Classical Invariant Theory and Birational Geometry of Moduli Spaces of Parabolic Bundles

Han-Bom Moon

Department of Mathematics Fordham University

January 6, 2017

Joint work with Sang-Bum Yoo

Birational geometry and Mori's program

X: smooth projective variety

Question

Classify projective varieties (birational models) that share an open dense subset with X and are equivalent to or simpler than X.

Mori's program provides a theoretical framework.

- Compute the cone Eff(X) of effective divisors of X.
- For each $D \in int(Eff(X))$, construct and compute a birational model

$$X(D) := \operatorname{Proj} \bigoplus_{m \ge 0} \operatorname{H}^0(X, \mathcal{O}(mD)).$$

Study the relation between X and X(D).

If X is a Mori dream space, at least theoretically this program can be completed.

Problem

Apply Mori's program to moduli spaces.

Only non-trivial higher dimensional examples we can investigate in detail.

Many birational models of moduli spaces are again moduli spaces, too.

- Birational models of $\overline{\mathrm{M}}_g$: moduli spaces of curves with worse singularities.
- Birational models of $\overline{\mathrm{M}}_0(\mathbb{P}^d,d)$: Hilbert scheme, Chow variety, etc.
- Birational models of moduli spaces of sheaves: moduli spaces of Bridgeland stable objects.

Except toric varieties and the case that $\dim \text{Eff}(X) = 2$, there are few completed examples.

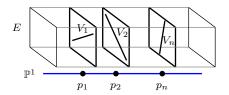
Moduli space of parabolic vector bundles

Fix n distinct points $\mathbf{p} = (p_1, \cdots, p_n)$ on \mathbb{P}^1 .

Definition

A rank 2 parabolic bundle on \mathbb{P}^1 with parabolic points \mathbf{p} is a collection of data $(E, \{V_i\})$ where

- *E* is a rank 2 vector bundle on \mathbb{P}^1 ;
- 2 V_i is a 1-dimensional subspace of $E|_{p_i}$.



 $\mathrm{M}_{\mathbf{p}}(d)$: moduli space of rank 2 degree d parabolic bundles \cdots highly non-separated

To obtain a projective moduli space, we introduce a stability condition \mathbf{a} . $M_{\mathbf{p}}(d, \mathbf{a})$: moduli space of rank 2 degree d \mathbf{a} -semistable parabolic bundles

Theorem (M-Yoo, 16)

Let $M := M_p(0, \mathbf{a})$ be the moduli space of rank 2 a-semistable parabolic bundles on \mathbb{P}^1 with parabolic points $\mathbf{p} = (p_1, \cdots, p_n)$.

- $Im Eff(M) \le n+1.$
- When dim Eff(M) = n + 1, Eff(M) is generated by 2ⁿ⁻¹ extremal rays.
- So For every $D \in Eff(M)$, $M(D) = M_q(d, b)$.

Outline of the proof:

- $\textbf{O} Scale up a \Rightarrow measure the change of M (wall-crossing behavior)$
- **③** Translate the question into the theory of \mathfrak{sl}_2 -conformal blocks
- Investigate their properties via combinatorics of (boxed) Catalan paths

Initial step of the proof and classical invariant theory

$$M_{\mathbf{p}}(0, \mathbf{a}) = \{(\mathcal{O}^{2}, (V_{1}, \cdots, V_{n})) \mid V_{i} \subset \mathcal{O}^{2}|_{p_{i}}\}/_{\sim}$$

= $\{(V_{1}, \cdots, V_{n}) \mid V_{i} \subset \mathbb{C}^{2}\}/_{\sim}$
= $\{(q_{1}, \cdots, q_{n}) \mid q_{i} \in \mathbb{P}^{1}\}/_{\sim}$
= "(\mathbb{P}^{1})"//aSL₂

When a is small, $M_{\mathbf{p}}(0, \mathbf{a}) = (\mathbb{P}^1)^n //_{\mathbf{a}} SL_2$.

Divisors on $(\mathbb{P}^1)^n / /_{\mathbf{a}} SL_2 \Leftrightarrow SL_2$ -invariant divisors on $(\mathbb{P}^1)^n$ $\Leftrightarrow \mathbb{C}[X_i, Y_i]_{1 \le i \le n}^{SL_2}$

Theorem (Clebsch, 1872, First fundamental theorem of invariant theory)

The invariant ring $\mathbb{C}[X_i, Y_i]_{1 \le i \le n}^{\mathrm{SL}_2}$ is generated by $X_i Y_j - X_j Y_i$.

The effective cone of $(\mathbb{P}^1)^n/\!/_{\mathbf{a}} SL_2$ is the cone over a hypersimplex $\Delta(2,n).$

... and the story begins...

Thank you!