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Part I

Invariant theory
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An old question

Question

Let A be a finitely generated algebra (over a field k or Z). Let G be a
subgroup of Aut(A). Calculate the invariant subring

AG := {x ∈ A | g(x) = x, ∀g ∈ G}.

Mainly, we will work on a special situation:

V : G-respresentation

k[V ]: ring of polynomial functions on V

There is an induced G-action on k[V ].

Question

Calculate k[V ]G.
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First example - Gauss

Question (Gauss, 1801)

How is a binary quadratic form with integer coefficients affected by a
linear transformation of its variables?

ax2 + 2bxy + cy2, a, b, c ∈ Z

x = αx′ + βy′

y = γx′ + δy′,
α, β, γ, δ ∈ Z⇒ a′(x′)2 + 2b′x′y′ + c′(y′)2

(b′)2 − a′c′ = (b2 − ac)(αδ − βγ)2

If

(
α β
γ δ

)
∈ SL2, (b′)2 − a′c′ = b2 − ac · · · discovery of an invariant

tried to classify binary quadratic forms
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Example - Symmetric group

Consider the polynomial ring k[X1, X2, · · · , Xn].

There is a natural Sn-action permuting the variables.

Examples of Sn-invariants:

E1 := X1 +X2 + · · ·+Xn,

E2 :=
∑
i<j

XiXj ,

E3 :=
∑
i<j<k

XiXjXk,

...

En := X1X2 · · · · ·Xn

Theorem (Fundamental theorem of symmetric polynomials, Gauss, 1815)

k[X1, X2, · · · , Xn]Sn ∼= k[E1, E2, · · · , En].

Han-Bom Moon Invariant Theory and Moduli Spaces



Example - Linear algebra

V = Mn×n: set of n× n matrices, G = GLn

There is a conjugate action on V defined by σ ·A := σ−1Aσ (a basis
change).

k[V ] = k[X11, X12, · · · , Xnn]

Examples of invariants:

trace : X11 +X22 + · · ·+Xnn,

determinant :
∑
τ∈Sn

sgn(τ)

n∏
i=1

Xiτ(i).

More generally, coefficients of the characteristic polynomial are invariants.

Theorem

As a k-algebra, k[V ]G is generated by coefficients of the characteristic
polynomials. Therefore k[V ]G ∼= k[a1, a2, · · · , an].
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Example - Homogeneous forms

Vd := {a0X
d + a1X

d−1Y + · · ·+ adY
d}: set of degree d homogeneous

polynomials of degree d with two variables X,Y

k[Vd] = k[a0, a1, · · · , ad] x SL2

k[V2]SL2 = k[a2
1 − 4a0a2]

k[V3]SL2 = k[a2
1a

2
2 − 4a0a

3
2 − 4a3

1a3 − 27a2
0a

2
3 + 18a0a1a2a3]

k[V4]SL2 is generated by f2 and f3, where

f2 = a0a4 −
a1a3

4
+
a2

2

12
, f3 =

∣∣∣∣∣∣
a0 a1/4 a2/6
a1/4 a2/6 a3/4
a2/6 a3/4 a4

∣∣∣∣∣∣ .
k[V5]SL2 is generated by f4, f8, f12, and f18, where

f4 =− 2a2
2a

2
3 + 6a1a

3
3 + 6a3

2a4 − 19a1a2a3a4 − 15a0a
2
3a4

+ 9a2
1a

2
4 + 40a0a2a

2
4 − 15a1a

2
2a5 + 40a2

1a3a5

+ 25a0a2a3a5 − 250a0a1a4a5 + 625a2
0a

2
5,

and f8 = /, etc.
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Example - Homogeneous forms

k[V6]SL2 is generated by f2, f4, f6, f10, and f15.

Cayley (1856): k[V7]SL2 is not finitely generated.

