Classical Invariant Theory and Birational Geometry of Moduli Spaces

How not to prove the S_n -invariant F-conjecture

Han-Bom Moon

Department of Mathematics Fordham University

December 7, 2016

Part I

Invariant theory

Question

Let A be a finitely generated algebra (over a field k or \mathbb{Z}). Let G be a subgroup of Aut(A). Calculate the invariant subring

$$A^G := \{ x \in A \mid g(x) = x, \ \forall g \in G \}.$$

Mainly, we will work on a special situation:

V: G-respresentation

k[V]: ring of polynomial functions on V

There is an induced G-action on k[V].

Question

Calculate $k[V]^G$.

Question (Gauss, 1801)

How is a binary quadratic form with integer coefficients affected by a linear transformation of its variables?

$$ax^{2} + 2bxy + cy^{2}, \quad a, b, c \in \mathbb{Z}$$

$$x = \alpha x' + \beta y', \quad \alpha, \beta, \gamma, \delta \in \mathbb{Z} \Rightarrow a'(x')^{2} + 2b'x'y' + c'(y')^{2}$$

$$(b')^{2} - a'c' = (b^{2} - ac)(\alpha \delta - \beta \gamma)^{2}$$
If $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL_{2}, \ (b')^{2} - a'c' = b^{2} - ac \cdots$ discovery of an invariant

tried to classify binary quadratic forms

Example - Symmetric group

Consider the polynomial ring $k[X_1, X_2, \cdots, X_n]$.

There is a natural S_n -action permuting the variables.

Examples of S_n -invariants:

$$E_1 := X_1 + X_2 + \dots + X_n,$$

$$E_2 := \sum_{i < j} X_i X_j,$$

$$E_3 := \sum_{i < j < k} X_i X_j X_k,$$

$$\vdots$$

$$E_n := X_1 X_2 \dots X_n$$

Theorem (Fundamental theorem of symmetric polynomials, Gauss, 1815) $k[X_1, X_2, \dots, X_n]^{S_n} \cong k[E_1, E_2, \dots, E_n].$

Example - Linear algebra

 $V = M_{n \times n}$: set of $n \times n$ matrices, $G = GL_n$

There is a conjugate action on V defined by $\sigma \cdot A := \sigma^{-1}A\sigma$ (a basis change).

 $k[V] = k[X_{11}, X_{12}, \cdots, X_{nn}]$

Examples of invariants:

$$\begin{aligned} & \operatorname{trace} : X_{11} + X_{22} + \cdots + X_{nn}, \\ & \operatorname{determinant} : \ \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n X_{i\tau(i)}. \end{aligned}$$

More generally, coefficients of the characteristic polynomial are invariants.

Theorem

As a k-algebra, $k[V]^G$ is generated by coefficients of the characteristic polynomials. Therefore $k[V]^G \cong k[a_1, a_2, \cdots, a_n]$.

Example - Homogeneous forms

 $V_d := \{a_0 X^d + a_1 X^{d-1} Y + \dots + a_d Y^d\}: \text{ set of degree } d \text{ homogeneous polynomials of degree } d \text{ with two variables } X, Y$

$$\begin{split} k[V_d] &= k[a_0, a_1, \cdots, a_d] \curvearrowleft \mathrm{SL}_2 \\ k[V_2]^{\mathrm{SL}_2} &= k[a_1^2 - 4a_0 a_2] \\ k[V_3]^{\mathrm{SL}_2} &= k[a_1^2 a_2^2 - 4a_0 a_2^3 - 4a_1^3 a_3 - 27a_0^2 a_3^2 + 18a_0 a_1 a_2 a_3] \\ k[V_4]^{\mathrm{SL}_2} \text{ is generated by } f_2 \text{ and } f_3 \text{, where} \end{split}$$

$$f_2 = a_0 a_4 - \frac{a_1 a_3}{4} + \frac{a_2^2}{12}, \quad f_3 = \begin{vmatrix} a_0 & a_1/4 & a_2/6 \\ a_1/4 & a_2/6 & a_3/4 \\ a_2/6 & a_3/4 & a_4 \end{vmatrix}$$

.

