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ABSTRACT. We describe a compactification by KSBA stable pairs of the five-dimensional
moduli space of K3 surfaces with purely non-symplectic automorphism of order four and
U(2)⊕D⊕2

4 lattice polarization. These K3 surfaces can be realized as the minimal resolution
of the double cover of P1 × P1 branched along a specific (4, 4) curve. We show that, up to
a finite group action, this stable pairs compactification is isomorphic to Kirwan’s partial
desingularization of the GIT quotient (P1)8//SL2 with the symmetric linearization.

1. INTRODUCTION

Recent advances in algebraic geometry including minimal model program and the
boundedness for stable pairs, enables us to investigate compactifications of moduli spaces
of higher dimensional algebraic varieties, in particular the Kollár, Shepherd-Barron, and
Alexeev (KSBA) moduli space of stable pairs ([KSB88, Ale96, Kol18]). However, the geom-
etry of the moduli spaces of higher dimensional varieties is extremely complicated. For
instance, these moduli spaces are rarely irreducible, and they may even have arbitrary
singularity types ([Mne85, Vak06]).

Nonetheless, sometimes we may understand in detail the geometry of moduli spaces of
special algebraic varieties of interest. These explicit moduli spaces are beneficial because
in many cases the generalities are out of reach, and also they reveal interesting geometric
behaviors (see [AP09, Sch16, GMGZ18, DH18, AB19, AET19]). In this paper, we study one
of such explicit examples: the moduli space of K3 surfaces with a purely non-symplectic
automorphism of order four (see Definition 2.2). The geometry of K3 surfaces with purely
non-symplectic automorphism of order four was studied in [AS15], and for a survey on
the subject in general we refer to [Zha07].

Here we state our main result. For the precise definitions and terminology, see §2.
Consider the moduli space of K3 surfaces X̃ with a purely non-symplectic automorphism
of order four together with a U(2)⊕D⊕2

4 lattice polarization. By Kondo’s work ([Kon07]),
there is a five dimensional irreducible moduli space M of such K3 surfaces. These K3
surfaces can be obtained by taking the minimal resolution of the double coverX of P1×P1

branched along an appropriate divisor B of class (4, 4).

We adopt the KSBA theory to compactify M. Let K be the normalization of the closure
in the KSBA moduli space of stable pairs of the locus parametrizing (X, εR) where X is
the double cover of P1×P1 branched alongB, R is the ramification divisor, and 0 < ε� 1.
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Theorem 1.1. The KSBA compactification K is isomorphic to P/H whereH ∼= (S4×S4)oS2 and
P is the partial desingularization of the GIT quotient (P1)8//SL2 with the symmetric linearization.

Note that P has another moduli theoretic interpretation - P is isomorphic to the Has-
sett’s moduli space of weighted pointed curves M

0,( 1
4

+ε)
8 ([KM11, Theorem 1.1]).

1.1. K3 surfaces from eight points on P1 and GIT. Here we elaborate more on the con-
struction of these K3 surfaces. Fix eight distinct points ([λ1 : 1], . . . , [λ8 : 1]) on P1. Let
[x0 : x1], [y0 : y1] be the homogeneous coordinates of P1 × P1, and define B to be the
following curve of the class (4, 4):

y0y1

(
y2

0

4∏
i=1

(x0 − λix1) + y2
1

8∏
i=5

(x0 − λix1)

)
= 0.

LetX be the double cover of P1×P1 branched alongB. In [Kon07], it was shown that 1) the
minimal resolution X̃ ofX is a K3 surface with a purely non-symplectic automorphism of
order four, so U ⊆ (P1)8 parametrizing eight distinct points also parametrizes K3 surfaces,
2) the construction is SL2-invariant and S8-invariant (see [Kon07, §2.1] and §2.3 of this
paper), so M = U/SL2/S8 can be regarded as a parameter space of such K3 surfaces. The
involution ([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [y0 : −y1]) is lifted to a purely non-symplectic
automorphism σ of order four on X̃ .

Let H2(X̃,Z)+ be the invariant subspace of H2(X̃,Z) with respect to the (σ2)∗-action.
Then for any p ∈ M, the associated H2(X̃,Z)+ is a primitive sublattice of NS(X̃) iso-
metric to U(2) ⊕ D⊕2

4 . In summary, the GIT quotient (P1)8//SL2/S8 with the symmetric
linearization can be thought of as a compactification of the moduli space of K3 surfaces
in analysis.

1.2. KSBA compactification. To adopt the KSBA theory in this context, one has to choose
an ample divisor A on X̃ and make a pair (X̃, A). However, we make two minor modifi-
cations to the moduli problem we consider. First of all, instead of taking an ample divisor
A, we choose a big and nef divisor on X̃ , which is the pull-back of the ramification divisor
R on X . This makes the description of the parameter space more accessible by using the
theory of abelian covers ([AP12]). Secondly, instead of taking the entire linear system of
R, we just take R to make a five-dimensional moduli space of pairs.

Technically, the resulting moduli space K is a compactification of a finite cover of M
because the same K3 surface with a purely non-symplectic automorphism of order four
may be regarded as a minimal resolution of the double cover of P1 × P1 in several ways.
However, compared to other ways of compactifying M, the compactification K has the
merit to have an explicit moduli theoretic meaning.

1.3. Relation to the Hodge theoretic compactification. Hodge theory is another stan-
dard tool one could use to compactify a given moduli space of varieties. Here we leave
some related works. In [DM86], Deligne and Mostow proved that the symmetric GIT
quotient (P1)8//SL2 is isomorphic to the Satake-Baily-Borel compactification B/Γ

∗
of the
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quotient of a five-dimensional complex ball B by an arithmetic group Γ. This is proved
using periods of a family of curves arising as the Z/4Z-covers of P1 branched along eight
points.

There are two interesting problems. One may wonder how GIT compactifications and
Hodge theoretic compactifications are related. In the literature, one celebrated example
of interaction between Hodge theory and GIT is the case of K3 surfaces with a degree
two polarization. More precisely, in [Loo86] it is shown that a small partial resolution
of the Satake-Baily-Borel compactification for such K3 surfaces is isomorphic to a partial
Kirwan desingularization of the GIT quotient for sextic plane curves. The moduli space
of K3 surfaces which are double covers of P1 × P1 branched along a curve of class (4, 4)
were recently investigated in [LO18] from the point of view of GIT and Hodge theory. In
our context of moduli space of K3 surfaces with purely non-symplectic automorphism of
order four, the GIT compactification and the Satake-Baily-Borel compactification give the
same answer after quotienting by S8 ([Kon07]).

Usually GIT and Hodge theoretic compactifications do not have a strong modular in-
terpretation. Thus we have the second interesting problem - Finding a modular compact-
ification of the given moduli space. From the perspective of moduli theory, the KSBA
compactification is arguably the best known theoretical approach.

1.4. Structure of the paper. The paper is organized as follows. In §2 we review Kondo’s
construction of the 5-dimensional family of K3 surfaces with purely non-symplectic au-
tomorphism of order four and U(2) ⊕D⊕2

4 lattice polarization. In §3 we recall the notion
of stable pair, their moduli functor, and the theory of abelian covers. §4 contains a brief
summary of Kirwan’s partial desingularization [Kir85], which is applied to the case of
(P1)8//SL2. In §5 we study the KSBA limits of specific one-parameter degenerations of
stable pairs (P1 × P1, 1+ε

2
B). These calculations are then used in §6 to finally prove Theo-

rem 1.1.
We work over C.
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2. K3 SURFACES FROM EIGHT POINTS ON P1

2.1. Kondo’s construction.

Definition 2.1. A normal surface X is called an ADE K3 surface if its minimal resolution
is a smooth K3 surface, or equivalently,

(1) X has only ADE singularities (thus it is Gorenstein);
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(2) ωX ∼= OX ;
(3) H1(X,OX) = 0.

In [Kon07] a K3 surface is constructed from the data of eight distinct points on P1 as
follows. Up to the natural SL2-action on P1, we may assume that the eight points are in
the form [λ1 : 1], . . . , [λ8 : 1]. Let C be the curve in P1 × P1 given by

(1) y2
0

4∏
i=1

(x0 − λix1) + y2
1

8∏
i=5

(x0 − λix1) = 0,

where ([x0 : x1], [y0 : y1]) are coordinates in P1 × P1. If all λi’s are distinct, C is a smooth
curve. Let Li be the line yi = 0, i = 1, 2. The double cover π : X → P1×P1 branched along
C + L0 + L1, which has bidegree (4, 4), has eight A1 singularities which lie above C ∩ L0

and C ∩ L1. The minimal resolution ρ : X̃ → X of this double cover is a K3 surface. Thus
X is an ADE K3 surface with a polarization F := π∗O(1, 1) of degree 4. Also X̃ carries a
natural big and nef polarization ρ∗F .

Definition 2.2. An automorphism σ of a K3 surface is non-symplectic if the induced auto-
morphism on the global sections of the canonical sheaf is not the identity. In addition, we
say that σ is purely non-symplectic if all its non-trivial powers are non-symplectic.

As Kondo described in [Kon07, §2], a K3 surface X̃ as above admits a purely non-
symplectic automorphism σ of order four given by the lift of the involution

([x0 : x1], [y0 : y1]) 7→ ([x0 : x1], [y0 : −y1]).

