# Geometric Invariant Theory and Construction of Moduli Spaces

Han-Bom Moon

Department of Mathematics Fordham University

May, 2016

# Part I

# Moduli Spaces

Han-Bom Moon Geometric Invariant Theory and Construction of Moduli Spaces

### Problem

Find all possible mathematical objects with given conditions or axioms.

- Finite dimensional vector spaces
- cyclic groups
- finite simple groups
- Poincaré conjecture: a consequence of the classification of three dimensional compact manifolds

## **Classification problem**

#### Question

Find all possible plane conics.



circle, ellipse, parabola, hyperbola, + some degenerated cases including two lines.

All plane conics are obtained by varying parameters of the same equation.

#### Question

Find all possible plane conics.

Let's collect all possible equations of conics! conic =  $Z(h) = \{(x, y) \in \mathbb{R}^2 \mid h(x, y) = 0\}$  for some degree 2 polynomial  $h(x, y) = ax^2 + bxy + cy^2 + dx + ey + f$ We need 6 numbers to give such a polynomial. A nonzero scalar multiple gives the same conic. The space of conics:

$$M_C = \{(a, b, c, d, e, f) \in \mathbb{R}^6 \mid a \neq 0 \text{ or } b \neq 0 \text{ or } c \neq 0\} / \sim .$$

Such  $M_C$  is called the moduli space of plane conics.

## Moduli spaces

#### Definition

A moduli space is a space parametrizing a certain kind of geometric objects.

So a moduli space is an answer to a geometric classification problem. Informally, we may think a moduli space as a dictionary of geometric objects.

Examples:

- Projective space  $\mathbb{P}^{n-1}$ : moduli space of one-dimensional sub vector spaces of  $\mathbb{R}^n$
- Grassmannian Gr(r, n): moduli space of r-dimensional sub vector spaces of  $\mathbb{R}^n$
- $\bullet$  moduli space of circles on a plane:  $\mathbb{R}\times\mathbb{R}\times\mathbb{R}^+$

A triangle on  $\mathbb{R}^2$  can be described by three vertices,  $v_1 = (x_1, y_1), v_2 = (x_2, y_2), v_3 = (x_3, y_3).$ 

To get a triangle, three vertices  $v_1, v_2, v_3$  must not be collinear. Set

 $C = \{ (v_1, v_2, v_3) \in \mathbb{R}^6 \mid v_1, v_2, v_3 \text{ are collinear} \}$ 

Then the moduli space  $M_T$  of triangles seems to be

$$M_T = \mathbb{R}^6 - C.$$

But...

But three points  $v_2, v_3, v_1$  define the same triangle.

More generally, a permutation of  $v_1, v_2, v_3$  defines the same triangle.

In algebraic terms, there is a  $S_3$  group action on  $\mathbb{R}^6-C$  and

$$M_T = (\mathbb{R}^6 - C)/S_{3,2}$$

the quotient space (or orbit space).

Many moduli spaces are constructed in this way.

Lesson: Group actions and algebraic quotients are very important tools in moduli theory.

An algebraic variety (in  $\mathbb{R}^n$ ) is a common zero set of polynomials  $f_1, \dots, f_m \in \mathbb{R}[x_1, \dots, x_n].$ 

$$Z(f_1, \cdots, f_m) = \{ (x_1, \cdots, x_n) \mid f_1 = \cdots f_m = 0 \}.$$

Note that  $Z(f,g) = Z(2f,g) = Z(f+g,g) = Z(f+hg,g) = \cdots$ 

Two sets of polynomials  $\{f_1, \dots, f_m\}$  and  $\{g_1, \dots, g_k\}$  define the same algebraic variety if they generate the same ideal.

In summary:

variety (geometry) 
$$\Leftrightarrow$$
 ideal (algebra)

Recall that an algebraic variety is determined by an ideal.

```
Moduli space of algebraic varieties in \mathbb{R}^n \Leftrightarrow moduli space of ideals in \mathbb{R}[x_1,\cdots,x_n]
```

#### Definition

The Hilbert scheme  $\operatorname{Hilb}(\mathbb{R}^n)$  is the moduli space of varieties in  $\mathbb{R}^n$  (= moduli space of ideals in  $\mathbb{R}[x_1, \cdots, x_n]$ ).