 $k[V_5]^{\operatorname{SL}_2}$ is generated by $f_4,\,f_8,\,f_{12},$ and $f_{18},$ where

$$f_4 = -2a_2^2a_3^2 + 6a_1a_3^3 + 6a_2^3a_4 - 19a_1a_2a_3a_4 - 15a_0a_3^2a_4 + 9a_1^2a_4^2 + 40a_0a_2a_4^2 - 15a_1a_2^2a_5 + 40a_1^2a_3a_5 + 25a_0a_2a_3a_5 - 250a_0a_1a_4a_5 + 625a_0^2a_5^2,$$

and $f_8 = \textcircled{\odot}$, etc.

Example - Homogeneous forms

 $k[V_6]^{SL_2}$ is generated by f_2 , f_4 , f_6 , f_{10} , and f_{15} . Cayley (1856): $k[V_7]^{SL_2}$ is not finitely generated. Gordan (1868): $k[V_d]^{SL_2}$ is finitely generated for all d. $k[V_7]^{SL_2}$ is generated by 30 generators (Dixmier-Lazard, 1986). $k[V_8]^{SL_2}$ is generated by 9 generators (Shioda, 1967). $k[V_9]^{SL_2}$ is generated by 92 generators (Brouwer-Popoviciu, 2010). $k[V_{10}]^{SL_2}$ is generated by 106 generators (Brouwer-Popoviciu, 2010). $k[V_d]^{SL_2}$ is unknown for d > 11.

Theorem (Hilbert, 1890)

Let G be a linearly reductive group. Then for any finite dimensional G-representation V, $k[V]^G$ is finitely generated.

Fundamental theorems of invariant theory

$$V = k^{d}$$

$$SL_{d} \curvearrowright V \Rightarrow SL_{d} \curvearrowright V^{n} = V \oplus V \oplus \dots \oplus V$$

$$k[V^{n}] = k[X_{ij}]_{1 \le i \le d, 1 \le j \le n}$$

Invariants: $[j_{1}, j_{2}, \dots, j_{d}] := \det(X_{ij_{1}}, X_{ij_{2}}, \dots, X_{ij_{d}})$

Theorem (First fundamental theorem of invariant theory)

The invariant subring $k[V^n]^{SL_d}$ is generated by $[j_1, j_2, \cdots, j_d]$ for all multiindices $1 \le j_1 < j_2 < \cdots < j_d \le n$.

Theorem (Second fundamental theorem of invariant theory)

The ideal of relations in $k[V^n]^{SL_d}$ is generated by Plücker relations:

$$\sum_{k=1}^{d+1} (-1)^k [i_1, i_2, \cdots, i_{d-1}, j_k] [j_1, \cdots, j_{k-1}, j_{k+1}, \cdots, j_{d+1}].$$

True over any base ring (de Concini-Procesi).

SL_2 -case - Graphical algebra

$$V = k^{2} \curvearrowleft SL_{2}$$

$$k[V^{n}] = k \begin{bmatrix} X_{1} & X_{2} & \cdots & X_{n} \\ Y_{1} & Y_{2} & \cdots & Y_{n} \end{bmatrix}$$

$$[i, j] = X_{i}Y_{j} - X_{j}Y_{i} =: Z_{ij}$$

First fundamental theorem $\Rightarrow k[V^n]^{SL_2}$ is generated by Z_{ij}

Second fundamental theorem \Rightarrow two types of relations:

•
$$Z_{ji} = -Z_{ij}$$

• Plücker relations: $Z_{ij}Z_{kl} - Z_{ik}Z_{jl} + Z_{il}Z_{jk} = 0$

Definition

The graphical algebra of order n is the invariant ring $k[V^n]^{SL_2}$.

Graphical algebra - Combinatorial interpretation

 $\Gamma:$ a loopless directed graph on $[n]:=\{1,2,\cdots,n\}$

For an edge $e \in E_{\Gamma}$, h(e): head of e, t(e): tail of e.