The lattice H2(X̃,Z)+ := {x ∈ H2(X̃,Z) | (σ2)∗(x) = x}, which embeds primitively into
NS(X̃), is isometric to U(2) ⊕ D⊕2

4 , and H2(X̃,Z)− := {x ∈ H2(X̃,Z) | (σ2)∗(x) = −x} is
isometric to U ⊕ U(2)⊕D⊕2

4 ([Kon07, Lemma 2.2]).

Definition 2.3. Let M be the coarse moduli space of K3 surfaces X̃ with a purely non-
symplectic automorphism of order four such that H2(X̃,Z)+ is isometric to U(2)⊕D⊕2

4 .

Once M := H2(X̃,Z)+ is identified with U(2) ⊕ D⊕2
4 , the lattice N := H2(X̃,Z)− ∼=

U ⊕ U(2) ⊕ D⊕2
4 is given because N = M⊥. On N ⊗ C, the linear map σ∗ has minimal

polynomial x2 + 1, which implies that σ∗ is diagonalizable. Moreover, the only possible
eigenvalues of σ∗ are ±

√
−1. These both occur with the same multiplicity because σ∗ is a

real operator. Hence, if V denotes the eigenspace for
√
−1, then dimV = 1

2
dimN ⊗C = 6.

Thus from [DK07, §11] (see also [AS15, §1]), M is the quotient of the ball {[z] ∈ P(V ) | z ·
z > 0} by an appropriate arithmetic group. In particular, it is a 5-dimensional irreducible
analytic variety.

Remark 2.4. Note that the family of K3 surfaces parametrized by M in Definition 2.3 is the
same as the family of K3 surfaces with a purely non-symplectic automorphism of order
four and a U(2)⊕D⊕2

4 lattice polarization. This is true because the very general member
X̃ of the latter family has H2(X̃,Z)+ = NS(X̃) ∼= U(2)⊕D⊕2

4 .
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The above construction of ADE K3 surfaces can be relativized. Let ([a1 : b1], . . . , [a8 : b8])
be coordinates in (P1)8. Consider the hypersurface C ⊆ (P1)8 × P1 × P1 given by

y2
0

4∏
i=1

(bix0 − aix1) + y2
1

8∏
i=5

(bix0 − aix1) = 0,

which has multidegree (4, . . . , 4, 2, 2). It can be understood as a family of curves over
(P1)8. Let U ⊆ (P1)8 be the open subset consisting of 8-tuples of distinct points. Let
X → U × P1 × P1 be the double cover branched along (C + L0 + L1)|U, where Li :=
V (yi) ⊆ U×P1×P1 for i = 0, 1. Since an SL2-orbit in U parametrizes isomorphic ADE K3
surfaces, U/SL2 is a five dimensional parameter space of ADE K3 surfaces with a purely
non-symplectic automorphism of order four.

Note that there is a natural S8 action on U/SL2 which permutes the eight points.

Definition 2.5. Let H ∼= (S4 × S4) o S2 be the subgroup of permutations of S8 which is
generated by the permutations of the first four points, the permutations of the last four
points, and the involution which exchanges the set of first four points and the set of last
four points.

Any ADE K3 surfaces parametrized by anH-orbit are isomorphic to each other because
C+L0 +L1 is (S4×S4)-invariant, and the S2-action induces an isomorphism of associated
surfaces derived by the involution [y0 : y1]→ [y1 : y0].

Furthermore, it was shown by Kondo that two ADE K3 surfaces as above are isomor-
phic if and only if the associated points on U/SL2 are in the same S8-orbit ([Kon07, §3.7]).
We will come back to this S8-invariance in §2.3, where we discuss it when some of the
eight points on P1 collide. In particular, U/SL2/S8 is a dense open subset of M.

2.2. Degenerate point configurations and GIT. Consider the diagonal SL2-action on (P1)8

together with the natural symmetric linearization O(1, . . . , 1). A point in (P1)8 is stable
(resp. semi-stable) if and only if at most three (resp. four) points coincide. We denote the
semi-stable locus (resp. stable locus) by ((P1)8)ss (resp. ((P1)8)s) ([MFK94, §3]).

Lemma 2.6. The construction in §2.1 yields an ADE K3 surface for any p ∈ ((P1)8)s.

Proof. Let p = (p1, . . . , p8) be a stable point configuration with at least one collision. Up to
H-symmetry, it is clear that Table 1 describes all the possibilities. By a local computation,
we see that the double cover X of P1 × P1 branched along C + L0 + L1 has only ADE
singularities. The two conditions ωX ∼= OX and H1(X,OX) = 0 are easy to check using
the fact that X is the double cover of P1 × P1 branched along a divisor of class (4, 4). �

If p is strictly semi-stable, then the associated double cover has worse singularities and
it is not an ADE K3 surface. Up to the H-action, there are three cases:

(1) p1 = p2 = p5 = p6;
(2) p1 = p2 = p3 = p5;
(3) p1 = p2 = p3 = p4.
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collision analytic local equation singularity of double cover
p1 = p2 = [0 : 1] y1(x2

0 + y2
1) = 0 D4

p1 = p5 = [0 : 1] A1 singularities
p1 = p2 = p5 = [0 : 1] x0y1(x0 + y2

1) = 0 D6

p1 = p2 = p3 = [0 : 1] y1(x3
0 + y2

1) = 0 E7

TABLE 1. Degenerate point configurations and singularities on the double cover

For cases (2) and (3), we may compute the minimal resolution of the double cover
X → P1×P1 branched along C +L0 +L1 using the canonical resolution method ([BHPV04,
III.7]). The exceptional locus in case (2) is a genus one curve of self-intersection −2, and
in case (3) is a genus one curve of self intersection −1. These singularities are known as
Ẽ7 and Ẽ8 respectively (see [Ish18, §7.6]). In case (1), the ramification divisor is not even
reduced.

For later purpose, the strictly semi-stable points with maximal dimensional stabilizer
group are important. There are three types of semi-stable points with positive dimen-
sional stabilizer group, which is isomorphic to C∗.

Definition 2.7. Let p = (p1, . . . , p8) be a strictly semi-stable point configuration. We say
that p is of type a if, up to H-action, it is of the form p1 = p2 = p5 = p6 and p3 = p4 =
p7 = p8. Similarly, we say that p is of type b if it is of the form p1 = p2 = p3 = p5 and
p4 = p6 = p7 = p8. Finally, we say that p is of type c if it is of the form p1 = p2 = p3 = p4

and p5 = p6 = p7 = p8.

The corresponding curve C ⊆ P1 × P1 is given by:

• (type a) (x0 − λ1x1)2(x0 − λ3x1)2(y2
0 + y2

1) = 0;
• (type b) (x0 − λ1x1)(x0 − λ4x1)(y2

0(x0 − λ1x1)2 + y2
1(x0 − λ4x1)2) = 0;

• (type c) y2
0(x0 − λ1x1)4 + y2

1(x0 − λ5x1)4 = 0.

Each connected component of such strictly semi-stable points is isomorphic to P1×P1 \
∆, where ∆ is the diagonal. The locus of type a point configurations has 18 connected
components, that of type b configurations has 16 connected components, and that of type
c configurations has a unique component.

Remark 2.8. The associated double covers of P1 × P1 branched along C + L0 + L1 with C
of type a, type b, and type c appear in Shah’s list [Sha81, Theorem 4.8, B, Type II, (i)–(iii)].

2.3. S8-invariance of Kondo’s K3 surfaces. Let X be an ADE K3 surface associated to 8
distinct points on P1. In [Kon07] it is observed that the isomorphism class of X is inde-
pendent from the ordering of the eight points. Here we give a proof which is valid for all
stable configurations.

Proposition 2.9. Let X be an ADE K3 surface which is the double cover of P1 × P1 branched
along the curve

B : y0y1

(
y2

0

4∏
i=1

(x0 − λix1) + y2
1

8∏
i=5

(x0 − λix1)

)
= 0.
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Let τ ∈ S8 and define Xτ to be the ADE K3 surface obtained as the double cover of P1 × P1

branched along the curve

Bτ : y0y1

(
y2

0

4∏
i=1

(x0 − λτ(i)x1) + y2
1

8∏
i=5

(x0 − λτ(i)x1)

)
= 0.

Then X ∼= Xτ .

Proof. It is enough to prove the case where τ is a transposition (ij). Because of the symme-
try of B, we may assume that (ij) = (15). Since smooth K3 surfaces have trivial canonical
class, it is sufficient to show that X and X(15) are birational.

Over the affine patch x1y1 6= 0, X is defined in A3
(x,y,z) by

z2 = y

(
y2

4∏
i=1

(x− λi) +
8∏
i=5

(x− λi)

)
,

where we set y = y0/y1 and x = x0/x1. Consider the birational transformation

A3
(ξ,η,ζ) 99K A3

(x,y,z)

(ξ, η, ζ) 7→
(
ξ,
ξ − λ5

ξ − λ1

η,
ξ − λ5

ξ − λ1

ζ

)
.