In modern algebraic geometry, we prefer to use  $Hilb(\mathbb{P}^n)$  (moduli space of varieties in a complex projective space).

#### Theorem (Grothendieck)

 $\operatorname{Hilb}(\mathbb{P}^n)$  exists and it is a projective scheme.

## Moduli spaces



Alexander Grothendieck, 1928  $\sim$  2014

More examples:

- $\mathcal{M}_g$ : moduli space of smooth complex curves of genus g
- $\overline{\mathcal{M}}_g$ : moduli space of stable curves of genus g
- $\overline{\mathcal{M}}_{g,n}$ : moduli space of stable *n*-pointed curves of genus g
- $\overline{\mathcal{M}}_g(\mathbb{P}^r, d)$ : moduli space of stable genus g degree d curves in  $\mathbb{P}^r$
- $M_C(r,d)$ : moduli space of rank r stable vector bundles of degree d on a curve C

### Question

How can one construct such moduli spaces rigorously?

# Part II

# Invariant theory

Let  $\mathbb{Q}[x, y]$  be the polynomial ring with two variables.

Define  $\mathbb{Z}/2\mathbb{Z} = \langle \sigma \rangle$ -action on  $\mathbb{Q}[x, y]$  by  $\sigma \cdot x = -x, \ \sigma \cdot y = -y.$ 

For instance,  $\sigma \cdot x^3 = (-x)^3 = -x^3$ ,  $\sigma \cdot xy = (-x)(-y) = xy$ .

#### Question

Find all polynomials such that  $\sigma \cdot f = f$ .

Let  $\mathbb{Q}[x, y]$  be the polynomial ring with two variables.

Define  $\mathbb{Z}/2\mathbb{Z} = \langle \sigma \rangle$ -action on  $\mathbb{Q}[x, y]$  by  $\sigma \cdot x = -x, \ \sigma \cdot y = -y.$ 

For instance,  $\sigma\cdot x^3=(-x)^3=-x^3,\ \sigma\cdot xy=(-x)(-y)=xy.$ 

#### Question

Find all polynomials such that  $\sigma \cdot f = f$ .

Example:  $x^2$ , xy,  $y^2$ , any polynomial  $f(x^2, xy, y^2)$ .

Answer: The set of such polynomials forms a subring

$$\mathbb{Q}[x^2, xy, y^2] \cong \mathbb{Q}[a, b, c] / \langle ac - b^2 \rangle.$$

 $G: \operatorname{group}$ 

 $V{:}\ G{\text{-}\mathsf{representation, i.e., a vector space over }k}$  equipped with a linear  $G{\text{-}\mathsf{action}}$ 

k[V]: ring of polynomial functions on V

There is an induced G-action on k[V]. We say  $f \in k[V]$  is a G-invariant (or simply invariant) if for every  $\sigma \in G$ ,  $\sigma \cdot f = f$ . Or equivalently,  $f(\sigma \cdot v) = f(v)$ .

 $k[V]^G$ : subring of G-invariants

### Question

Describe  $k[V]^G$ .

### First example - Symmetric group

 $G = S_n$ ,  $V = k^n$  with a standard basis  $\{v_1, v_2, \cdots, v_n\}$  $S_n$  acts on V as permutations of  $\{v_i\}$ .  $k[V] = k[x_1, \cdots, x_n]$ , and  $S_n$ -action on k[V] is a permutation of  $\{x_i\}$ . Examples of  $S_n$ -invariants:

$$e_1 := x_1 + x_2 + \dots + x_n,$$
  

$$e_2 := \sum_{i < j} x_i x_j,$$
  

$$e_3 := \sum_{i < j < k} x_i x_j x_k,$$

 $e_n := x_1 x_2 \cdots x_n$ 

Theorem (Gauss, 1815) As a k-algebra,  $k[V]^{S_n}$  is generated by  $e_1, e_2, \cdots, e_n$ . Han-Bom Moon Geometric Invariant Theory and Construction of Moduli Spaces

### More examples - Linear algebra

 $V = M_{n \times n}$ : set of  $n \times n$  matrices,  $G = GL_n$ 

There is the conjugation action on V defined by  $\sigma \cdot A := \sigma A \sigma^{-1}$  (basis change!).

