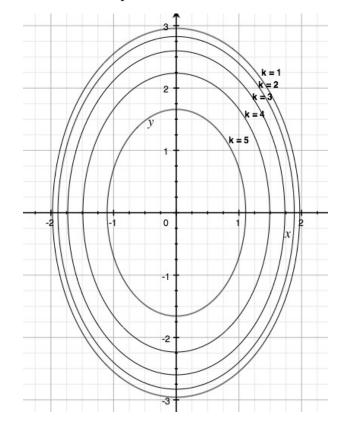
So the level set is a circle of radius $\frac{1}{2k}$ and center $(0, \frac{1}{2k})$. If k = 0, y = 0 and it is *x*-axis.



14.1.52 Sketch both a contour map and a graph of $f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$ and compare them.

 $\sqrt{36 - 9x^2 - 4y^2} = k \Leftrightarrow 36 - 9x^2 - 4y^2 = k^2 \Leftrightarrow 9x^2 + 4y^2 = 36 - k^2$

Therefore a level curve is an ellipse.



The graph looks like a bowl. The graph below is just a part of the whole graph.