For each Γ , let

$$Z_{\Gamma} = Z_{12}Z_{13}Z_{42}Z_{34}$$

= $(X_1Y_2 - X_2Y_1)(X_1Y_3 - X_3Y_1)(X_4Y_2 - X_2Y_4)(X_3Y_4 - X_4Y_3)$

Graphical algebra - Combinatorial interpretation

- $\Gamma\text{, }\Gamma^{\prime}\text{: two graphs on }[n]$
- $\Gamma\cdot\Gamma'{:=}$ the disjoint union of two graphs
- G_n : monoid of all directed graphs on [n].

 $Z_{\Gamma} \cdot Z_{\Gamma'} = Z_{\Gamma \cdot \Gamma'}$

Theorem

The graphical algebra $k[V^n]^{SL_2}$ is $k[G_n]$ modulo two types of relations:

Orientation reversing

$$1 \longrightarrow 2 = - 1 \longleftarrow 2$$

Plücker relations

$$2 \leftarrow 1 \\ - 2 \leftarrow 1 \\ - 2 \leftarrow 1 \\ + 4 \\ - 3 \leftarrow 4 \\$$

$$k[V^n] = k[X_i, Y_i] = \bigoplus_{\overrightarrow{d}} \mathrm{H}^0((\mathbb{P}^1)^n, \mathcal{O}(d_1, d_2, \cdots, d_n))$$
$$k[V^n]^{\mathrm{SL}_2} = k[X_i, Y_i]^{\mathrm{SL}_2} = \bigoplus_{\overrightarrow{d}} \mathrm{H}^0((\mathbb{P}^1)^n, \mathcal{O}(d_1, d_2, \cdots, d_n))^{\mathrm{SL}_2}$$

The latter one is the ring of all functions (divisors) on $(\mathbb{P}^1)^n //SL_2$, which is, the Cox ring of $(\mathbb{P}^1)^n //SL_2$.

Connection to moduli spaces?

There are (at least) two ways to interpret $(\mathbb{P}^1)^n // SL_2$:

 $\textcircled{\ } \textbf{A} \ \text{moduli space of } n \ \text{ordered marked points on } \mathbb{P}^1 \ \text{up to projective equivalence}$

We will discuss the relation with the nef cone of $\overline{\mathrm{M}}_{0,n}$.

(2) A moduli space of rank 2, degree 0 parabolic bundles over \mathbb{P}^1

$$\begin{aligned} (\mathbb{P}^{1})^{n} // \mathrm{SL}_{2} &= \{ (p_{1}, \cdots, p_{n}) \mid p_{i} \in \mathbb{P}^{1} \} /_{\sim} \\ &= \{ (V_{1}, \cdots, V_{n}) \mid V_{i} \subset k^{2}, \dim V_{i} = 1 \} /_{\sim} \\ &= \{ (E = \mathcal{O}_{\mathbb{P}^{1}}^{2}, (V_{1}, \cdots, V_{n})) \mid V_{i} \subset E |_{x_{i}} \} /_{\sim} \end{aligned}$$

Theorem (M-Yoo)

Let $M(\mathbf{a}, d)$ be the moduli space of \mathbf{a} -stable rank 2, degree d vector bundles on \mathbb{P}^1 . For a general \mathbf{a} , the effective cone of $M(\mathbf{a}, 0)$ is generated by 2^{n-1} extremal rays. ($\rho(M(\mathbf{a}, 0)) = n + 1$).

Part II

$\overline{\mathrm{M}}_{0,n}$ and the F-conjecture

Positivity of divisors

Let D be an integral Cartier divisor on a projective variety X.

Let $\varphi_D : X \dashrightarrow \mathbb{P}^n$ be the map associated to |D|.

Definition

- **(**) A divisor D is very ample if φ_D is an embedding.
- 2 A divisor D is ample if mD is very ample for some m > 0.
- **③** A divisor D is base-point-free if φ_D is regular.
- **(**) A divisor D is semi-ample if mD is base-point-free for some m > 0.
- **(a)** A divisor D is nef if $D \cdot C \ge 0$ for every integral curve C on X.

Question

Compute the cone of positive (ample, semi-ample, nef) divisors.

$M_{0,n}$ and the topological stratification

 \cdots moduli space of *n*-pointed stable rational curves.