 $k[V] = k[x_{11}, x_{12}, \cdots, x_{nn}]$ 

Examples of G-invariants:

trace : 
$$x_{11} + x_{22} + \cdots + x_{nn}$$
,

determinant : 
$$\sum_{\tau \in S_n} sgn(\tau) \prod_{i=1}^n x_{i\tau(i)}.$$

More generally, coefficients of the characteristic polynomial are invariants.

#### Theorem

As a k-algebra,  $k[V]^G$  is generated by coefficients of the characteristic polynomials. Therefore  $k[V]^G \cong k[a_1, a_2, \cdots, a_n]$ .

## More examples - Homogeneous polynomials

$$k = \mathbb{Q}, \mathbb{R}, \text{ or } \mathbb{C}$$

$$V_d = \{a_0 x^d + a_1 x^{d-1} y + \dots + a_d y^d\}: \text{ set of degree } d \text{ homogeneous}$$
polynomials of degree  $d$  with two variables  $x, y$ 

$$k[V_d] = k[a_0, a_1, \dots, a_d]$$

$$G = \operatorname{SL}_2 \text{ acts on } V_d \text{ by } \left(\begin{array}{c} \alpha & \beta \\ \gamma & \delta \end{array}\right) \cdot g(x, y) = g(\alpha x + \beta y, \gamma x + \delta y)$$

$$k[V_2]^{\operatorname{SL}_2} = k[a_1^2 - 4a_0 a_2]$$

$$k[V_3]^{\operatorname{SL}_2} = k[a_1^2 a_2^2 - 4a_0 a_2^3 - 4a_1^3 a_3 - 27a_0^2 a_3^2 + 18a_0 a_1 a_2 a_3]$$

$$k[V_4]^{\operatorname{SL}_2} = k[f_2, f_3], \text{ where}$$

$$f_2 = a_0 a_4 - \frac{a_1 a_3}{4} + \frac{a_2^2}{12}, \ f_3 = \begin{vmatrix} a_0 & a_1/4 & a_2/6 \\ a_1/4 & a_2/6 & a_3/4 \\ a_2/6 & a_3/4 & a_4 \end{vmatrix}.$$

## More examples - Homogeneous polynomials

$$k[V_5]^{\operatorname{SL}_2}$$
 is generated by  $f_4, f_8, f_{12}, f_{18}$ , where

$$f_4 = -2a_2^2a_3^2 + 6a_1a_3^3 + 6a_2^3a_4 - 19a_1a_2a_3a_4 - 15a_0a_3^2a_4 + 9a_1^2a_4^2 + 40a_0a_2a_4^2 - 15a_1a_2^2a_5 + 40a_1^2a_3a_5 + 25a_0a_2a_3a_5 - 250a_0a_1a_4a_5 + 625a_0^2a_5^2.$$

There is one relation (of degree 36) between them.  

$$k[V_6]^{SL_2}$$
 is generated by  $f_2, f_4, f_6, f_{10}, f_{15}$ .  
 $k[V_7]^{SL_2}$  is generated by 30 generators.  
 $k[V_8]^{SL_2}$  is generated by  $f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_{10}$ .  
 $k[V_9]^{SL_2}$  is generated by 92 generators.  
 $k[V_d]^{SL_2}$  is unknown for  $d \ge 11$ .

### Hilbert's 14th problem



Masayoshi Nagata, 1927  $\sim$  2008

### Question (Hilbert's 14th problem)

Can one always find finitely many generators  $f_1, \dots, f_r$  such that  $k[V]^G = k[f_1, \dots, f_r]$ ?

Answer (Nagata, 1959): No. There are G and V such that  $k[V]^G$  is not finitely generated.

### Hilbert's 14th problem



David Hilbert, 1862  $\sim$  1943

Hilbert himself had a positive result.

Theorem (Hilbert, 1890)

If G is a linearly reductive group, then  $k[V]^G$  is finitely generated.

G is linearly reductive if for every surjective morphism of G-representations  $f: V \to W$ ,  $f^G: V^G \to W^G$  is surjective.

Examples (over  $\mathbb{C}$ ): finite groups,  $(\mathbb{C}^*)^n$ ,  $\mathrm{GL}_n$ ,  $\mathrm{SL}_n$ ,  $\mathrm{SO}_n$ ,  $\mathrm{Sp}_n$ ,  $\cdots$ 

## Proof

S:=k[V]  $\cdots$  a polynomial ring

J: ideal generated by positive degree invariants

By Hilbert's basis theorem,  $J = (f_1, \dots, f_n)$ .