Under this birational transformation, the pull-back of X satisfies

(ξ − λ5)2

(ξ − λ1)2
ζ2 =

ξ − λ5

ξ − λ1

η

(
(ξ − λ5)2

(ξ − λ1)2
η2

4∏
i=1

(ξ − λi) +
8∏
i=5

(ξ − λi)

)

=⇒ ζ2 = η

(
ξ − λ5

ξ − λ1

η2

4∏
i=1

(ξ − λi) +
ξ − λ1

ξ − λ5

8∏
i=5

(ξ − λi)

)
,

which is the equation forX(15) over the affine patch x1y1 6= 0. Thus they are birational. �

3. STABLE PAIRS AND KSBA COMPACTIFICATION

In this section we recall the definition of stable pair, their moduli spaces, and the theory
of abelian covers. Our main references are [Ale15, AP12, Kol13, Kol18].

3.1. Definition of stable pair.

Definition 3.1. Let X be a variety and let D be a Q-divisor on X with coefficients in (0, 1].
A pair (X,D) is semi-log canonical if:

(1) X is demi-normal (that is, X is S2 and its codimension 1 points are either regular
or ordinary nodes);

(2) If ν : Xν → X is the normalization with conductors E ⊆ X and Eν ⊆ Xν , then the
support of E does not contain any irreducible component of D;

(3) KX +D is Q-Cartier;
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(4) The pair (Xν , Eν +ν−1
∗ D) is log canonical. More precisely, for each connected com-

ponent Z of Xν the pair (Z, (Eν + ν−1
∗ D)|Z) is log canonical, where ν−1

∗ D denotes
the strict transform of D. For the definition of log canonical we refer to [Kol13,
Definition 2.8].

Definition 3.2. A pair (X,D) is stable if the following conditions are satisfied:

(1) (X,D) is a semi-log canonical pair;
(2) KX +D is ample.

Let ε be a sufficiently small positive rational number.

Lemma 3.3. Let ([λ1 : 1], . . . , [λ8 : 1]) ∈ (P1)8 be a stable point and let C ⊆ P1 × P1 as in
Equation (1). Let B := C + L0 + L1. Then

(1)
(
P1 × P1, 1+ε

2
B
)

is a stable pair;
(2) (KP1×P1 + 1+ε

2
B)2 = 8ε2.

In short, ((P1)8)s parametrizes stable pairs (P1 × P1, 1+ε
2
B).

Proof. If the eight points are distinct, then the divisor B is simple normal crossing, hence(
P1 × P1, 1+ε

2
B
)

is semi-log canonical. If some of the eight points coincide, then the semi-
log canonicity of the pair follows by inspecting all cases in Table 1. The ampleness of
KP1×P1 + 1+ε

2
B and the equality in (2) follow from KP1×P1 + 1+ε

2
B ∼ 2ε(1, 1). �

3.2. Stable pairs and finite abelian covers. For the reader’s convenience, we recall the
following well known facts about stable pairs and finite abelian covers. For a reference,
see [AP12].

Definition 3.4. A morphism of pairs f : (X,BX) → (P,BP ) is a morphism f : X → P
mapping Supp(BX) to Supp(BP ). If G is a finite abelian group, then a morphism π :
(X,BX)→ (P,BP ) is called a G-cover if:

• π : X → P is the quotient morphism for a generically faithful action of G;
• π is branched along Supp(BP ) and ramified at Supp(BX);
• KX +BX = π∗(KP +BP ).

Lemma 3.5 ([AP12, Lemma 2.3]). Let π : (X,BX) → (P,BP ) be a G-cover for a finite abelian
group G. Then (X,BX) is stable if and only if (P,BP ) is stable.

Remark 3.6. More precisely, [AP12, Lemma 2.3] guarantees that (X,BX) is semi-log canon-
ical if and only if (P,BP ) is semi-log canonical. We have that KX + BX is ample if and
only if π∗(KP + BP ) is because π is a finite covering (see [Laz04, Proposition 1.2.13 and
Corollary 1.2.28]).

Example 3.7. Let P := P1×P1 and letB := C+L0+L1 as in §2.1. LetX be the double cover
of P branched along B and let R be the ramification divisor. Then it is straightforward to
check that

π : (X, εR)→
(
P,

1 + ε

2
B

)
is a (Z/2Z)-cover. In particular, (KX + εR)2 = π∗

(
KP + 1+ε

2
B
)2

= 16ε2.
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3.3. The moduli functor.

Definition 3.8. We fix constants d,N ∈ Z>0, C ∈ Q>0, and b = (b1, . . . , bn) with bi ∈
(0, 1]∩Q andNbi ∈ Z for all i = 1, . . . , n. The Viehweg’s moduli stack V := Vd,N,C,b is defined
as follows. For any reduced C-scheme S, Vd,N,C,b(S) is the set of proper flat familiesX → S
together with a divisor B =

∑
i biBi satisfying:

(1) For all i = 1, . . . , n, Bi is a codimension one closed subscheme such that Bi → S is
flat at the generic points of Xs ∩ Supp(Bi) for every s ∈ S;

(2) Every geometric fiber (X,B) is a stable pair of dimension d with (KX +B)d = C;
(3) There exists an invertible sheaf L on X such that for every geometric fiber (X,B)

one has L|X ∼= OX(N(KX +B)).

In what follows, we refer to such families (X ,B)→ S as families of stable pairs.

Remark 3.9. Over characteristic zero, an algebraic stack is Deligne-Mumford if and only if
all parametrized objects have finite automorphism groups ([Ols16, Remark 8.3.4]). Since
every stable pair parametrized by V has a finite automorphism group ([Fuj14, Theorem
1.20]), V is a Deligne-Mumford stack.

Let b be very general ([Ale15, §1.5.3]). For a suitably chosen positive integer N depend-
ing on d, C, and b (which does not need to be specified, see [Ale96, §3.13]), the stack V
above is coarsely represented by a projective scheme by [Ale15, Theorem 1.6.1].

We now describe our special case of interest.

Definition 3.10. Let V be the Viehweg’s moduli stack for d = 2, C = 16ε2 for a small
general ε > 0, and b = (b1) = (ε). The pairs (X, εR) where X is an ADE K3 surface in
§2.1 and R = 1

2
π∗B is the ramification divisor, are parametrized by V . Now consider the

family of stable pairs(
Y := U× P1 × P1,

1 + ε

2
(C + L0 + L1)|U

)
→ U.

(For the definitions of U, C,L0,L1 we refer to §2.1.) Let X be the double cover of Y
branched along (C + L0 + L1)|U and let R be the ramification divisor. Then we obtain a
family of stable pairs (X , εR)→ U where the fibers X are ADE K3 surfaces with a purely
non-symplectic automorphism of order four and R is the ramification divisor. Thus we
obtain a morphism U → V and denote by K′ the closure of its image in V . Let K

′
be

the coarse moduli space corresponding to K′, and denote by K its normalization. Ob-
serve that K is compactifying U/SL2/H , and we call it the KSBA compactification of the
moduli space of ADE K3 pairs with purely non-symplectic automorphism of order four
and U(2) ⊕D⊕2

4 lattice polarization. As we already pointed out in the introduction, K is
compactifying a finite cover of M in Definition 2.3, and more precisely a (S8/H)-cover.

Our ultimate goal is to study the geometry of the compactified moduli space K. To do
so, we consider the following other projective moduli space.

Definition 3.11. Let T be the Viehweg’s moduli stack for d = 2, C = 8ε2, b = (b1) =
(

1+ε
2

)
.

Consider again the family of stable pairs (Y , 1+ε
2

(C+L0 +L1)|U)→ U. There is an induced
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morphism U → T and denote by J ′ the closure of its image in T . Let J
′

be the coarse
moduli space corresponding to J ′, and denote by J its normalization. We have that J is
compactifying U/SL2/H , and hence it is birational to K.

In Proposition 3.13 we show that K ∼= J. (More precisely, we will prove that there is a
bijective morphism K

′ → J
′
. This does not imply that K

′ ∼= J
′
, but we can conclude that

their normalizations are isomorphic.) Thus it is enough to investigate the geometry of J.

Remark 3.12.

(1) Note that, however, the associated stacks K′ and J ′ are not isomorphic because
of their stacky structure. Recall that the former parametrizes stable pairs (X, εR)
where X is an ADE K3 surface with a purely non-symplectic automorphism of
order four, and the latter stable pairs (P1 × P1, 1+ε

2
B). Therefore, a general object

parametrized by K′ has an extra Z/2Z-action which comes from its double cover-
ing structure.

(2) The proof of Proposition 3.13 tells us that there is a bijective morphism K
′ → J

′

between the coarse moduli spaces.

Recall that U ⊆ (P1)8 is the locus of eight distinct points. In Definitions 3.10 and 3.11
we introduced two compactifications of U/SL2/H , which we denoted by K and J. The
remaining part of this section is devoted to proving the following.

Proposition 3.13. The compactifications K and J are isomorphic.

To prove the claim above we need a lemma.

Lemma 3.14. Let S be a scheme and let (X ,BX ) → S be a family of stable pairs. Let G be a
finite abelian group and assume there exists a dense open subset U ⊆ S such that (X ,BX )|U has a
fiberwise generically faithful action ofGwhich ramifies at Supp(BX |U). Then theG-action extends
to the whole (X ,BX ) giving a fiberwise generically faithful action which ramifies at Supp(BX ).

Proof. Let g ∈ G be arbitrary. We show that the corresponding action αg : X|U → X|U
extends to X . Consider a resolution of indeterminacies

X ′

X X .