F a natural stratification indexed by the topological types of parametrized curves (= dual graphs).

•
$$\left\{ I \ni \bullet \in I^c \right\} =: D_I \cdots$$
 boundary divisor

- The closure of any stratum is an intersection of boundary divisors, and is isomorphic to a product of $\overline{\mathrm{M}}_{0,k}$.
- F-curve: the closure of a one-dimensional stratum
- F-point: zero-dimensional stratum

F-conjecture

Guess: The geometry of $\overline{\mathrm{M}}_{0,n}$ is very similar to that of toric varieties. Evidence (Kapranov): $\overline{\mathrm{M}}_{0,n}$ is an iterative blow-up of points, lines, planes, \cdots of \mathbb{P}^{n-3} .

Conjecture (F-conjecture)

• The cone of curves of $\overline{\mathrm{M}}_{0,n}$ is generated by F-curves.

A divisor D on M_{0,n} is nef if and only if D · F ≥ 0 for every F-curve F (F-nef).

It turned out that $\overline{\mathrm{M}}_{0,n}$ is very different from toric varieties! (Vermeire, Castravet-Tevelev $\times 2$, Doran-Giansiracusa-Jensen, etc.)

There is a natural S_n -action on $\overline{\mathrm{M}}_{0,n}$.

Conjecture (S_n -invariant F-conjecture)

For an S_n -invariant divisor D, D is nef if and only if D is F-nef.

 S_n -invariant F-conjecture for $\overline{\mathrm{M}}_{0,n} \Rightarrow$ nef cone of $\overline{\mathrm{M}}_n$ (Gibney-Keel-Morrison)

Theorem (Keel-McKernan, 96)

The F-conjecture is true for $n \leq 7$ in char 0.

- Studied consequences of the following situation: \exists an ample divisor whose support is $D = \sum D_I$, and each D_I has a negative normal bundle.
- (Ray theorem) If R is an extremal ray of the curve cone, G is an effective divisor supported on D, and $(K_{\overline{\mathrm{M}}_{0,n}} + G) \cdot R < 0$, then R is generated by a curve $\subset D$.
- Used standard theorems in birational geometry in char 0: Cone theorem and Contraction theorem.

Theorem (Gibney, 03)

The S_n -invariant F-conjecture is true for $n \leq 24$ in char 0.

- Ray theorem \Rightarrow Suppose that $E = cK_{\overline{\mathrm{M}}_{0,n}} + G$ for some effective boundary G and $c \geq 0$. If $C \cdot E < 0$, then $C \subset G$.
- If E is an F-nef divisor such that for each inclusion of a boundary $b: \overline{\mathrm{M}}_{0,k} \hookrightarrow \overline{\mathrm{M}}_{0,n}, \ b^*(E) = c' K_{\overline{\mathrm{M}}_{0,k}} + G'$, then E is nef.
- Verified this condition for S_n-invariant F-nef divisors using a computer program.

Theorem (Fedorchuk, 14)

Over any field, the S_n -invariant F-conjecture is true for $n \leq 16$.

• Every divisor can be written as
$$D = \sum_{i=1}^{n} a_i \psi_i - \sum_I b_I D_I.$$

- Studied carefully relations in the Picard group and the change of a_i , b_I when D is restricted to boundaries
- Combinatorial conditions on a_i , b_I for being stratally effective boundary (= D is an effective linear combination of boundaries after taking the restriction to each boundary) and being boundary semi-ample (= the sub linear system of |mD| generated by effective linear combinations of boundaries is base-point-free).
- Defined several collections of functions describing the coefficients a_i and b_I of stratally effective boundary and boundary semi-ample divisors.
- Provided infinitely many examples.

Known results

The moduli space $\overline{\mathrm{M}}_{0,n}$ is embedded into a (non-proper) toric variety X_{Δ} where Δ is a fan, the so-called space of phylogenetic trees.

Let $i: \overline{\mathrm{M}}_{0,n} \hookrightarrow X_\Delta$ be the embedding.