Claim: As a k-algebra,  $S^G$  is generated by  $f_1, \cdots, f_n$ .

The S-module honomorphism  $\phi:S^n\to J,$  defined by

 $(h_1, \cdots, h_n) \mapsto \sum h_i f_i$  is surjective.

We use induction on the degree. Pick  $h \in S^G$ . Then  $h \in J \cap S^G = J^G$ .

By the linear reductivity,  $(S^G)^n \to J^G$  is surjective, so we have  $h = \sum h_i f_i$  where  $h_i \in S^G$ .

 $\deg h_i < \deg h$ . By induction hypothesis,  $h_i$  is generated by  $f_1, \cdots, f_n$ . So is h.

This is exactly the reason why Hilbert proved the famous basis theorem.

- (Classical) Invariant theory is one of origins of modern development of abstract algebra.
- It is computationally very complicated. So it was once died in early 20th century.
- It is now one of active research areas because of computers.
- Its geometric counterpart, geometric invariant theory is an important tool in modern algebraic geometry, in particular moduli theory.

# Part III

# Geometric Invariant Theory

Han-Bom Moon Geometric Invariant Theory and Construction of Moduli Spaces

X: topological space

 ${\boldsymbol{G}}$  acts on  ${\boldsymbol{X}}$ 

$$X/G := \mathsf{orbit space} = \{ [x] \mid x \in X, \ [x] = [y] \Leftrightarrow \exists g \in G, g \cdot x = y \}$$

Two natural properties that we desire:

There is a surjective continuous map (quotient map)

$$\begin{array}{rccc} \pi: X & \to & X/G \\ & x & \mapsto & [x] \end{array}$$

2 If X is an algebraic variety, X/G is also an algebraic variety.

### Quotient space

There is no such a quotient algebraic variety!

Example:  $\mathbb{C}^*$  acts on  $\mathbb{C}^2$  as  $t \cdot (x, y) = (t^{-1}x, ty)$ .



### Orbits:

- $[(x,y)] = [(x^{-1}x,xy)] = [(1,x^{-1}y)]$ if  $x \neq 0$ .
- $[(0,y)] = [(y^{-1}0, y^{-1}y)] = [(0,1)]$  if  $y \neq 0$ .

• [(0,0)]

 $\lim_{t\to 0} (t,t) = (0,0) \text{ on } \mathbb{C}^2 \Rightarrow \lim_{t\to 0} [(t,t)] = [(0,0)] \text{ on } \mathbb{C}^2/\mathbb{C}^*$  $\lim_{t\to 0} (t^2,1) = (0,1) \text{ on } \mathbb{C}^2 \Rightarrow \lim_{t\to 0} [(t^2,1)] = [(0,1)] \text{ on } \mathbb{C}^2/\mathbb{C}^*$  $\mathsf{But } [(t,t)] = [(t^2,1)] \Rightarrow \lim_{t\to 0} [(t,t)] = \lim_{t\to 0} [(t^2,1)]...?$ 

 $\mathbb{C}^2/\mathbb{C}^*$  cannot be Hausdorff!



Algebraic geometry is a study of geometric objects via (polynomial) functions.

If two points cannot be distinguished by a function, we cannot distinguish them!

#### Definition

Let  $X = \operatorname{Spec} R$  and suppose that G acts on X. Let  $R^G$  be the ring of invariant functions. The affine GIT quotient is  $X//G := \operatorname{Spec} R^G$ .

R is the space of functions on X.

 $R^G$  is the space of invariant functions on  $X \Leftrightarrow$  the space of functions on X/G.