Gordan (1868): k[Vd]
SL2 is finitely generated for all d.

k[V7]SL2 is generated by 30 generators (Dixmier-Lazard, 1986).

k[V8]SL2 is generated by 9 generators (Shioda, 1967).

k[V9]SL2 is generated by 92 generators (Brouwer-Popoviciu, 2010).

k[V10]SL2 is generated by 106 generators (Brouwer-Popoviciu, 2010).

k[Vd]
SL2 is unknown for d ≥ 11.

Theorem (Hilbert, 1890)

Let G be a linearly reductive group. Then for any finite dimensional
G-representation V , k[V ]G is finitely generated.
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Fundamental theorems of invariant theory

V = kd

SLd y V ⇒ SLd y V n = V ⊕ V ⊕ · · · ⊕ V

k[V n] = k[Xij ]1≤i≤d,1≤j≤n

Invariants: [j1, j2, · · · , jd] := det(Xij1 , Xij2 , · · · , Xijd)

Theorem (First fundamental theorem of invariant theory)

The invariant subring k[V n]SLd is generated by [j1, j2, · · · , jd] for all
multiindices 1 ≤ j1 < j2 < · · · < jd ≤ n.

Theorem (Second fundamental theorem of invariant theory)

The ideal of relations in k[V n]SLd is generated by Plücker relations:

d+1∑
k=1

(−1)k[i1, i2, · · · , id−1, jk][j1, · · · , jk−1, jk+1, · · · , jd+1].

True over any base ring (de Concini-Procesi).
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SL2-case - Graphical algebra

V = k2 x SL2

k[V n] = k

[
X1 X2 · · · Xn

Y1 Y2 · · · Yn

]
[i, j] = XiYj −XjYi =: Zij

First fundamental theorem ⇒ k[V n]SL2 is generated by Zij

Second fundamental theorem ⇒ two types of relations:

Zji = −Zij
Plücker relations: ZijZkl − ZikZjl + ZilZjk = 0

Definition

The graphical algebra of order n is the invariant ring k[V n]SL2 .
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Graphical algebra - Combinatorial interpretation

Γ: a loopless directed graph on [n] := {1, 2, · · · , n}

For an edge e ∈ EΓ, h(e): head of e, t(e): tail of e.

For each Γ, let

ZΓ :=
∏
e∈EΓ

Zt(e)h(e) =
∏
e∈EΓ

(Xt(e)Yh(e) −Xh(e)Yt(e)).

4

2

3

1

Γ

ZΓ = Z12Z13Z42Z34

= (X1Y2 −X2Y1)(X1Y3 −X3Y1)(X4Y2 −X2Y4)(X3Y4 −X4Y3)
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Graphical algebra - Combinatorial interpretation

Γ, Γ′: two graphs on [n]

Γ · Γ′:= the disjoint union of two graphs

Gn: monoid of all directed graphs on [n].

ZΓ · ZΓ′ = ZΓ·Γ′

Theorem

The graphical algebra k[V n]SL2 is k[Gn] modulo two types of relations:

Orientation reversing

1 2 = − 1 2

Plücker relations

3

1

4

2

−

3

1

4

2

+

3

1

4

2

= 0
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Graphical algebra - Geometric interpretation

k[V n] = k[Xi, Yi] =
⊕
−→
d

H0((P1)n,O(d1, d2, · · · , dn))

k[V n]SL2 = k[Xi, Yi]
SL2 =

⊕
−→
d

H0((P1)n,O(d1, d2, · · · , dn))SL2

The latter one is the ring of all functions (divisors) on (P1)n//SL2, which
is, the Cox ring of (P1)n//SL2.

Han-Bom Moon Invariant Theory and Moduli Spaces



Connection to moduli spaces?

There are (at least) two ways to interpret (P1)n//SL2:

1 A moduli space of n ordered marked points on P1 up to projective
equivalence

We will discuss the relation with the nef cone of M0,n.

