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Moduli Spaces
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Classification problem

Problem

Find all possible mathematical objects with given conditions or axioms.

Finite dimensional vector spaces

cyclic groups

finite simple groups

Poincaré conjecture: a consequence of the classification of three

dimensional compact manifolds
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Classification problem

Question

Find all possible plane conics.

circle, ellipse, parabola, hyperbola, + some degenerated cases including

two lines.

All plane conics are obtained by varying parameters of the same

equation.
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Classification problem

Question

Find all possible plane conics.

Let’s collect all possible equations of conics!

conic = Z(h) = {(x, y) ∈ R2 | h(x, y) = 0} for some degree 2

polynomial h(x, y) = ax2 + bxy + cy2 + dx+ ey + f

We need 6 numbers to give such a polynomial.

A nonzero scalar multiple gives the same conic.

The space of conics:

MC = {(a, b, c, d, e, f) ∈ R6 | a 6= 0 or b 6= 0 or c 6= 0}/ ∼ .

Such MC is called the moduli space of plane conics.
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Moduli spaces

Definition

A moduli space is a space parametrizing a certain kind of geometric

objects.

So a moduli space is an answer to a geometric classification problem.

Informally, we may think a moduli space as a dictionary of geometric

objects.

Examples:

Projective space Pn−1: moduli space of one-dimensional sub vector

spaces of Rn

Grassmannian Gr(r, n): moduli space of r-dimensional sub vector

spaces of Rn

moduli space of circles on a plane: R× R× R+
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Moduli space of triangles

A triangle on R2 can be described by three vertices,

v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3).

To get a triangle, three vertices v1, v2, v3 must not be collinear.

Set

C = {(v1, v2, v3) ∈ R6 | v1, v2, v3 are collinear}

Then the moduli space MT of triangles seems to be

MT = R6 − C.

But...
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Moduli space of triangles

But three points v2, v3, v1 define the same triangle.

More generally, a permutation of v1, v2, v3 defines the same triangle.

In algebraic terms, there is a S3 group action on R6 − C and

MT = (R6 − C)/S3,

the quotient space (or orbit space).

Many moduli spaces are constructed in this way.

Lesson: Group actions and algebraic quotients are very important tools

in moduli theory.
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Moduli spaces of subvarieties

An algebraic variety (in Rn) is a common zero set of polynomials

f1, · · · , fm ∈ R[x1, · · · , xn].

Z(f1, · · · , fm) = {(x1, · · · , xn) | f1 = · · · fm = 0}.

Note that Z(f, g) = Z(2f, g) = Z(f + g, g) = Z(f + hg, g) = · · ·

Two sets of polynomials {f1, · · · , fm} and {g1, · · · , gk} define the

same algebraic variety if they generate the same ideal.

In summary:

variety (geometry) ⇔ ideal (algebra)
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Hilbert scheme

Recall that an algebraic variety is determined by an ideal.

Moduli space of algebraic varieties in Rn ⇔ moduli space of ideals in

R[x1, · · · , xn]

Definition

The Hilbert scheme Hilb(Rn) is the moduli space of varieties in Rn (=

moduli space of ideals in R[x1, · · · , xn]).

In modern algebraic geometry, we prefer to use Hilb(Pn) (moduli space

of varieties in a complex projective space).

Theorem (Grothendieck)

Hilb(Pn) exists and it is a projective scheme.
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Moduli spaces

Alexander Grothendieck, 1928 ∼ 2014
More examples:

Mg: moduli space of smooth complex curves of genus g

Mg: moduli space of stable curves of genus g

Mg,n: moduli space of stable n-pointed curves of genus g

Mg(Pr, d): moduli space of stable genus g degree d curves in Pr

MC(r, d): moduli space of rank r stable vector bundles of degree

d on a curve C
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Main question

Question

How can one construct such moduli spaces rigorously?
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Part II

Invariant theory
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Toy example

Let Q[x, y] be the polynomial ring with two variables.

Define Z/2Z = 〈σ〉-action on Q[x, y] by σ · x = −x, σ · y = −y.

For instance, σ · x3 = (−x)3 = −x3, σ · xy = (−x)(−y) = xy.

Question

Find all polynomials such that σ · f = f .

Example: x2, xy, y2, any polynomial f(x2, xy, y2).