α′g

αg

Let B′X to be the strict transform of BX under X ′ → X . Then α′g induces a morphism
αlc
g from the log canonical model of (X ′,B′X ) to X ([Kol13, Definition 1.19]). Since the log

canonical model of (X ′,B′X ) is (X ,BX ), it follows that αlc
g is the desired extension of αg. �

Proof of Proposition 3.13. Since K′ is a Deligne-Mumford stack (see Remark 3.9), there ex-
ists a scheme A and a surjective étale morphism α : A → K′. Therefore, there exists a
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family A → A (we omit the datum of the divisor for simplicity of notation), and every
object parametrized by K′ appears as a fiber of A → A because α is surjective. In par-
ticular, there exists a dense open subset U ⊆ A such that A|U → U admits a fiberwise
(Z/2Z)-action. So we can apply Lemma 3.14 to extend the (Z/2Z)-action to the whole
family A → A.

Now, let S be a normal scheme and let X → S be a family for the stack K′. Consider
the algebraic space S ′ := S ×K′ A, which we may assume is a scheme by replacing it by
its atlas, if necessary. We have that S ′ comes with a family X ′ → S ′ obtained by pulling-
back A → A along the morphism S ′ → A. Observe that X ′ → S ′ equals the pull-back
of X → S along the morphism S ′ → S because the two compositions S ′ → A → K′

and S ′ → S → K′ are equal. We can summarize these considerations in the following
commutative diagrams of cartesian squares:

X ′

X A

S ′

S A

K′.

Since X ′ → S ′ has a fiberwise (Z/2Z)-action, also X → S does. The quotient of X → S

by this (Z/2Z)-action gives an object for the stack J ′. This guarantees the existence of a
morphism of stacks K′ → J ′ which induces a morphism f : K

′ → J
′

of the underlying
coarse moduli spaces.

The morphism f is surjective because it is the identity on U/SL2/H . On the other hand,
assume f(p) = q and let (X, εR) (resp. (P1 × P1, 1+ε

2
B)) be the stable pair parametrized

by p (resp. q). Then (X, εR) is the double cover of (P1 × P1, 1+ε
2
B), and since such double

cover is unique, we have that f is injective as well. Thus f is bijective.

Now consider the associated morphism K → J between normalizations. Since it is a
quasi-finite surjective birational morphism between normal varieties, by Zariski’s Main
Theorem it is an isomorphism. �

4. PARTIAL DESINGULARIZATION OF GIT QUOTIENTS

4.1. Review on partial desingularization. In this section, we recall the partial desingu-
larization of GIT quotient developed by Kirwan in [Kir85].

Let G be a reductive group and let X be a smooth projective variety equipped with an
L-linearized G-action. Suppose that the stable locus Xs(L) is nonempty. If X has strictly
semi-stable points, so that Xs(L) ( Xss(L), then the GIT quotient X//LG may have non-
finite quotient singularities. Such a singularity can be partially G-equivariantly resolved
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by using Kirwan’s partial desingularization. The outcome of the partial desingularization
process is a new algebraic variety X ′ equipped with an L′-linearized G-action such that:

(1) There is a dominant projective birational map X ′//L′G→ X//LG;
(2) X ′//L′G has finite quotient singularities only.

Assume that Xss(L) 6= Xs(L). Let Y be the closed G-invariant subvariety of Xss(L)

with a maximal dimensional stabilizer group. Let X̃ be the blow-up of Xss(L) along Y

and let π : X̃ → Xss(L) be the blow-up morphism. LetE be the exceptional divisor. X̃ is a
smooth quasi-projective variety since Y is smooth. For a small ε > 0, Lε := π∗L⊗O(−εE)

is an ample line bundle on X̃ and the G-action is naturally extended to X̃ and to Lε.

The stable and semi-stable loci of X and X̃ are related as follows:

π−1Xs(L) ⊆ X̃s(Lε) ⊆ X̃ss(Lε) ⊆ π−1Xss(L).

Thus there is a natural G-equivariant morphism X̃ss(Lε)→ Xss(L) which induces a mor-
phism π : X̃//LεG → X//LG between quotients. On X̃ , a point x ∈ X̃ is unstable if the
orbit of π(x) is not closed in Xss(L) ([Kir85, Lemma 6.6]). Furthermore, the maximal di-
mension of the stabilizer group strictly decreases. After replacing X by X̃ss and L by Lε,
we can continue this process and it terminates. The result of this procedure is X ′ and L′.

4.2. Partial resolution of the parameter space of eight points on the projective line. Let
X0 := (P1)8 equipped with a diagonal SL2-action. Let L = O(1, . . . , 1) be the symmetric
linearization. We explicitly describe the partial desingularization of X0//LSL2. For the
detail, see [Kir85, §9].

Recall that for a point configuration p ∈ X0, p ∈ Xss
0 if and only if at most four points

collide and p ∈ Xs
0 if and only if at most three points collide.

If
(

[8]
4

)
denotes the set of 4-element subsets of [8] := {1, . . . , 8}, for any I ∈

(
[8]
4

)
, let

∆I := {p = (pi) ∈ Xss
0 | pi = pj for all i, j ∈ I}. It is a five dimensional smooth subvariety

of Xss
0 . The set of strictly semi-stable points is

Xss
0 \Xs

0 =
⋃

I∈([8]
4 )

∆I .

For I ∈
(

[8]
4

)
, let ∆I,Ic := ∆I ∩ ∆Ic . Note that ∆I,Ic

∼= (P1)2 \ P1, where the last P1 is the
diagonal. For any J 6= I, Ic, we have that ∆I,Ic∩∆J,Jc = ∅. So if we let ∆4,4 =

⋃
I∈([8]

4 ) ∆I,Ic ,
then ∆4,4 is a disjoint union of 35 copies of two dimensional smooth closed subvarieties
of Xss

0 . ∆4,4 is precisely the set of semi-stable points with positive dimensional stabilizer,
which is isomorphic to C∗.

Let X1 be the blow-up of Xss
0 along ∆4,4. Let EI,Ic be the exceptional divisor over ∆I,Ic .

For each ∆I , let ∆̃I be the proper transform of ∆I . Then X1 is a smooth variety equipped
with a linearized SL2-action. Let ρ : X1 → Xss

0 be the blow-up morphism. By the recipe
of the partial desingularization, it is straightforward to check the following:

(1) If ρ(p) ∈ Xs
0, then p is stable;

(2) If p ∈ EI,Ic \ (∆̃I ∪ ∆̃Ic), then p is stable;



KSBA COMPACTIFICATION OF MODULI OF K3 SURFACES 13

(3) If p ∈ ∆̃I , then p is unstable.

In particular, Xss
1 = Xs

1. One may check that for every p ∈ Xs
1, the stabilizer group is

isomorphic to {±1}. Therefore the GIT quotient Xs
1/SL2 is a smooth variety.

Definition 4.1. Let P be the partial desingularization of (P1)8//SL2 with symmetric lin-
earization, that is, P := Xs

1/SL2.

Note that both X0 and X1 have U as an open subset. So there is an open embedding
U/SL2 ↪→ P = Xs

1/SL2.

Remark 4.2.

(1) By [KM11, Theorem 1.1], P is isomorphic to M
0,( 1

4
+ε)

8 , the moduli space of stable

rational curves with eight marked points of weight 1
4

+ ε (see [Has03]).
(2) An irreducible component EI,Ic of the exceptional divisor of π̄ : P→ (P1)8//SL2 is

isomorphic to P2×P2. Indeed, because SL2 acts on ∆I,Ic transitively with stabilizer
group C∗, the exceptional set is isomorphic to π−1(∆I,Ic)//SL2

∼= P5//C∗. Here P5 ∼=
P(N∆I,Ic/X

ss
0
|x) for some x ∈ ∆I,Ic . One can check that the weight decomposition of

N∆I,Ic/X
ss
0
|x is (2)3 ⊕ (−2)3. Thus the GIT quotient P5//C∗ is isomorphic to P2 × P2.

Alternatively, we may adopt the moduli theoretic meaning (again, [KM11, The-
orem 1.1]) to obtain the same result: EI,Ic

∼= M0,(1,( 1
4

+ε)4) ×M0,(1,( 1
4

+ε)4)
∼= P2 × P2.

5. EXPLICIT CALCULATIONS OF STABLE REPLACEMENTS

The first step toward the proof of Theorem 1.1 is the construction of an extension
(Ỹ , 1+ε

2
B̃) → Xs

1 of the family of pairs (Y , 1+ε
2
B) → U, where recall Y = U × (P1 × P1)

and we set B := (C + L0 + L1)|U (see Definition 3.10). This would induce a functorial
morphism Xs

1 → K. The above extension is obtained by modifying (Y1,
1+ε

2
B1) → Xs

1,
where Y1 := Xs

1 × (P1 × P1) and B1 is obtained by pulling-back C + L0 + L1 under the
appropriate morphism. We postpone the global analysis of this modification to §6. In this
section, we describe how the modification of the family goes with concrete examples of
one-parameter degenerations.