### Examples - revisited

$$\begin{split} \mathbb{C}^* \mbox{ acts on } \mathbb{C}^2 \mbox{ as } t \cdot (x,y) &= (t^{-1}x,ty). \\ \mathbb{C}^2 &= \operatorname{Spec} \mathbb{C}[x,y] \\ \mathbb{C}[x,y]^{\mathbb{C}^*} &= \mathbb{C}[xy] \\ \mathbb{C}^2 / / \mathbb{C}^* &= \operatorname{Spec} \mathbb{C}[xy] = \mathbb{C} \end{split}$$

 $\operatorname{GL}_n$  acts on  $\operatorname{M}_{n \times n} = \operatorname{Spec} \mathbb{C}[x_{11}, \cdots, x_{nn}]$  as  $\sigma \cdot A = \sigma A \sigma^{-1}$ .  $\mathbb{C}[x_{11}, \cdots, x_{nn}]^{\operatorname{GL}_n} = \mathbb{C}[a_1, \cdots, a_n] \cdots$  polynomial ring generated by coefficients of the characteristic polynomial

$$M_{n \times n} //GL_n = Spec \mathbb{C}[a_1, \cdots, a_n] = \mathbb{C}^n$$

$$\begin{split} &G:=\mathbb{Z}/2\mathbb{Z}=\langle\sigma\rangle \text{ acts on } \operatorname{Spec}\mathbb{C}[x,y] \text{ as } \sigma\cdot(x,y)=(-x,-y).\\ &\mathbb{C}[x,y]^G=\mathbb{C}[x^2,xy,y^2]\cong\mathbb{C}[a,b,c]/\langle ac-b^2\rangle \end{split}$$

$$\mathbb{C}^2/G = \operatorname{Spec} \mathbb{C}[a,b,c]/\langle ac-b^2 
angle = \mathsf{quadric}$$
 surface in  $\mathbb{C}^3$ 

## Geometric Invariant Theory - Definition



David Mumford, 1937  $\sim$ 

Mumford wanted to obtain projective quotients of projective varieties.

Definition

 $R = \bigoplus_{d>0} R_d \cdots$  graded ring

 $X = \operatorname{Proj} R$ : associated projective variety, G acts on X

The GIT quotient of X is  $X//G := \operatorname{Proj} R^G$ .

There are three very important features of GIT quotient.

## 1. X//G is NOT the quotient of X

$$R^G \hookrightarrow R \Rightarrow \pi: X = \operatorname{Proj} R \dashrightarrow \operatorname{Proj} R^G = X / / G$$

 $\pi$  is defined only on an open subset of  $\operatorname{Proj} R.$ 

 $x \in X \Leftrightarrow m_x$ : nontrivial maximal homogeneous ideal of R

$$\begin{aligned} \pi(x) \text{ exists } \Leftrightarrow \ m_x \cap R^G \neq \bigoplus_{d>0} R^G_d \\ \Leftrightarrow \ \exists f \in \bigoplus_{d>0} R^G, \ f(x) \neq 0 \end{aligned}$$

#### Definition

$$X = \operatorname{Proj} R$$
 projective variety with G-action

 $x \in X$  is semi-stable if there is a non-constant G-invariant

homogeneous polynomial  $f \in R$  such that  $f(x) \neq 0$ .

 $X^{ss}$ : the set of semi-stable points in X.

 $X^{us}$ : the set of unstable points =  $X \setminus X^{ss}$ 

Then  $\pi: X^{ss} \to X/\!/G$  is a surjective continuous map.

### 2. X//G is NOT the orbit space of $X^{ss}$

Two or more orbits may be identified in X//G.

For the quotient map  $\pi: X^{ss} \to X/\!/G$ ,  $\pi(x) = \pi(y) \Leftrightarrow \overline{G \cdot x} \cap \overline{G \cdot y} \neq \emptyset$ 

Example:

$$\mathbb{C}^*$$
 acts on  $\mathbb{P}^2$  as  $t \cdot (x:y:z) = (tx:t^{-1}y:z)$ 

(0:0:1) and (1:0:1) are in distinct orbits

 $t \cdot (1:0:1) = (t:0:1), \lim_{t \to 0} (t:0:1) = (0:0:1) \Rightarrow$  orbit closures intersect

 $\Rightarrow \pi(0:0:1) = \pi(1:0:1)$ 

But for each  $[x] \in X//G$ , there is a unique closed orbit in  $X^{ss}$ 

### Definition

We say  $x \in X^{ss}$  is stable if dim  $G \cdot x = \dim G$  and  $G \cdot x$  is closed in  $X^{ss}$ .