Answer: The set of such polynomials forms a subring

Q[x2, xy, y2] ∼= Q[a, b, c]/〈ac− b2〉.
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Toy example
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Old question

G: group

V : G-representation, i.e., a vector space over k equipped with a linear

G-action

k[V ]: ring of polynomial functions on V

There is an induced G-action on k[V ]. We say f ∈ k[V ] is a

G-invariant (or simply invariant) if for every σ ∈ G, σ · f = f . Or

equivalently, f(σ · v) = f(v).

k[V ]G: subring of G-invariants

Question

Describe k[V ]G.
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First example - Symmetric group

G = Sn, V = kn with a standard basis {v1, v2, · · · , vn}
Sn acts on V as permutations of {vi}.
k[V ] = k[x1, · · · , xn], and Sn-action on k[V ] is a permutation of {xi}.
Examples of Sn-invariants:

e1 := x1 + x2 + · · ·+ xn,

e2 :=
∑
i<j

xixj ,

e3 :=
∑
i<j<k

xixjxk,

...

en := x1x2 · · · · · xn

Theorem (Gauss, 1815)

As a k-algebra, k[V ]Sn is generated by e1, e2, · · · , en.
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More examples - Linear algebra

V = Mn×n: set of n× n matrices, G = GLn

There is the conjugation action on V defined by σ ·A := σAσ−1 (basis

change!).

k[V ] = k[x11, x12, · · · , xnn]

Examples of G-invariants:

trace : x11 + x22 + · · ·+ xnn,

determinant :
∑
τ∈Sn

sgn(τ)

n∏
i=1

xiτ(i).

More generally, coefficients of the characteristic polynomial are

invariants.

Theorem

As a k-algebra, k[V ]G is generated by coefficients of the characteristic

polynomials. Therefore k[V ]G ∼= k[a1, a2, · · · , an].
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More examples - Homogeneous polynomials

k = Q, R, or C

Vd = {a0xd + a1x
d−1y + · · ·+ ady

d}: set of degree d homogeneous

polynomials of degree d with two variables x, y

k[Vd] = k[a0, a1, · · · , ad]

G = SL2 acts on Vd by

(
α β

γ δ

)
· g(x, y) = g(αx+ βy, γx+ δy)

k[V2]
SL2 = k[a21 − 4a0a2]

k[V3]
SL2 = k[a21a

2
2 − 4a0a

3
2 − 4a31a3 − 27a20a

2
3 + 18a0a1a2a3]

k[V4]
SL2 = k[f2, f3], where

f2 = a0a4 −
a1a3
4

+
a22
12
, f3 =

∣∣∣∣∣∣∣∣
a0 a1/4 a2/6

a1/4 a2/6 a3/4

a2/6 a3/4 a4

∣∣∣∣∣∣∣∣ .
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More examples - Homogeneous polynomials

k[V5]
SL2 is generated by f4, f8, f12, f18, where

f4 =− 2a22a
2
3 + 6a1a

3
3 + 6a32a4 − 19a1a2a3a4 − 15a0a

2
3a4

+ 9a21a
2
4 + 40a0a2a

2
4 − 15a1a

2
2a5 + 40a21a3a5

+ 25a0a2a3a5 − 250a0a1a4a5 + 625a20a
2
5.

There is one relation (of degree 36) between them.

k[V6]
SL2 is generated by f2, f4, f6, f10, f15.

k[V7]
SL2 is generated by 30 generators.

k[V8]
SL2 is generated by f2, f3, f4, f5, f6, f7, f8, f9, f10.

k[V9]
SL2 is generated by 92 generators.

k[Vd]
SL2 is unknown for d ≥ 11.
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Hilbert’s 14th problem

Masayoshi Nagata, 1927 ∼ 2008

Question (Hilbert’s 14th problem)

Can one always find finitely many generators f1, · · · , fr such that

k[V ]G = k[f1, · · · , fr]?

Answer (Nagata, 1959): No. There are G and V such that k[V ]G is

not finitely generated.
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Hilbert’s 14th problem

David Hilbert, 1862 ∼ 1943

Hilbert himself had a positive result.

Theorem (Hilbert, 1890)

If G is a linearly reductive group, then k[V ]G is finitely generated.

G is linearly reductive if for every surjective morphism of

G-representations f : V →W , fG : V G →WG is surjective.

Examples (over C): finite groups, (C∗)n, GLn, SLn, SOn, Spn, · · ·
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Proof

S := k[V ] · · · a polynomial ring

J : ideal generated by positive degree invariants

By Hilbert’s basis theorem, J = (f1, · · · , fn).

Claim: As a k-algebra, SG is generated by f1, · · · , fn.

The S-module honomorphism φ : Sn → J , defined by

(h1, · · · , hn) 7→
∑
hifi is surjective.

We use induction on the degree. Pick h ∈ SG. Then h ∈ J ∩ SG = JG.