Throughout the whole section we adopt the following notation. For a stable pair (X,B),
if ν : qiXi → X is the normalization map, then we denote by DXi the conductor divisor
on Xi. We use the letter P to denote P1 × P1, and ∆ to denote the germ of a curve whose
uniformizing parameter is t. On P × ∆, we let L0,L1 denote the divisors V (y0), V (y1)
respectively. For simplicity of notation, we denote the fibers (L0)0, (L1)0 over t = 0 by
L0, L1 respectively. B denotes the divisor C + L0 + L1, where C is appropriately defined
in each one of the examples that follow, and it depends on the choice of eight general
complex numbers ~λ := (λ1, . . . , λ8) ∈ C8 ⊆ (P1)8.

5.1. Semi-stable points of type a.

Example 5.1. Consider the one-parameter family of divisors C on P ×∆ given by

y2
0(x0 − tλ1x1)(x0 − tλ2x1)(x0 − λ3x1)(x0 − λ4x1)

+ y2
1(x0 − tλ5x1)(x0 − tλ6x1)(x0 − λ7x1)(x0 − λ8x1) = 0,
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which is associated to ~λt = (tλ1, tλ2, λ3, λ4, tλ5, tλ6, λ7, λ8) ∈ (P1)8. We have a family of
pairs (P × ∆, 1+ε

2
B) → ∆. When t = 0, ~λ0 is strictly semi-stable. For a general t 6= 0,

the fiber (P, 1+ε
2
Bt) is a stable pair, thus its double cover branched along Bt is also a stable

ADE K3 pair. On the other hand, note that
(
P, 1+ε

2
B0

)
is not a stable pair because B0 =

2L+ C ′ + L0 + L1 has a double line where L is the line V (x0). Here C ′ is the (2, 2) divisor
given by

y2
0(x0 − λ3x1)(x0 − λ4x1) + y2

1(x0 − λ7x1)(x0 − λ8x1) = 0.

The intersection L∩C ′ consists of the two distinct solutions of y2
0λ3λ4 + y2

1λ7λ8 = 0 (recall
we assumed that the λi are general).

We blow-up the double locus x0 = t = 0. Let E be the exceptional divisor, which
is isomorphic to P . Let C ′′ denote the restriction to E of the strict transform of C. On
the affine patch x1y0 6= 0, the equation of C ′′ is given by the smallest degree terms with
respect to x0 and t in the equation for C. Note that y1 is regarded as a constant during this
computation. Thus, after homogenizing back, C ′′ is the (2, 2) curve on E given by

y2
0(x0 − tλ1)(x0 − tλ2)λ3λ4 + y2

1(x0 − tλ5)(x0 − tλ6)λ7λ8 = 0,

where ([x0 : t], [y0 : y1]) are the coordinates of E. The restriction of the strict transform
of L0 + L1 to E also consists of the two lines y0 = 0 and y1 = 0. The resulting limit is
described in Figure 1. The central fiber is semi-log canonical, and one may check that

KP +DP +
1 + ε

2
(L0 + L1 + C ′) ∼ (−2,−2) + (1, 0) +

1 + ε

2
(2, 4) = ε(1, 2),

which is ample. By symmetry, this is enough to show that the limit is stable.

To conclude this example, observe that ~λ0 is discarded in the partial desingularization
process. However, the study we carried out is preliminary to the next Example 5.2.

P E

C ′ C ′′L0

L1

FIGURE 1. Stable limit pair in Example 5.1

Example 5.2. Consider the one-parameter family of divisors C on P ×∆ given by

y2
0(x0 − tλ1x1)(x0 − tλ2x1)(tx0 − λ3x1)(tx0 − λ4x1)

+ y2
1(x0 − tλ5x1)(x0 − tλ6x1)(tx0 − λ7x1)(tx0 − λ8x1) = 0,

whose special fiber C0 is
(λ3λ4y

2
0 + λ7λ8y

2
1)x2

0x
2
1 = 0.
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In this case, ~λ0 is a strictly semi-stable point with a closed orbit. Thus the normal direc-
tion ~λt corresponds to a stable point on the exceptional divisor of the partial desingu-
larization. When t = 0, B0 is the union of four distinct horizontal lines y0 = 0, y1 = 0,
y0 = ±

√
−λ7λ8/(λ3λ4)y1, and two non-reduced vertical lines x0 = 0, x1 = 0 with multi-

plicity two.
As we did in Example 5.1, let E0 (resp. E1) be the exceptional divisor of the blow-

up along x0 = t = 0 (resp. x1 = t = 0). Observe that these two exceptional divisors
are isomorphic to P . Let C̃ be the strict transform of C. On E0, which has coordinates
([x0 : t], [y0 : y1]), the restriction of C̃ has equation

C0 : y2
0(x0 − tλ1)(x0 − tλ2)λ3λ4 + y2

1(x0 − tλ5)(x0 − tλ6)λ7λ8 = 0.

Similarly, on E1, which has coordinates ([t : x1], [y0 : y1]), the restriction of C̃ has equation

C1 : y2
0(t− λ3x1)(t− λ4x1) + y2

1(t− λ7x1)(t− λ8x1) = 0.

The limit pair is pictured in Figure 2. On the central component,

KP +DP +
1 + ε

2
BP = (−2,−2) + (2, 0) +

1 + ε

2
(0, 4) = ε(0, 2),

which is not ample. Therefore, we need to contract P in the central fiber horizontally,
obtaining a surface with two components E0 and E1. The resulting stable pair is the same
to that in Figure 1.

E0 E1

P
L0

L1

FIGURE 2. Semi-log canonical limit pair in Example 5.2. The stable limit is
obtained after contracting horizontally the middle component

Remark 5.3. Let us describe the double cover π : X = X0 ∪X1 → E0 ∪E1 of the degener-
ation in Example 5.2. Consider the double cover π0 : X0 → E0, whose branch divisor is of
class (2, 4) and has four isolated singularities of type A1. We have that

KX0 = π∗0(KE0 + (1, 2)) = π∗0(−1, 0),

which implies that −KX0 is nef and K2
X0

= 0. From π0∗OX0
∼= OX0 ⊕OX0(−1,−2) we can

argue that H1(OX0) = 0. Moreover, by the projection formula, we have that

π0∗OX0(2KX0) = π0∗π
∗
0OX0(−2, 0) ∼= OX0(−2, 0)⊕OX0(−3,−2),

so H0(OX0(2KX0)) = 0. Therefore, by Castelnuovo’s rationality criterion, X0 is rational.
Note thatX0 has an elliptic fibration induced by the projection onE0 given by ([x0 : t], [y0 :
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y1]) 7→ [x0 : t]. The same calculations work for X1. Observe that the gluing locus X0 ∩X1

is a genus one curve.

In Example 5.2 we started with eight general points. Note that the same construction is
valid for all the degenerate point configurations of interest, as we clarify in the following
lemma.

Lemma 5.4. Consider a semi-stable choice of λ1, . . . , λ8 ∈ C8 ⊆ (P1)8 such that λ3λ4λ7λ8 6= 0,
at least one of λ1, λ2, λ5, λ6 is different from the others, and at least one of λ3, λ4, λ7, λ8 is different
from the others. Then the irreducible components (Ei,

1+ε
2

(Ci + L0 + L1) +DEi) of the limit pair
are stable, i = 0, 1.

Remark 5.5. The reason why we exclude the cases λ3λ4λ7λ8 = 0 and λ1 = λ2 = λ5 = λ6 is
because, in the former case, ~λ0 is an unstable point configuration. In the latter case, ~λt is
a curve along the strictly semi-stable locus in (P1)8, and this case can be discarded in the
partial desingularization process, as ~λt with t 6= 0 is unstable on the blow-up of ((P1)8)ss.
For this same reason, we also exclude λ3 = λ4 = λ7 = λ8.

Proof of Lemma 5.4. Let us prove the claim for the pair corresponding to i = 0, since the
other one is analogous. We only have to prove that (E0,

1+ε
2

(C0 + L0 + L1) + DE0) is
log canonical. Up to symmetries, the significant cases are λ1, λ2, λ5, λ6 distinct (where
C0 is smooth), λ1 = λ2, λ1 = λ5, and λ1 = λ2 = λ5. In each case we conclude that
C0 + L0 + L1 produces planar singularities that appear on Table 1 only, and on DE0 they
do not have any double point (we omit these simple computations for brevity). So the
pair (E0,

1+ε
2

(C0 + L0 + L1) +DE) is log canonical. �

5.2. Semi-stable points of type b.

Example 5.6. Consider the family of pairs (P ×∆, 1+ε
2
B)→ ∆ where C on P ×∆ is given

by

y2
0(x0 − tλ1x1)(x0 − tλ2x1)(x0 − tλ3x1)(x0 − λ4x1)

+y2
1(x0 − tλ5x1)(x0 − λ6x1)(x0 − λ7x1)(x0 − λ8x1) = 0.