- G_{Δ} : cone of semi-ample divisors on X_{Δ}
- $L_{\Delta}:$ cone of divisors on X_{Δ} so that the restriction to each orbit closure is effective
- F_{Δ} : cone of divisors on X_{Δ} so that the restriction to each (d+1)-dimensional orbit closure (d = dimension of minimal orbits) is effective

Theorem (Gibney-Maclagan, 10)

 $i^*(G_{\Delta}) \subset i^*(L_{\Delta}) \subset \operatorname{Nef}(\overline{\mathrm{M}}_{0,n}) \subset i^*(F_{\Delta})$

and $i^*(F_{\Delta})$ is the cone of F-nef divisors.

Proved the equality for $n \leq 6$.

Theorem (M-Swinarski)

Over Spec \mathbb{Z} , for every S_n -invariant F-nef integral divisor D, the following statements are true.

- If $n \leq 19$, D is semi-ample.
- 2 If $n \leq 16$, 2D is base-point-free.

Corollary

If $n \leq 16$ and D is ample, then 2D is very ample.

It follows from the very ampleness of $K_{\overline{\mathrm{M}}_{0,n}} + D$ (Keel-Tevelev).

Conjecture (Swinarski)

Over Spec \mathbb{Z} , for every S_n -invariant F-nef integral divisor D, 2D is base-point-free.

true for $n\leq 16$

Conjecture (M)

Over Spec \mathbb{Z} , for every S_n -invariant F-nef integral divisor D, D is base-point-free.

true for $n \leq 11$ and 13, only one unknown case for each n=12,14,15

Part III

Graphical algebra and the S_n -invariant F-conjecture

Theorem (Kapranov, 93)

There is a birational morphism
$$\pi : \overline{\mathrm{M}}_{0,n} \to (\mathbb{P}^1)^n / / \mathrm{SL}_2.$$

 $\overline{\mathrm{M}}_{0,n}$: moduli space of possibly singular curves with distinct marked points.

 $(\mathbb{P}^1)^n/\!/\mathrm{SL}_2$: moduli space of smooth curves with not necessarily distinct marked points.

Kapranov's morphism

Assume n is odd. (When n is even, need to do some extra work around strictly semistable locus.)

A subset $I \subset [n]$ always satisfies $2 \le |I| \le n/2$.

Observation 1. The morphism π preserves stratifications. $\pi(D_I) = V(Z_{ij})_{i,j\in I} = \{(p_1, p_2, \cdots, p_n) \mid p_i = p_j, \forall i, j \in I\} =: V_I$ (here $Z_{ij} = X_i Y_j - X_j Y_i$) $|I| = 2 \Rightarrow V_I$ is a divisor $|I| > 2 \Rightarrow V_I$ is a higher codimensional subvariety

Observation 2. Any S_n -invariant F-nef divisor D can be written uniquely as

$$D = \pi^*(cL) - \sum_{i \ge 3} a_i D_i$$

$$\begin{split} L &= \sum_{|I|=2} V_I: \text{ an ample divisor in } \operatorname{Pic}((\mathbb{P}^1)^n /\!/ \operatorname{SL}_2)^{S_n} \\ D_i &= \sum_{|I|=i} D_I, \quad c, a_i \geq 0 \end{split}$$

Identification of linear systems

$$D = \pi^*(cL) - \sum_{i \ge 3} a_i D_i$$
$$|D| = |\pi^*(cL) - \sum_{i \ge 3} a_i D_i| \cong |cL|_{\mathbf{a}} \subset |cL|$$

where $|cL|_{\mathbf{a}} := \{E \in |cL| \mid \text{multiplicity along } V_I \ge a_{|I|}\}.$ $\mathbf{a} := (a_3, a_4, \cdots, a_{\lfloor n/2 \rfloor})$

Recall that for each directed graph Γ on [n], we can assign a monomial $Z_{\Gamma} := \prod_{ij \in E_{\Gamma}} Z_{ij}$, so a divisor on $(\mathbb{P}^1)^n / / \mathrm{SL}_2$.