2 A moduli space of rank 2, degree 0 parabolic bundles over P1

(P1)n//SL2 = {(p1, · · · , pn) | pi ∈ P1}/∼
= {(V1, · · · , Vn) | Vi ⊂ k2,dimVi = 1}/∼
= {(E = O2

P1 , (V1, · · · , Vn)) | Vi ⊂ E|xi}/∼

Theorem (M-Yoo)

Let M(a, d) be the moduli space of a-stable rank 2, degree d vector
bundles on P1. For a general a, the effective cone of M(a, 0) is generated
by 2n−1 extremal rays. (ρ(M(a, 0)) = n+ 1).
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Part II

M0,n and the F-conjecture
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Positivity of divisors

Let D be an integral Cartier divisor on a projective variety X.

Let ϕD : X 99K Pn be the map associated to |D|.

Definition

1 A divisor D is very ample if ϕD is an embedding.

2 A divisor D is ample if mD is very ample for some m > 0.

3 A divisor D is base-point-free if ϕD is regular.

4 A divisor D is semi-ample if mD is base-point-free for some m > 0.

5 A divisor D is nef if D · C ≥ 0 for every integral curve C on X.

ample +3 semi-ample +3 nef

very ample

KS

+3 base-point-free

KS

Question

Compute the cone of positive (ample, semi-ample, nef) divisors.
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M0,n and the topological stratification

M0,n :=


p1
p2

p3
pn

C

|

C : connected projective curve
with at worst nodal singularities
pi : distinct smooth points

|Aut| <∞

 /∼

· · · moduli space of n-pointed stable rational curves.

∃ a natural stratification indexed by the topological types of
parametrized curves (= dual graphs). I 3 ∈ Ic

 =: DI · · · boundary divisor

The closure of any stratum is an intersection of boundary divisors,
and is isomorphic to a product of M0,k.

F-curve: the closure of a one-dimensional stratum

F-point: zero-dimensional stratum
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F-conjecture

Guess: The geometry of M0,n is very similar to that of toric varieties.

Evidence (Kapranov): M0,n is an iterative blow-up of points, lines,
planes, · · · of Pn−3.

Conjecture (F-conjecture)

1 The cone of curves of M0,n is generated by F-curves.

2 A divisor D on M0,n is nef if and only if D · F ≥ 0 for every F-curve
F (F-nef).

It turned out that M0,n is very different from toric varieties! (Vermeire,
Castravet-Tevelev ×2, Doran-Giansiracusa-Jensen, etc.)

There is a natural Sn-action on M0,n.

Conjecture (Sn-invariant F-conjecture)

For an Sn-invariant divisor D, D is nef if and only if D is F-nef.

Sn-invariant F-conjecture for M0,n ⇒ nef cone of Mn

(Gibney-Keel-Morrison)
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Known results

Theorem (Keel-McKernan, 96)

The F-conjecture is true for n ≤ 7 in char 0.

Studied consequences of the following situation: ∃ an ample divisor
whose support is D =

∑
DI , and each DI has a negative normal

bundle.

(Ray theorem) If R is an extremal ray of the curve cone, G is an
effective divisor supported on D, and (KM0,n

+G) ·R < 0, then R
is generated by a curve ⊂ D.

Used standard theorems in birational geometry in char 0: Cone
theorem and Contraction theorem.
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Known results

Theorem (Gibney, 03)

The Sn-invariant F-conjecture is true for n ≤ 24 in char 0.

Ray theorem ⇒ Suppose that E = cKM0,n
+G for some effective

boundary G and c ≥ 0. If C · E < 0, then C ⊂ G.

If E is an F-nef divisor such that for each inclusion of a boundary
b : M0,k ↪→ M0,n, b∗(E) = c′KM0,k

+G′, then E is nef.

Verified this condition for Sn-invariant F-nef divisors using a
computer program.
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Known results

Theorem (Fedorchuk, 14)

Over any field, the Sn-invariant F-conjecture is true for n ≤ 16.