By the linear reductivity, (SG)n → JG is surjective, so we have

h =
∑
hifi where hi ∈ SG.

deg hi < deg h. By induction hypothesis, hi is generated by f1, · · · , fn.

So is h. �

This is exactly the reason why Hilbert proved the famous basis theorem.
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Summary

(Classical) Invariant theory is one of origins of modern

development of abstract algebra.

It is computationally very complicated. So it was once died in early

20th century.

It is now one of active research areas because of computers.

Its geometric counterpart, geometric invariant theory is an

important tool in modern algebraic geometry, in particular moduli

theory.
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Part III

Geometric Invariant Theory
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Quotient space

X: topological space

G acts on X

X/G := orbit space = {[x] | x ∈ X, [x] = [y]⇔ ∃g ∈ G, g · x = y}

Two natural properties that we desire:

1 There is a surjective continuous map (quotient map)

π : X → X/G

x 7→ [x]

2 If X is an algebraic variety, X/G is also an algebraic variety.
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Quotient space

There is no such a quotient algebraic variety!

Example: C∗ acts on C2 as t · (x, y) = (t−1x, ty).
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Quotient space

Orbits:

[(x, y)] = [(x−1x, xy)] = [(1, x−1y)]

if x 6= 0.

[(0, y)] = [(y−10, y−1y)] = [(0, 1)] if

y 6= 0.

[(0, 0)]

limt→0(t, t) = (0, 0) on C2 ⇒ limt→0[(t, t)] = [(0, 0)] on C2/C∗

limt→0(t
2, 1) = (0, 1) on C2 ⇒ limt→0[(t

2, 1)] = [(0, 1)] on C2/C∗

But [(t, t)] = [(t2, 1)]⇒ limt→0[(t, t)] = limt→0[(t
2, 1)]...?

C2/C∗ cannot be Hausdorff!
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Philosophy - Definition

Algebraic geometry is a study of geometric objects via (polynomial)

functions.

If two points cannot be distinguished by a function, we cannot

distinguish them!

Definition

Let X = Spec R and suppose that G acts on X. Let RG be the ring

of invariant functions.

The affine GIT quotient is X//G := Spec RG.

R is the space of functions on X.

RG is the space of invariant functions on X ⇔ the space of functions

on X/G.
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Examples - revisited

C∗ acts on C2 as t · (x, y) = (t−1x, ty).

C2 = Spec C[x, y]
C[x, y]C∗

= C[xy]
C2//C∗ = Spec C[xy] = C

GLn acts on Mn×n = Spec C[x11, · · · , xnn] as σ ·A = σAσ−1.

C[x11, · · · , xnn]GLn = C[a1, · · · , an] · · · polynomial ring generated by

coefficients of the characteristic polynomial

Mn×n//GLn = Spec C[a1, · · · , an] = Cn

G := Z/2Z = 〈σ〉 acts on Spec C[x, y] as σ · (x, y) = (−x,−y).
C[x, y]G = C[x2, xy, y2] ∼= C[a, b, c]/〈ac− b2〉

C2/G = Spec C[a, b, c]/〈ac− b2〉 = quadric surface in C3
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Geometric Invariant Theory - Definition

David Mumford, 1937 ∼

Mumford wanted to obtain projective quotients of projective varieties.

Definition

R =
⊕

d≥0Rd · · · graded ring

X = Proj R: associated projective variety, G acts on X

The GIT quotient of X is X//G := Proj RG.

There are three very important features of GIT quotient.
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1. X//G is NOT the quotient of X

RG ↪→ R ⇒ π : X = Proj R 99K Proj RG = X//G

π is defined only on an open subset of Proj R.

x ∈ X ⇔ mx: nontrivial maximal homogeneous ideal of R

π(x) exists ⇔ mx ∩RG 6=
⊕

d>0R
G
d

⇔ ∃f ∈
⊕

d>0R
G, f(x) 6= 0

Definition

X = Proj R projective variety with G-action

x ∈ X is semi-stable if there is a non-constant G-invariant

homogeneous polynomial f ∈ R such that f(x) 6= 0.

Xss: the set of semi-stable points in X.

Xus: the set of unstable points = X \Xss

Then π : Xss → X//G is a surjective continuous map.
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2. X//G is NOT the orbit space of Xss

Two or more orbits may be identified in X//G.