 $|cL|_{\mathbf{a}} := \{ E \in |cL| \mid \text{multiplicity along } V_I \ge a_{|I|} \}$

 $Z_{\Gamma} \in |cL|_{\mathbf{a}}$ if

- For each i ∈ [n], the valence of i (the number of edges incident to i) is c(n-1) (⇔ Z_Γ ∈ |cL|);
- e For each *I* ⊂ [*n*], the number of edges connecting *i*, *j* ∈ *I* is at least $a_{|I|}$ (⇔ *Z*_Γ ∈ |*cL*|_a).

 $\Rightarrow \qquad Z_{\Gamma} \in |L|_{a_3=2}$

Combinatorial interpretation

 $|cL|_{\mathbf{a},G}:$ sub linear system of $|cL|_{\mathbf{a}}$ generated by graphical monomials.

 $|D|_G$: sub linear system of |D| which is identified with $|cL|_{\mathbf{a},G}$.

Definition

An S_n -invariant F-nef divisor D is G-base-point-free if $|D|_G$ is base-point-free.

- D is G-base-point-free $\Rightarrow D$ is base-point-free.
- $Bs(|D|_G)$ is a union of boundary strata.
- If $Bs(|D|_G)$ is nonempty, there must be an F-point in $Bs(|D|_G)$.

Combinatorial interpretation

 $\begin{array}{l} D \text{ is } G\text{-base-point-free} \\ \Leftrightarrow \forall \text{ F-point } F = \cap_{I \in T} D_I, \exists E \in |D|_G, F \notin E \\ \Leftrightarrow \forall \text{ F-point } F = \cap_{I \in T} D_I, \exists E' \in |cL|_{\mathbf{a},G}, E' \text{ has the minimum} \\ \text{multiplicity along } V_I \text{ for } I \in T. \\ \Leftrightarrow \forall \text{ F-point } F = \cap_{I \in T} D_I, \exists Z_{\Gamma} \in |cL|_{\mathbf{a},G}, Z_{\Gamma} \text{ has the minimum} \\ \text{multiplicity } (= a_{|I|}) \text{ along } V_I \text{ for } I \in T. \end{array}$

Proposition

For an S_n -invariant F-nef divisor $D = \pi^*(cL) - \sum_{i \ge 3} a_i D_i$, |D| is G-base-point-free if for every F-point $F = \bigcap_{I \in T} D_I$, there is a graph Γ such that:

- For each $i \in [n]$, the valence of i is c(n-1);
- **③** For each $I \subset [n]$, the number of edges connecting $i, j \in I$ is at least $a_{|I|}$;
- **9** For each $I \in T$, the number of edges connecting $i, j \in I$ is precisely $a_{|I|}$.

For each $c, a_3, a_4, \cdots, a_{\lfloor n/2 \rfloor}$,

What we need to find: for each F-point $F = \bigcap_{I \in T} D_I$, a graph weighting $w : E_{K_n} \to \mathbb{Z}$, such that:

w(ij) ≥ 0;
For each i ∈ [n], ∑_{j≠i} w(ij) = c(n − 1);
For each I ⊂ [n], ∑_{i,j∈I} w(ij) ≥ a_{|I|};
For each I ∈ T, ∑_{i,j∈I} w(ij) = a_{|I|}.

This is a feasibility problem (= the nonemptiness of a polytope).

Computational problem:

- Choose an F-point F for each S_n-orbit. Let P be the set of such representatives.
- **②** For each $F \in P$, make a polytope Q(F) described by the above equations and inequalities.

- This computation is faster than expectation: For instance, for small n, for most of extremal rays of the S_n -invariant F-nef cone, $\cap_{F \in P} Q(F) \neq \emptyset$.
- The cone of G-semi-ample divisors is a polyhedral lower bound of Nef(M
 _{0,n})^{S_n}.
- *D* is *G*-semi-ample \Leftrightarrow *D* is *S*_n-invariant boundary semi-ample (Fedorchuk) \Leftrightarrow *D* \in *i*^{*}(*G*_Δ)^{*S*_n} (Gibney-Maclagan)

So for $n \leq 19$,

$$i^*(G_{\Delta})^{S_n} = i^*(L_{\Delta})^{S_n} = \operatorname{Nef}(\overline{\mathcal{M}}_{0,n})^{S_n} = i^*(F_{\Delta})^{S_n}$$

Thank you!