For t 6= 0 the pair is stable. For t = 0, the only non-log canonical singularity is at x0 =
y1 = 0, and it is locally analytically four distinct concurrent lines with weight 1+ε

2
. So we

restrict to the affine patch x1y0 6= 0. Take the blow-up of P ×∆ at t = x0 = y1 = 0 and let
E ∼= P2 be the exceptional divisor of the blow-up. Denote by CE the restriction to E of the
strict transform of C. On E, the divisor CE has equation

(x0 − tλ1)(x0 − tλ2)(x0 − tλ3)λ4 + y2
1(x0 − tλ5)λ6λ7λ8 = 0,

which a smooth cubic curve if ~λ is general, which we assumed. C does not have an
irreducible component V (y1). If h denotes the class of a line on E, then

KE +DE +
1 + ε

2
BE =

(
−3 + 1 +

1 + ε

2
4

)
h = 2εh,

which is ample. See the left hand side of Figure 3 for the limit pair.
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Let π : P ′ → P be the blow-up of the central fiber, where the exceptional divisor is the
conductor DP ′ and BP ′ is the strict transform of B0. We have KP ′ = π∗(−2,−2) +DP ′ and
BP ′ = π∗(4, 4) − 4DP ′ . We can see that the divisor KP ′ + DP ′ + 1+ε

2
BP ′ is not ample on

P ′. Consider the proper transform of the line V (y1), whose class is π∗(0, 1) − DP ′ . It is
simple to check that the intersection number (π∗(0, 1)−DP ′) · (KP ′ +DP ′ + 1+ε

2
BP ′) equals

zero. The same computation yields the intersection with the proper transform of V (x0) is
also zero. After contracting these two lines, we obtain a stable limit with two irreducible
components isomorphic to P2, as in the right hand side of Figure 3.

E

P ′

y1 = 0

x0 = 0

E

FIGURE 3. Stable limit pair in Example 5.6

Example 5.7. Consider the family of pairs (P ×∆, 1+ε
2
B)→ ∆, where C is given by

y2
0(x0 − tλ1x1)(x0 − tλ2x1)(x0 − tλ3x1)(tx0 − λ4x1)

+y2
1(x0 − tλ5x1)(tx0 − λ6x1)(tx0 − λ7x1)(tx0 − λ8x1) = 0.

Observe that the limit 8-point configuration is a strictly semi-stable point of type b. On
the central fiber, there are two non-log canonical singularities at x0 = y1 = 0 and at
x1 = y0 = 0. By taking two blow-ups along those two points, which introduces the
exceptional divisors E0 and E1 respectively, we have a configuration of three surfaces as
in Figure 4. On E0, the restriction of the strict transform of C is given by

C0 : (x0 − tλ1)(x0 − tλ2)(x0 − tλ3)λ4 + y2
1(x0 − tλ5)λ6λ7λ8 = 0.

On E1, the restriction of the strict transform of C is given by

C1 : y2
0(t− λ4x1) + (t− λ6x1)(t− λ7x1)(t− λ8x1) = 0.

The central component P ′′ is a ruled surface and

KP ′′ +DP ′′ +
1 + ε

2
BP ′′ = (π∗(−2,−2) +DE0 +DE1)

+DE0 +DE1 +
1 + ε

2
(π∗(4, 4)− 4DE0 − 4DE1)

= ε(π∗(2, 2)− 2DE0 − 2DE1)

is not ample. P ′′ is contracted diagonally, thus the resulting stable limit is the same as the
picture on the right hand side in Figure 3.
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E0

E1

P ′′

FIGURE 4. Semi-log canonical limit pair in Example 5.7. The stable limit is
obtained after contracting diagonally the middle component

Remark 5.8. For i = 0, 1, the double cover πi : Xi → Ei of an irreducible component
Ei ∼= P2 is branched along a reducible quartic curve Bi with three nodal singularities.
Since KXi = π∗iKEi + 1

2
π∗iBi = −π∗i h where h is the class of a line, we have that KXi is anti-

ample. Since Xi has only three A1 singularities, the minimal resolution of Xi is a weak del
Pezzo surface of degree 2. The gluing locus X0 ∩X1 is a genus one curve.

The same construction is valid for all the degenerate point configurations of interest in
view of the partial desingularization. The reasoning behind the restrictions on the λi in
the next lemma is analogous to what we already explained in Remark 5.5.

Lemma 5.9. Consider a semi-stable choice of λ1, . . . , λ8 ∈ C8 ⊆ (P1)8 such that λ4λ6λ7λ8 6= 0,
at least one of λ1, λ2, λ3, λ5 is different from the others, and at least one of λ4, λ6, λ7, λ8 is different
from the others. Then the irreducible components (E0,

1+ε
2

(C0 +L1) +DE0), (E1,
1+ε

2
(C1 +L0) +

DE1) of the limit pair are stable.

Proof. By symmetry, it is enough to check the log canonicity of (E0,
1+ε

2
(C0 +L1)+DE0). By

checking degenerate point configurations, under the assumption that one of λ1, λ2, λ3, λ5

is distinct from the others, one may conclude that (C0 +L1) has only singularities that ap-
pear on Table 1, and alongDE = V (t) it has no singularities at all. So the pair (E0,

1+ε
2

(C0+
L1) +DE0) is log canonical. �

5.3. Semi-stable points of type c.

Example 5.10. Consider the one-parameter family of divisors C on P := P ×∆ given by

y2
0

4∏
i=1

(x0 − tλix1) + y2
1

8∏
i=5

(x0 − λix1) = 0.

The divisor B0 has five multiple points, but only ([0 : 1], [1 : 0]) is not a simple double
point. In the affine patch x1y0 6= 0, locally at (0, 0), the singularity of B0 is isomorphic to
y1(x4

0 + y2
1) = 0, which is not log canonical for the weight (1 + ε)/2. To find the stable

replacement, let us restrict to the affine patch x1y0 6= 0, so that the equation for B becomes

y1

(
4∏
i=1

(x0 − tλi) + y2
1

8∏
i=5

(x0 − λi)

)
= 0.

We perform the following birational modifications (see Figure 5).
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(1) Let P ′ → P be the weighted blow-up at (t, x0, y1) = (0, 0, 0) with weights (1, 1, 2),
which is the blow-up of the ideal (t2, tx0, x

2
0, y1). The exceptional divisor E1 is

isomorphic to the weighted projective plane P(1, 1, 2), which is isomorphic to F0
2, a

cone over a smooth conic. This weighted blow-up introduces an A1 singularity on
each irreducible component of P ′0. Let B′ be the strict transform of the divisor B.
Observe that the equation for B′E1

, which is the smallest degree part with respect
to x0, y1, t of the equation for B, is given by

y1

(
4∏
i=1

(x0 − tλi) + y2
1

8∏
i=5

λi

)
= 0.

It is the union of a 2-section and a section of F0
2.

(2) The strict transform of the line L1 = V (y1) on P intersects KP ′
0

+ 1+ε
2
B′0 negatively.

We flip this curve by first blowing it up, introducing an exceptional divisor E2

isomorphic to F1.
(3) Blow-up the strict transform of L1 on E2 introducing the exceptional divisor E3

isomorphic to F0.
(4) Contract E3 along the ruling intersecting E2 in the exceptional divisor. The strict

transform of E2 is now isomorphic to P2.
(5) Contract the strict transform of E2 to a point. This introduces an A1 singularity on

the strict transform of P and on the strict transform of E1.

P F0
2

A1

F1

F0P2

A1A1

Y2

Y1

N1 N0

T

L0

M0 M1

FIGURE 5. Stable replacement in Example 5.10
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The central fiber is log canonical (it was already log canonical at step (1) – the modifi-
cation that followed did not make the singularities of the pair worse), so we only need to
check that the numerical condition is satisfied. Denote by Y1, Y2 the two irreducible com-
ponents of the central fiber, where Y1 is the strict transform of P . Let BYi be the restriction
of the strict transform of B to Yi . We want to show that KYi + DYi + 1+ε

2
BYi is ample for

i = 1, 2.

(1) On Y1, let M0,M1 be the two vertical boundary lines, where M2
0 = −1

2
and M2

1 = 1
2
.

Note that L0 is the horizontal boundary line disjoint from Y2. It is a straightfor-
ward exercise to compute the following intersection numbers (observe that L0 is
contained in the support of BY1):

· M0 M1 L0 DY1 BY1

M0 −1/2 0 1 1/2 1
M1 1/2 1 1/2 3
L0 0 0 4
DY1 0 2

Moreover, KY1 = −M0 −M1 − L0 −DY1 . One may check that KY1 + DY1 + 1+ε
2
BY1

intersects positively with M0, M1, L0, and DY1 . Since Y1 is a toric variety, this
implies KY1 +DY1 + 1+ε

2
BY1 is ample.

(2) On Y2, let N0, N1 be the two vertical boundary lines, where N2
0 = −1

2
and N2

1 = 1
2
.

Denote by T the top boundary line. We have the following intersection numbers:

· N0 N1 T DY2 BY2

N0 −1/2 0 1 1/2 1
N1 1/2 1 1/2 3
T 0 0 4
DY2 0 2

Then KY2 = −N0 − N1 − T − DY2 and KY2 + DY2 + 1+ε
2
BY2 is ample because it

intersects positively with N0, N1, T,DY2 .

Note that two intersection matrices for Y1 and Y2 are same. Indeed, they are isomorphic
toric surfaces. But the non-toric divisors BY1 and BY2 are in general different.

Example 5.11. Finally, consider the one-parameter family of divisors C on P := P × ∆
given by

y2
0

4∏
i=1

(x0 − tλix1) + y2
1

8∏
i=5

(tx0 − λix1) = 0.