Every divisor can be written as D =

n∑
i=1

aiψi −
∑
I

bIDI .

Studied carefully relations in the Picard group and the change of ai,
bI when D is restricted to boundaries

Combinatorial conditions on ai, bI for being stratally effective
boundary (= D is an effective linear combination of boundaries after
taking the restriction to each boundary) and being boundary
semi-ample (= the sub linear system of |mD| generated by effective
linear combinations of boundaries is base-point-free).

Defined several collections of functions describing the coefficients ai
and bI of stratally effective boundary and boundary semi-ample
divisors.

Provided infinitely many examples.
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Known results

The moduli space M0,n is embedded into a (non-proper) toric variety X∆

where ∆ is a fan, the so-called space of phylogenetic trees.

Let i : M0,n ↪→ X∆ be the embedding.

G∆: cone of semi-ample divisors on X∆

L∆: cone of divisors on X∆ so that the restriction to each orbit
closure is effective

F∆: cone of divisors on X∆ so that the restriction to each
(d+ 1)-dimensional orbit closure (d = dimension of minimal orbits)
is effective

Theorem (Gibney-Maclagan, 10)

i∗(G∆) ⊂ i∗(L∆) ⊂ Nef(M0,n) ⊂ i∗(F∆)

and i∗(F∆) is the cone of F-nef divisors.

Proved the equality for n ≤ 6.
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Main theorem

ample +3 semi-ample +3 nef

very ample

KS

+3 base-point-free

KS

Theorem (M-Swinarski)

Over Spec Z, for every Sn-invariant F-nef integral divisor D, the
following statements are true.

1 If n ≤ 19, D is semi-ample.

2 If n ≤ 16, 2D is base-point-free.

Corollary

If n ≤ 16 and D is ample, then 2D is very ample.

It follows from the very ampleness of KM0,n
+D (Keel-Tevelev).
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New conjectures

Conjecture (Swinarski)

Over Spec Z, for every Sn-invariant F-nef integral divisor D, 2D is
base-point-free.

true for n ≤ 16

Conjecture (M)

Over Spec Z, for every Sn-invariant F-nef integral divisor D, D is
base-point-free.

true for n ≤ 11 and 13, only one unknown case for each n = 12, 14, 15
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Part III

Graphical algebra and the Sn-invariant

F-conjecture
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Kapranov’s morphism

Theorem (Kapranov, 93)

There is a birational morphism π : M0,n → (P1)n//SL2.

M0,n: moduli space of possibly singular curves with distinct marked
points.

(P1)n//SL2: moduli space of smooth curves with not necessarily distinct
marked points.

−→
3 2 3
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Kapranov’s morphism

Assume n is odd. (When n is even, need to do some extra work around
strictly semistable locus.)

A subset I ⊂ [n] always satisfies 2 ≤ |I| ≤ n/2.

Observation 1. The morphism π preserves stratifications.

π(DI) = V (Zij)i,j∈I = {(p1, p2, · · · , pn) | pi = pj , ∀i, j ∈ I} =: VI
(here Zij = XiYj −XjYi)

|I| = 2 ⇒ VI is a divisor

|I| > 2 ⇒ VI is a higher codimensional subvariety

Observation 2. Any Sn-invariant F-nef divisor D can be written uniquely
as

D = π∗(cL)−
∑
i≥3

aiDi

L =
∑
|I|=2 VI : an ample divisor in Pic((P1)n//SL2)Sn

Di =
∑
|I|=iDI , c, ai ≥ 0
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Identification of linear systems

D = π∗(cL)−
∑
i≥3

aiDi

|D| = |π∗(cL)−
∑
i≥3

aiDi| ∼= |cL|a ⊂ |cL|

where |cL|a := {E ∈ |cL| | multiplicity along VI ≥ a|I|}.
a := (a3, a4, · · · , abn/2c)

Recall that for each directed graph Γ on [n], we can assign a monomial

ZΓ :=
∏
−→
ij∈EΓ

Zij , so a divisor on (P1)n//SL2.