For the quotient map π : Xss → X//G,

π(x) = π(y)⇔ G · x ∩G · y 6= ∅

Example:

C∗ acts on P2 as t · (x : y : z) = (tx : t−1y : z)

(0 : 0 : 1) and (1 : 0 : 1) are in distinct orbits

t · (1 : 0 : 1) = (t : 0 : 1), limt→0(t : 0 : 1) = (0 : 0 : 1) ⇒ orbit closures

intersect

⇒ π(0 : 0 : 1) = π(1 : 0 : 1)

But for each [x] ∈ X//G, there is a unique closed orbit in Xss
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2. X//G is NOT the orbit space of Xss

Definition

We say x ∈ Xss is stable if dimG · x = dimG and G · x is closed in

Xss.

Xs: set of stable points ⊂ Xss

π : Xs → π(Xs) ⊂ X//G is the orbit space of Xs
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3. X//G depends on the G-action on R

Recall that X//G = Proj RG · · · need G-action on R

Distinct G-actions on R may provide the same G-action on X!

Example:

Three C∗ actions on C[x, y, z]

1 t · (x, y, z) = (tx, t−1y, t−1z)

2 t · (x, y, z) = (t2x, y, z)

3 t · (x, y, z) = (t3x, ty, tz)

They give the same action on P2 = Proj C[x, y, z], because

(tx : t−1y : t−1z) = (t2x : y : z) = (t3x : ty : tz)
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3. X//G depends on the G-action on R

1 t · (x, y, z) = (tx, t−1y, t−1z)

C[x, y, z]C∗
= C[xy, xz] ⇒ P2//C∗ = Proj C[xy, xz] = P1

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) · · · unstable

2 t · (x, y, z) = (t2x, y, z)

C[x, y, z]C∗
= C[y, z] ⇒ P2//C∗ = Proj C[y, z] = P1

(1 : 0 : 0): unstable, (0 : 1 : 0), (0 : 0 : 1): semi-stable (but not

stable)

3 t · (x, y, z) = (t3x, ty, tz)

C[x, y, z]C∗
= C ⇒ P2//C∗ = Proj C = ∅
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3. X//G depends on the G-action on R

Definition

G acts on X = Proj R

A linearization of G-action on X is a G-action on R which induces the

G-action on X.

It is not unique in general.

There is another issue on the choice of polarization - it is possible that

Proj R = Proj S even though R 6= S. We do not investigate it here.
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Hilbert-Mumford criterion

The reason why GIT quotient has been so successful is that there is a

combinatorial criterion for (semi-)stability.

X = Proj R ⊂ Pn. There is a linearized G-action on R

⇒ G-action on Cn+1

Let λ : C∗ → G be a non-trivial homomorphism (one-parameter

subgroup (1-PS)).

We have the induced C∗-action on Cn+1. For x = (x0 : x1 : · · · : xn),

t · (x0, x1, · · · , xn) = (tm0x0, t
m1x1, · · · , tmnxn)

Definition

The Hilbert-Mumford index is µ(λ, x) := min{mi | xi 6= 0}.

Han-Bom Moon Geometric Invariant Theory and Construction of Moduli Spaces



Hilbert-Mumford criterion

Definition

The Hilbert-Mumford index is µ(λ, x) := min{mi | xi 6= 0}.

Theorem (Hilbert-Mumford criterion, Ver 1)

1 x ∈ Xss ⇔ ∀ 1-PS λ, µ(λ, x) ≤ 0

2 x ∈ Xs ⇔ ∀ 1-PS λ, µ(λ, x) < 0

3 x ∈ Xus ⇔ ∃ 1-PS λ, µ(λ, x) > 0

A direct computation is very trickly in general, but when G is a torus

(= (C∗)n), it is a purely combinatorial problem.
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Hilbert-Mumford criterion

Let T be a maximal torus of G.

Example: G = GLn,SLn ⇒ T = set of diagonal matrices in G

∼= (C∗)n).

Xss
T : the semi-stable locus for the T -action.

Theorem (Hilbert-Mumford criterion, Ver 2)

1 x ∈ Xss ⇔ ∀ g ∈ G, g · x ∈ Xss
T

2 x ∈ Xs ⇔ ∀ g ∈ G, g · x ∈ Xs
T

3 x ∈ Xus ⇔ ∃ g ∈ G, g · x /∈ Xss
T
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Summary

The GIT quotient provides a method to construct an algebraic

‘quotient’ X//G of a projective variety X.

X//G is a ‘quotient’ of Xss ⊂ X, the semi-stable locus.

X//G contains a genuine quotient Xs/G of Xs, the stable locus.