We have that
(
P0,

1+ε
2
B0

)
is not log canonical at ([0 : 1], [1 : 0]), ([1 : 0], [0 : 1]) where the

divisor is locally isomorphic to y(x4 +y2). To obtain the stable replacement we may repeat
the procedure in Example 5.10 for both singularities. Let F0 be the exceptional divisor of
the weighted blow-up at ([0 : 1], [1 : 0]). Then the restriction to F0 of the strict transform
of C has equation

C0 :
4∏
i=1

(x0 − tλi) + y2
1

8∏
i=5

λi = 0.
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Similarly, if F1 be the exceptional divisor of the weighted blow-up at ([1 : 0], [0 : 1]), then
the restriction to F1 of the strict transform of C has equation

C1 : y2
0 +

8∏
i=5

(t− λix1) = 0.

Continuing with the flip described in Example 5.10 (which we perform once for each
of the two singularities), the semi-stable replacement has three irreducible components:
let Y1 be the strict transform of P and let Y2, Y3 be the strict transforms of the exceptional
divisors of the two exceptional divisors F0, F1 respectively (see left picture in Figure 6).
Observe that Y1 has four A1 singularities and Y2 and Y3 have two A1 singularities each.
Let BYi be the restriction to Yi of the strict transform of B.

A1A1

A1 A1

Y2

Y3

Y1M0 M1 A1 A1

Y2

Y3

FIGURE 6. On the left, the semi-log canonical limit pair in Example 5.11,
and on the right, the corresponding stable limit obtained after contracting
the middle component

On Y1, let Mi be the strict transform of the line xi = 0, i = 0, 1. The conductor divisor
DY1 consists of the two irreducible components D12 := Y1 ∩ Y2 and D13 := Y1 ∩ Y3. We
have the following intersection numbers:

· M0 M1 D12 D13 BY1

M0 0 0 1/2 1/2 0
M1 0 1/2 1/2 0
D12 0 0 2
D13 0 2

One can compute that KY1 = −2M0 − 2D13. Therefore, KY1 + DY1 + 1+ε
2
BY1 intersects M0

and M1 trivially and Y1 can be contracted vertically to obtain a stable pair. The resulting
pair is the same as the right picture in Figure 6.

Remark 5.12. We compute the double cover of the degeneration in Figure 6 after contract-
ing the middle component Y1. Let π2 : X2 → Y2 be the double cover (analogous considera-
tions hold for Y3). Using thatBY2 = 4N0+3T andKY2 = −(N0+N1+T+DY2) = −2N0−2T
(notice that Y2 has Picard number 2), and following the same strategy as in Remark 5.3,
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by Castelnuovo’s rationality criterion one can conclude that X2 is a rational surface with
K2
X2

= 0, which also comes with an elliptic fibration. The limit stable surface is the union
of two rational surfaces glued along a genus one curve.

As in type a and type b, we may generalize this computation to all the degenerate point
configurations of interest.

Lemma 5.13. Consider a semi-stable choice of λ1, . . . , λ8 ∈ C8 ⊆ (P1)8 such that λ5λ6λ7λ8 6= 0,
at least one of λ1, λ2, λ3, λ4 is different from the others, and at least one of λ5, λ6, λ7, λ8 is different
from the others. Then the irreducible components (Y2,

1+ε
2
BY2 + DY2), (Y3,

1+ε
2
BY3 + DY3) of the

limit pair are stable.

Proof. To check that the pairs are stable, it is sufficient to check the singularities of the pairs
corresponding to the exceptional divisors of the first two weighted blow-ups, because the
flip, which was described in Example 5.10, does not produce any new singularities on the
curve. With reference to the notation introduced in Example 5.11, we have to show that
(F0,

1+ε
2

(C0 +L1) +DF0) and (F1,
1+ε

2
(C1 +L0) +DF1) are log canonical. We only show this

for the former pair since the proof for the latter is analogous.
Note that from the equation of C0 in Example 5.11, it is clear that C0 does not intersect

two coordinate points V (t, x0) and V (t, y1). In particular, C0 + L1 is supported on the
smooth locus of F0. If all λi’s for i ≤ 4 are distinct, then C0 is nonsingular and intersects
with L1 and DF0 transversally. By checking the allowed collisions of the λi with i ≤ 4, one
can conclude that (C0 +L1) has only singularities on Table 1, and it intersects with DF0 at
three points transversally. Thus the pair is log canonical. �

Remark 5.14. Let X 0 → ∆ \ {0} be a proper flat family of smooth K3 surfaces with a
purely non-symplectic automorphism of order four and a U(2)⊕D⊕2

4 lattice polarization
as in §2.1. Let X be a semistable completion of X 0 over ∆ with X smooth and KX ∼ 0 (see
[Kul77, PP81]). If the central fiber X0 is not smooth, then X0 has Kulikov type II according
to [Kul77, Theorem II]. This follows from the study of degenerations we carried out in §5,
together with [Sch16, Theorem 7.4].

Remark 5.15. Motivated by the study of the KSBA compactification of the moduli space
of K3 surfaces of degree two, in [AT17], Alexeev and Thompson introduced classes of
combinatorially defined surfaces called ADE surfaces and ÃD̃Ẽ surfaces ([AT17, §3]).
These are log canonical non-klt del Pezzo surfaces with reduced boundary. An ADE

(resp. ÃD̃Ẽ) cover is a double cover of an ADE (resp. ÃD̃Ẽ) surface.
The three K3 degenerations of type a, b, and c in this section are reducible surfaces

whose irreducible components are of type II according to [AT17, Lemma 2.4]. Before
taking the Z2-cover, for a degeneration of type a, each irreducible component is a D̃8

surface ([AT17, §3.5]). For a type b degeneration, each irreducible component is an Ẽ7

surface ([AT17, §3.6]). Finally, for a type c degeneration, the first weighted blow-up in
Figure 5 produces a component which is an Ẽ−8 surface ([AT17, §3.6]). The next four
blow-ups/downs correspond to the ‘priming’ operation in [AT17, §3.10]. The resulting
degeneration has two irreducible components which are Ẽ+

8 surfaces.
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A stable ADE (resp. ÃD̃Ẽ) cover is obtained by gluing ADE (resp. ÃD̃Ẽ) covers along
boundaries. Alexeev and Thompson constructed moduli spaces of ADE covers ([AT17,
Theorem 10.22]). Moduli spaces of ÃD̃Ẽ covers, which are related to our situation, are
not completely studied yet.

6. PROOF OF THE MAIN THEOREM

We are ready to prove Theorem 1.1. Let (Y , 1+ε
2
B) → U as in the beginning of §5. The

first step is the following statement:

Proposition 6.1. There is a flat family of stable pairs (Ỹ , 1+ε
2
B̃) → Xs

1 which is an extension of
(Y , 1+ε

2
B)→ U.

Proof. We subdivide the proof in different parts.
Setup and notation: Let ([a1 : b1], . . . , [a8 : b8]) be the homogeneous coordinates of

X0 := ((P1)8). Let Y0 := X0× (P1× P1) and let π0 : Y0 → X0 be the natural projection. For
P1 × P1, let ([x0 : x1], [y0 : y1]) be the homogeneous coordinates.

As usual, let C be the divisor on Y0 defined by

y2
0

4∏
i=1

(bix0 − aix1) + y2
1

8∏
i=5

(bix0 − aix1) = 0.

Let L0 := V (y0),L1 := V (y1),B0 := C + L0 + L1. Then (Y0,
(

1+ε
2

)
B0) is a family of pairs

over X0. Note that these pairs are stable over Xs
0.

Recall that for I ∈
(

[8]
4

)
, ∆I,Ic := ∆I ∩ ∆Ic is a connected component of the locus of

strictly semi-stable points with closed orbits. Consult §4.2 for the detail. We say that ∆I,Ic

or the exceptional divisorEI,Ic is of type a if ∆I,Ic parametrizes type a point configurations.
In the same way we define type b and type c components.

Let X1 → Xss
0 be the blow-up along ∪∆I,Ic and let ρ1 be the composition Xs

1 ↪→ X1 →
Xss

0 . Let (Y1,
(

1+ε
2

)
B1) be the pulled-back family over Xs

1, that is, Y1 := Xs
1× (P1×P1) and

B1 := C1 +L0,1 +L1,1 := (ρ1× id)∗(C+L0 +L1)|Xss
0 ×(P1×P1). Let π1 : Y1 → Xs

1 be the natural
projection.

Main idea: The claimed extension (Ỹ , 1+ε
2
B̃) → Xs

1 is obtained from (Y1,
(

1+ε
2

)
B1) →

Xs
1 by first appropriately blowing-up Y1, and then applying the relative minimal model

program. It is clear that the fibers of (Y1,
(

1+ε
2

)
B1) → Xs

1 that are not stable lie above the
divisors Es

I,Ic . In what follows, we blow-up appropriate sub-loci of π−1
1 (Es

I,Ic) mimicking
in a relative setting the blow-ups described in §5.