4

2

3

1

Γ

⇒ ZΓ = Z12Z13Z42Z34
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Combinatorial interpretation

|cL|a := {E ∈ |cL| | multiplicity along VI ≥ a|I|}
ZΓ ∈ |cL|a if

1 For each i ∈ [n], the valence of i (the number of edges incident to i)
is c(n− 1) (⇔ ZΓ ∈ |cL|);

2 For each I ⊂ [n], the number of edges connecting i, j ∈ I is at least
a|I| (⇔ ZΓ ∈ |cL|a).

1

2
3

4

5

6
7

Γ

⇒ ZΓ ∈ |L|a3=2
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Combinatorial interpretation

|D| ks +3 |cL|a

|D|G

OO

ks +3 |cL|a,G

OO

|cL|a,G: sub linear system of |cL|a generated by graphical monomials.

|D|G: sub linear system of |D| which is identified with |cL|a,G.

Definition

An Sn-invariant F-nef divisor D is G-base-point-free if |D|G is
base-point-free.

D is G-base-point-free ⇒ D is base-point-free.

Bs(|D|G) is a union of boundary strata.

If Bs(|D|G) is nonempty, there must be an F-point in Bs(|D|G).
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Combinatorial interpretation

D is G-base-point-free

⇔ ∀ F-point F = ∩I∈TDI , ∃ E ∈ |D|G, F /∈ E
⇔ ∀ F-point F = ∩I∈TDI , ∃ E′ ∈ |cL|a,G, E′ has the minimum
multiplicity along VI for I ∈ T .

⇔ ∀ F-point F = ∩I∈TDI , ∃ ZΓ ∈ |cL|a,G, ZΓ has the minimum
multiplicity (= a|I|) along VI for I ∈ T .

Proposition

For an Sn-invariant F-nef divisor D = π∗(cL)−
∑
i≥3 aiDi, |D| is

G-base-point-free if for every F-point F = ∩I∈TDI , there is a graph Γ
such that:

1 For each i ∈ [n], the valence of i is c(n− 1);

2 For each I ⊂ [n], the number of edges connecting i, j ∈ I is at least
a|I|;

3 For each I ∈ T , the number of edges connecting i, j ∈ I is precisely
a|I|.
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Feasibility problem

For each c, a3, a4, · · · , abn/2c,

What we need to find: for each F-point F = ∩I∈TDI , a graph weighting
w : EKn → Z, such that:

1 w(ij) ≥ 0;

2 For each i ∈ [n],
∑
j 6=i w(ij) = c(n− 1);

3 For each I ⊂ [n],
∑
i,j∈I w(ij) ≥ a|I|;

4 For each I ∈ T ,
∑
i,j∈I w(ij) = a|I|.

This is a feasibility problem (= the nonemptiness of a polytope).

Computational problem:

1 Choose an F-point F for each Sn-orbit. Let P be the set of such
representatives.

2 For each F ∈ P , make a polytope Q(F ) described by the above
equations and inequalities.

3 Check Q(F ) 6= ∅.
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Final remarks

1 This computation is faster than expectation: For instance, for small
n, for most of extremal rays of the Sn-invariant F-nef cone,
∩F∈PQ(F ) 6= ∅.

2 The cone of G-semi-ample divisors is a polyhedral lower bound of
Nef(M0,n)Sn .

3 D is G-semi-ample ⇔ D is Sn-invariant boundary semi-ample
(Fedorchuk) ⇔ D ∈ i∗(G∆)Sn (Gibney-Maclagan)

So for n ≤ 19,

i∗(G∆)Sn = i∗(L∆)Sn = Nef(M0,n)Sn = i∗(F∆)Sn .
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Thank you!
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