 $X^s$ : set of stable points  $\subset X^{ss}$ 

 $\pi: X^s \to \pi(X^s) \subset X /\!\!/ G$  is the orbit space of  $X^s$ 

### 3. X//G depends on the G-action on R

Recall that  $X//G = \operatorname{Proj} R^G \cdots$  need G-action on R

Distinct G-actions on R may provide the same G-action on X! Example:

Three  $\mathbb{C}^*$  actions on  $\mathbb{C}[x, y, z]$ 

They give the same action on  $\mathbb{P}^2 = \operatorname{Proj} \mathbb{C}[x, y, z]$ , because  $(tx: t^{-1}y: t^{-1}z) = (t^2x: y: z) = (t^3x: ty: tz)$ 

## 3. X//G depends on the G-action on R

• 
$$t \cdot (x, y, z) = (tx, t^{-1}y, t^{-1}z)$$
  
 $\mathbb{C}[x, y, z]^{\mathbb{C}^*} = \mathbb{C}[xy, xz] \Rightarrow \mathbb{P}^2 / / \mathbb{C}^* = \operatorname{Proj} \mathbb{C}[xy, xz] = \mathbb{P}^1$   
 $(1:0:0), (0:1:0), (0:0:1) \cdots$  unstable  
•  $t \cdot (x, y, z) = (t^2x, y, z)$   
 $\mathbb{C}[x, y, z]^{\mathbb{C}^*} = \mathbb{C}[y, z] \Rightarrow \mathbb{P}^2 / / \mathbb{C}^* = \operatorname{Proj} \mathbb{C}[y, z] = \mathbb{P}^1$   
 $(1:0:0)$ : unstable,  $(0:1:0), (0:0:1)$ : semi-stable (but not stable)

• 
$$t \cdot (x, y, z) = (t^3 x, ty, tz)$$
  
 $\mathbb{C}[x, y, z]^{\mathbb{C}^*} = \mathbb{C} \Rightarrow \mathbb{P}^2 / / \mathbb{C}^* = \operatorname{Proj} \mathbb{C} = \emptyset$ 

#### Definition

G acts on  $X = \operatorname{Proj} R$ 

A linearization of G-action on X is a G-action on R which induces the G-action on X.

It is not unique in general.

There is another issue on the choice of polarization - it is possible that  $\operatorname{Proj} R = \operatorname{Proj} S$  even though  $R \neq S$ . We do not investigate it here.

The reason why GIT quotient has been so successful is that there is a combinatorial criterion for (semi-)stability.

 $X = \operatorname{Proj} R \subset \mathbb{P}^n$ . There is a linearized G-action on R

$$\Rightarrow$$
 *G*-action on  $\mathbb{C}^{n+1}$ 

Let  $\lambda : \mathbb{C}^* \to G$  be a non-trivial homomorphism (one-parameter subgroup (1-PS)).

We have the induced  $\mathbb{C}^*$ -action on  $\mathbb{C}^{n+1}$ . For  $x = (x_0 : x_1 : \cdots : x_n)$ ,

$$t \cdot (x_0, x_1, \cdots, x_n) = (t^{m_0} x_0, t^{m_1} x_1, \cdots, t^{m_n} x_n)$$

#### Definition

The Hilbert-Mumford index is  $\mu(\lambda, x) := \min\{m_i \mid x_i \neq 0\}.$ 

### Definition

The Hilbert-Mumford index is  $\mu(\lambda, x) := \min\{m_i \mid x_i \neq 0\}.$ 

### Theorem (Hilbert-Mumford criterion, Ver 1)

• 
$$x \in X^{ss} \Leftrightarrow \forall$$
 1-PS  $\lambda, \ \mu(\lambda, x) \leq 0$ 

$$\textbf{3} \ x \in X^s \Leftrightarrow \forall \ \textbf{1-PS} \ \lambda, \ \mu(\lambda, x) < 0$$

3 
$$x \in X^{us} \Leftrightarrow \exists 1\text{-PS } \lambda, \ \mu(\lambda, x) > 0$$

A direct computation is very trickly in general, but when G is a torus  $(= (\mathbb{C}^*)^n)$ , it is a purely combinatorial problem.

Let T be a maximal torus of G.

Example:  $G = GL_n, SL_n \Rightarrow T =$  set of diagonal matrices in  $G \cong (\mathbb{C}^*)^n$ ).

 $X_T^{ss}$ : the semi-stable locus for the T-action.