Type a modification: For a type a divisor EI,Ic , let ZaI := π−1
1 (Es

I,Ic) ∩ V (bix0 − aix1 |
i ∈ I). Note that we intentionally abuse our notation: it is understood that the vanishing
locus V (bix0 − aix1 | i ∈ I) ⊆ Y0 is pulled-back to Y1 under the appropriate morphism.
This is a smooth codimension two subvariety of Y1, which is a P1-bundle over Es

I,Ic . Note
that ZaIc is also in π−1

1 (Es
I,Ic) but it is disjoint from ZaI . Let Y2 → Y1 be the blow-up

along ∪(ZaI t ZaIc), where the union is over all type a divisors EI,Ic . Fiberwisely, this is
exactly the blow-up of the two double lines as in Example 5.2. Let C2 (resp. Li,2) be the
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proper transform of C1 (resp. Li,1) and B2 := C2 + L0,2 + L1,2. Let π2 be the composition
Y2 → Y1 → Xs

1. Then π2 : (Y2,
1+ε

2
B2) → Xs

1 is a flat family of pairs. Over a type a divisor
Es
I,Ic , each fiber of (Y2,

1+ε
2
B2) is semi-log canonical and it is isomorphic to the pair in

Figure 2.
Type b modification: Over a type b divisorEI,Ic , we may assume that |I∩{1, . . . , 4}| = 3

(hence |Ic ∩ {5, 6, 7, 8}| = 3). Let ZbI := π−1
2 (Es

I,Ic) ∩ L1 ∩ V (bix0 − aix1 | i ∈ I) and let
ZbIc := π−1

2 (Es
I,Ic) ∩ L0 ∩ V (bix0 − aix1 | i ∈ Ic). Then ZbI and ZbIc are both disjoint sections

of Es
I,Ic . Let Y3 → Y2 be the blow-up along ∪(ZbI t ZbIc) for all type b divisors Es

I,Ic . Let C3

(resp. Li,3) be the proper transform of C2 (resp. Li,2) and let B3 := C3 + L0,3 + L1,3. Let π3

be the composition Y3 → Y2 → Xs
1. Then π3 : (Y3,

1+ε
2
B3) → Xs

1 is a family of pairs and
over a type b divisor, each fiber of (Y3,

1+ε
2
B3) is semi-log canonical and it is isomorphic to

the pair in Figure 4.
Type c modification: Finally, over the type c divisor EI,Ic , we may assume that I =
{1, 2, 3, 4}. Let P := π−1

3 (Es
I,Ic)
∼= Es

I,Ic ×P1×P1. Let ZcI := π−1
3 (Es

I,Ic)∩L1∩V (bix0−aix1 |
i ∈ I) and ZcIc := π−1

3 (Es
I,Ic) ∩ L0 ∩ V (bix0 − aix1 | i ∈ Ic). Then ZcI and ZcIc are disjoint

sections of Es
I,Ic . Let Y ′4 → Y3 be the weighted blow-up along ∪(ZcI t ZcIc) where the

normal subbundles NZcI/L1,3 and NZcIc/L0,3 have weight two. Let C ′4 (resp. L′i,4) be the
proper transform of C3 (resp. Li,3). Set B′4 := C ′4 + L′0,4 + L′1,4. Let P ′ be the proper
transform of P .

Let Wi := L′i,4 ∩ P ′, which is a smooth codimension two subvariety of Y ′4. Note that
W0 and W1 are disjoint. Let Y ′′4 → Y ′4 be the blow-up along W0 t W1. The two excep-
tional divisors are denoted by E0 and E1. Let C ′′4 , L′′i,4 be the proper transforms of C ′4, L′i,4
respectively. Set B′′4 := C ′′4 + L′′0,4 + L′′1,4. Note that C ′′4 ∼= C ′4 because C ′4 andWi are disjoint.

Let Vi := L′′i,4 ∩ Ei, which is a smooth codimension two subvariety of Y ′′4 . V0 is disjoint
from V1. Let Y4 → Y ′′4 be the blow-up along V0tV1. Let C4, Li,4 be the proper transforms of
C ′′4 , L′′i,4 respectively and let B4 := C4+L0,4+L1,4. The family of pairs π : (Y4,

1+ε
2
B4)→ Xs

1 is
semi-log canonical over the type c divisor. Over Es

I,Ic , the fiber of Y4 has seven irreducible
components. There is a ‘central’ component, and two ‘tails’ consisting of three irreducible
components whose configurations are the same to the top three components of the fourth
step in Figure 5.

Contraction: Consider the resulting family of pairs π : (Y4,
1+ε

2
B4) → Xs

1. For each
x ∈ Xs

1, the fiber (Y4x,
1+ε

2
B4x) is either irreducible stable pair or one of semi-stable pairs

described in Figures 2, 4, and 6. In any case, each fiber is a semi-log canonical pair and
KY4x + 1+ε

2
B4x is a nef and big divisor. Thus, by [Fuj14, Theorem 1.10], H1(Y4x,O(m(KY4x +

1+ε
2
B4x))) = 0 for m � 0. Moreover, by [Fuj14, Theorem 1.16], KY4x + 1+ε

2
B4x is semi-

ample. Then by the standard cohomology and base change ([Har77, Theorem 12.11]),
π∗O(m(KY4/Xs

1
+ B4)) is locally free and we obtain a new family of varieties

Ỹ := Proj
⊕
m≥0

π∗O(m(KY4/Xs
1

+
1 + ε

2
B4))→ Xs

1,

and there is a contraction Xs
1-morphism Y4 → Ỹ . By taking the push-forward of B4, we

obtain (Ỹ , 1+ε
2
B̃)→ Xs

1. The resulting morphism Ỹ → Xs
1 is flat by [HKT09, Lemma 10.12].
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Then by [Kol18, Theorem 4.3], (Ỹ , 1+ε
2
B̃) → Xs

1 is a well-defined family of pairs. Finally,
Lemmas 5.4, 5.9, and 5.13 tell us that each fiber of (Ỹ , 1+ε

2
B̃)→ Xs

1 is stable. �

Proof of Theorem 1.1. In Proposition 3.13 we showed that K ∼= J, so we focus on the latter.
By Proposition 6.1 we have a family of stable pairs over Xs

1 for the functor J ′ in Defini-
tion 3.11, hence there is a functorial morphism f : Xs

1 → J. Since U is an open dense
subset of Xs

1, the image of f is precisely J. Clearly the morphism f is SL2-invariant, so
there is a quotient morphism f̄ : P = Xs

1/SL2 → J. This map is also H-invariant, thus we
can obtain yet another quotient map f̃ : P/H → J which we show is an isomorphism.

Since f̃ is a birational morphism between normal varieties, it is enough to show it is
finite, or equivalently that f̄ is finite. Given an exceptional divisor EI,Ic of the blow-
up X1 → Xss

0 , denote by EI,Ic the quotient Es
I,Ic/SL2. It is sufficient to show that EI,Ic ,

which is isomorphic to P2 × P2 by Remark 4.2, is not contracted by f̄ . This is explained in
Lemma 6.2 below. �

Lemma 6.2. With the notation introduced in the proof of Theorem 1.1, the divisors EI,Ic ⊆ P are
not contracted by f̄ .

Proof. If EI,Ic
∼= P2×P2 is contracted, then at least one of the two copies of P2, say the first

component, is contracted to a point. We show that we can find two points (p̄1, q̄), (p̄2, q̄) ∈
EI,Ic with p̄1 6= p̄2 parametrizing non-isomorphic stable pairs, obtaining a contradiction.
There are three cases to consider corresponding to the type of EI,Ic , which we define to
be equal to the type of EI,Ic .

Assume EI,Ic is of type a. Up to relabeling, we may assume I = {1, 2, 5, 6}, Ic =
{3, 4, 7, 8}. The stable pair parametrized by a point in Es

I,Ic has two irreducible compo-
nents isomorphic to P1 × P1 (see Example 5.2). Consider the irreducible component with
divisor in the form C0 + L0 + L1, where C0 is given by

y2
0(x0 − tλ1)(x0 − tλ2)λ3λ4 + y2

1(x0 − tλ5)(x0 − tλ6)λ7λ8 = 0.

Recall from Remark 5.5 that λ3λ4λ7λ8 6= 0 and at least one of λ1, λ2, λ5, λ6 is different from
the others. So pick any point (p1, q) ∈ Es

I,Ic such that the corresponding λ1, λ2, λ5, λ6 are
distinct. Consider the projection from P1 × P1 on the [x0 : t] coordinate. The images of
the four points C0 ∩ L0, C0 ∩ L1 are [λ1 : 1], [λ2 : 1], [λ5 : 1], [λ6 : 1], which are distinct
points on P1. Denote by β their cross-ratio. Choose [µ1 : 1], [µ2 : 1], [µ5 : 1], [µ6 : 1]
distinct points on P1 such that the corresponding cross-ratio is different from β. Then the
stable pair obtained by replacing λ1, λ2, λ5, λ6 with µ1, µ2, µ5, µ6 respectively and keeping
λ3, λ4, λ7, λ8 unchanged is parametrized by a point (p2, q) ∈ Es

I,Ic with p1 6= p2. The images
(p̄1, q̄), (p̄2, q̄) in EI,Ic are also distinct because the cross-ratio is SL2-invariant, showing
what we needed.

The cases of type b and type c are handled similarly, but with the following differences.
For type b, given a stable pair parametrized by Es

I,Ic , one can consider the cross-ratio of
the four points on L1 given by [λ1 : 1], [λ2 : 1], [λ3 : 1], [1 : 0], where the last point is the
intersection of L1 with the conductor divisor. For type c, look at [λ1 : 1], [λ2 : 1], [λ3 :
1], [λ4 : 1] on the curve T in Figure 5. �
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