X//G depends on the choice of linearization.
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Part IV

GIT and Moduli Spaces
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Moduli space of curves

Mg: moduli space of smooth genus g complex curves (= Riemann

surfaces)

Mg: moduli space of stable genus g complex curves (=

compactification of Mg)

Mg = {C | g(C) = g, C has at worst nodal singularities, |Aut(C)| <
∞}

Problem

Construct the moduli space Mg as an algebraic variety.
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Construction of moduli spaces of curves

Main idea: Moduli space of (abstract) varieties = moduli space of

subvarieties in Pr/Aut(Pr) = Hilb(Pr)/Aut(Pr)

Find a ‘canonical’ embedding of C in Pr ⇔ Find a ‘canonical’ line

bundle on C · · · ωC (dualizing bundle)

C ∈Mg ⇒ ωnC is very ample if n ≥ 3

C
|ωn

C |
↪→ Pr

r = dimH0(C,ωnC)− 1 = (2n− 1)(g − 1)− 1

This embedding is unique up to a choice of ordered basis of H0(C,ωnC)

⇒ need SLr+1-quotient.

degC = 2n(g − 1) =: d, P (m) = dm+ 1− g

(C ⊂ Pr) ∈ HilbP (m)(Pr) ⊂ Hilb(Pr) · · · subvariety parametrizing

varieties with Hilbert polynomial P (m)
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Construction of moduli spaces of curves

K := {C ⊂ Pr−1 | O(1)|C ∼= ωnC} ⊂ HilbP (m)(Pr)

It contains curves with very nasty singularities, too. However,

Theorem (Gieseker)

If n ≥ 5, K//SLr+1 = Kss/SLr+1 = Ks/SLr+1
∼=Mg.

The point is that because K//SLr+1 is the quotient of Kss, we can

exclude many bad points!

Corollary

Mg ⊂ HilbP (m)(Pr)//SLr+1. Therefore Mg is a projective variety.
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Construction of moduli spaces of curves

The stability computation can be reduced to a combinatorial

computation.

HilbP (m)(Pr) ↪→ Gr(SymmCr+1, P (m)) ↪→ P(
∧P (m)

Symm(Cr+1)∗)

C ⊂ Pr · · · curve in Pr

IC · · · ideal of functions vanishing along C

H0(Pr, IC(m)) · · · vector space of degree m polynomials vanishing

along C

If m� 0, we have a short exact sequence

0→ H0(Pr, IC(m))→ H0(Pr,OPr (m))→ H0(C,OC(m))→ 0

· · · P (m)-dimensional quotient space of a fixed
(
r+m
m

)
-dimensional

vector space · · · a point on Grassmannian.
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Construction of moduli spaces of curves

HilbP (m)(Pr) ↪→ Gr(SymmCr+1, P (m)) ↪→ P(
∧P (m)

Symm(Cr+1)∗)

∧P (m)
H0(Pr−1,OPr−1(m))→

∧P (m)
H0(C,OC(m))→ 0 · · ·

1-dimensional quotient space of a fixed vector space

0→
∧P (m)

H0(C,OC(m))∗ →
∧P (m)

H0(Pr−1,OPr−1(m))∗ · · ·
1-dimensional subspace of a fixed vector space · · · a point on a

projective space.

Now K ⊂ HilbP (m)(Pr) ⊂ P(
∧P (m)

Symm(Cr+1)∗) and

Mg = K//SLr+1 ⊂ P(
∧P (m)

Symm(Cr+1)∗)//SLr+1.

Do the GIT stability computation on the right hand side.
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Genus 0, pointed curve cases

Consider moduli spaces of genus 0, n-pointed curves.

There is a ‘canonical’ compact moduli space

M0,n :=


|

g(C) = 0

pi : distinct smooth points

Aut <∞


/∼

· · · Deligne-Mumford compactification, or moduli space of n-pointed

stable rational curves.

There are also many alternative moduli spaces including Hassett’s

moduli spaces of weighted pointed stable curves M0,A,

Kontsevich-Boggi space M
Bog

0,n , and so on.

Question

Can one find a unified construction of all of such moduli spaces?
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Genus 0, pointed curve cases

Natural construction:

Chow1,d(Pd) := Chow variety of dimension 1, degree d cycles in Pd

Ud,n := {(C, x1, · · · , xn) | xi ∈ C} ⊂ Chow1,d(Pd)× (Pd)n

Ud,n//SLd+1 is a candidate of a moduli space

Theorem (Giansiracusa, Jensen, M)

1 We determined linearizations with Ussd,n 6= ∅.

2 We computed Ussd,n for each linearization. There is a purely

combinatorial description.

3 All currently known projective moduli spaces of genus 0 curves can

be obtained as Ud,n//SLd+1 and there are more.

4 M0,n is dominant among them - there is a birational morphism

M0,n → Ud,n//SLd+1.
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Thank you!
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