**Theorem (Hilbert-Mumford criterion, Ver 2)** •  $x \in X^{ss} \Leftrightarrow \forall g \in G, g \cdot x \in X_T^{ss}$ •  $x \in X^s \Leftrightarrow \forall g \in G, g \cdot x \in X_T^s$ •  $x \in X^{us} \Leftrightarrow \exists g \in G, g \cdot x \notin X_T^{ss}$ 

- The GIT quotient provides a method to construct an algebraic 'quotient' X//G of a projective variety X.
- X//G is a 'quotient' of  $X^{ss} \subset X$ , the semi-stable locus.
- X//G contains a genuine quotient  $X^s/G$  of  $X^s$ , the stable locus.
- X//G depends on the choice of linearization.

# Part IV

# GIT and Moduli Spaces

Han-Bom Moon Geometric Invariant Theory and Construction of Moduli Spaces

 $\mathcal{M}_g$ : moduli space of smooth genus g complex curves (= Riemann surfaces)

 $\overline{\mathcal{M}}_g$ : moduli space of stable genus g complex curves (= compactification of  $\mathcal{M}_g$ )

 $\overline{\mathcal{M}}_g = \{C \mid g(C) = g, C \text{ has at worst nodal singularities}, |\mathrm{Aut}(C)| < \infty \}$ 

### Problem

Construct the moduli space  $\overline{\mathcal{M}}_g$  as an algebraic variety.

## Construction of moduli spaces of curves

Main idea: Moduli space of (abstract) varieties = moduli space of subvarieties in  $\mathbb{P}^r/\operatorname{Aut}(\mathbb{P}^r) = \operatorname{Hilb}(\mathbb{P}^r)/\operatorname{Aut}(\mathbb{P}^r)$ 

• Find a 'canonical' embedding of C in  $\mathbb{P}^r \Leftrightarrow$  Find a 'canonical' line bundle on  $C \cdots \omega_C$  (dualizing bundle)

• 
$$C \in \overline{\mathcal{M}}_g \Rightarrow \omega_C^n$$
 is very ample if  $n \ge 3$   
•  $C \stackrel{|\omega_C^n|}{\hookrightarrow} \mathbb{P}^r$ 

$$r = \dim \mathrm{H}^{0}(C, \omega_{C}^{n}) - 1 = (2n - 1)(g - 1) - 1$$

This embedding is unique up to a choice of ordered basis of  $H^0(C, \omega_C^n)$  $\Rightarrow$  need  $SL_{r+1}$ -quotient.

$$\deg C = 2n(g-1) =: d, \ P(m) = dm + 1 - g$$
$$(C \subset \mathbb{P}^r) \in \operatorname{Hilb}^{P(m)}(\mathbb{P}^r) \subset \operatorname{Hilb}(\mathbb{P}^r) \cdots \text{ subvariety parametrizing}$$
varieties with Hilbert polynomial  $P(m)$ 

$$K := \{ C \subset \mathbb{P}^{r-1} \mid \mathcal{O}(1) \mid_C \cong \omega_C^n \} \subset \operatorname{Hilb}^{P(m)}(\mathbb{P}^r)$$

It contains curves with very nasty singularities, too. However,

Theorem (Gieseker)

If 
$$n \ge 5$$
,  $K//\mathrm{SL}_{r+1} = K^{ss}/\mathrm{SL}_{r+1} = K^s/\mathrm{SL}_{r+1} \cong \overline{\mathcal{M}}_g$ .

The point is that because  $K//SL_{r+1}$  is the quotient of  $K^{ss}$ , we can exclude many bad points!

### Corollary

$$\overline{\mathcal{M}}_g \subset \operatorname{Hilb}^{P(m)}(\mathbb{P}^r) / / \operatorname{SL}_{r+1}$$
. Therefore  $\overline{\mathcal{M}}_g$  is a projective variety.

## Construction of moduli spaces of curves

The stability computation can be reduced to a combinatorial computation.

 $\operatorname{Hilb}^{P(m)}(\mathbb{P}^r) \hookrightarrow \operatorname{Gr}(\operatorname{Sym}^m \mathbb{C}^{r+1}, P(m)) \hookrightarrow \mathbb{P}(\bigwedge^{P(m)} \operatorname{Sym}^m (\mathbb{C}^{r+1})^*)$ 

- $C \subset \mathbb{P}^r \cdots$  curve in  $\mathbb{P}^r$
- $I_C \cdots$  ideal of functions vanishing along C
- $\mathrm{H}^0(\mathbb{P}^r, I_C(m))$   $\cdots$  vector space of degree m polynomials vanishing along C
- If  $m \gg 0$ , we have a short exact sequence

$$0 \to \mathrm{H}^{0}(\mathbb{P}^{r}, I_{C}(m)) \to \mathrm{H}^{0}(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(m)) \to \mathrm{H}^{0}(C, \mathcal{O}_{C}(m)) \to 0$$

 $\cdots P(m)$ -dimensional quotient space of a fixed  $\binom{r+m}{m}$ -dimensional vector space  $\cdots$  a point on Grassmannian.

## Construction of moduli spaces of curves

 $\operatorname{Hilb}^{P(m)}(\mathbb{P}^r) \hookrightarrow \operatorname{Gr}(\operatorname{Sym}^m \mathbb{C}^{r+1}, P(m)) \hookrightarrow \mathbb{P}(\bigwedge^{P(m)} \operatorname{Sym}^m (\mathbb{C}^{r+1})^*)$ 

∧<sup>P(m)</sup> H<sup>0</sup>(P<sup>r-1</sup>, O<sub>P<sup>r-1</sup></sub>(m)) → ∧<sup>P(m)</sup> H<sup>0</sup>(C, O<sub>C</sub>(m)) → 0 ··· 1-dimensional quotient space of a fixed vector space
0 → ∧<sup>P(m)</sup> H<sup>0</sup>(C, O<sub>C</sub>(m))\* → ∧<sup>P(m)</sup> H<sup>0</sup>(P<sup>r-1</sup>, O<sub>P<sup>r-1</sup></sub>(m))\* ··· 1-dimensional subspace of a fixed vector space ··· a point on a projective space.

Now  $K \subset \operatorname{Hilb}^{P(m)}(\mathbb{P}^r) \subset \mathbb{P}(\bigwedge^{P(m)} \operatorname{Sym}^m(\mathbb{C}^{r+1})^*)$  and  $\overline{\mathcal{M}}_g = K/\!/ \operatorname{SL}_{r+1} \subset \mathbb{P}(\bigwedge^{P(m)} \operatorname{Sym}^m(\mathbb{C}^{r+1})^*)/\!/ \operatorname{SL}_{r+1}.$ 

Do the GIT stability computation on the right hand side.

### Genus 0, pointed curve cases

Consider moduli spaces of genus 0, *n*-pointed curves.

There is a 'canonical' compact moduli space



 $\cdots$  Deligne-Mumford compactification, or moduli space of *n*-pointed stable rational curves.

There are also many alternative moduli spaces including Hassett's moduli spaces of weighted pointed stable curves  $\overline{\mathrm{M}}_{0,A}$ , Kontsevich-Boggi space  $\overline{\mathrm{M}}_{0,n}^{Bog}$ , and so on.

### Question

Can one find a unified construction of all of such moduli spaces?

## Genus 0, pointed curve cases

Natural construction:

 $\operatorname{Chow}_{1,d}(\mathbb{P}^d) :=$  Chow variety of dimension 1, degree d cycles in  $\mathbb{P}^d$ 

$$U_{d,n} := \{ (C, x_1, \cdots, x_n) \mid x_i \in C \} \subset \operatorname{Chow}_{1,d}(\mathbb{P}^d) \times (\mathbb{P}^d)^n$$

 $U_{d,n}/\!/\mathrm{SL}_{d+1}$  is a candidate of a moduli space

### Theorem (Giansiracusa, Jensen, M)

• We determined linearizations with  $U_{d,n}^{ss} \neq \emptyset$ .

- We computed U<sup>ss</sup><sub>d,n</sub> for each linearization. There is a purely combinatorial description.
- All currently known projective moduli spaces of genus 0 curves can be obtained as U<sub>d,n</sub>//SL<sub>d+1</sub> and there are more.

•  $\overline{\mathrm{M}}_{0,n}$  is dominant among them - there is a birational morphism  $\overline{\mathrm{M}}_{0,n} \rightarrow U_{d,n} / / \mathrm{SL}_{d+1}.$ 

# Thank you!