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Abstract. We compare the Kontsevich moduli space M0,0(Pn−1, d) of stable

maps to projective space with the quasi-map space P(Symd(C2)⊗Cn)//SL(2).

Consider the birational map

ψ̄ : P(Symd(C2)⊗ Cn)//SL(2) 99K M0,0(Pn−1, d)

which assigns to an n-tuple of degree d homogeneous polynomials f1, · · · , fn
in two variables, the map f = (f1 : · · · : fn) : P1 → Pn−1. In this paper, for

d = 3, we prove that ψ̄ is the composition of three blow-ups followed by two
blow-downs. Furthermore, we identify the blow-up/down centers explicitly

in terms of the moduli spaces M0,0(Pn−1, d) with d = 1, 2. In particular,

M0,0(Pn−1, 3) is the SL(2)-quotient of a smooth rational projective variety.

The degree two case M0,0(Pn−1, 2), which is the blow-up of P(Sym2C2 ⊗
Cn)//SL(2) along Pn−1, is worked out as a warm-up.

1. Introduction

The space of smooth rational curves of given degree d in projective space admits
various natural moduli theoretic compactifications via geometric invariant theory
(GIT), stable maps, Hilbert scheme or Chow scheme. Since these compactifications
give us important but different enumerative invariants, it is an interesting problem
to compare the compactifications by a sequence of explicit blow-ups and -downs.
We expect all the blow-up centers to be some natural moduli spaces (for lower
degrees). Further, we expect the difference between the intersection numbers on
any two of the moduli theoretic compactifications should be expressed in terms of
the intersection numbers of lower degrees. If the comparison of compactifications is
completed, the variation of intersection numbers might be calculated by localization
techniques. In this paper, as a first step, we compare the GIT compactification (or
quasi-map space) and the Kontsevich moduli space of stable maps. The techniques
we use are the Atiyah-Bott-Kirwan theory [13, 14, 15], variation of GIT quotients
[4, 19], the blow-up formula [8] and construction of stable maps by elementary
modification [11, 2].

Given an n-tuple (f1, · · · , fn) of degree d homogeneous polynomials in homoge-
neous coordinates t0, t1 of P1, we have a morphism (f1 : · · · : fn) : P1 → Pn−1 if
f1, · · · , fn have no common zeros. Thus we have an SL(2)-invariant rational map
ψ0 : P(Symd(C2)⊗ Cn) 99KM0,0(Pn−1, d) which induces a birational map

ψ̄0 : P(Symd(C2)⊗ Cn)//SL(2) 99KM0,0(Pn−1, d).

Our goal is to decompose ψ̄0 into a sequence of blow-ups and blow-downs and
describe the blow-up/-down centers explicitly.

Partially supported by KOSEF grant R01-2007-000-20064-0.

1



2 YOUNG-HOON KIEM AND HAN-BOM MOON

When d = 1, ψ̄0 is an isomorphism. When d = 2, the following is proved in [11,
§4].

Theorem 1.1. ψ̄0 is the inverse of a blow-up, i.e. M0,0(Pn−1, 2) is the blow-up
of P(Sym2(C2)⊗ Cn)//SL(2) along P(Sym2C2)× Pn−1//SL(2) ∼= Pn−1.

We reproduce the proof in §3 for reader’s convenience.
In this paper, our focus is laid on the case where d = 3. We prove the following

in §5.

Theorem 1.2. The birational map ψ̄0 is the composition of three blow-ups followed
by two blow-downs. The blow-up centers are respectively, Pn−1, M0,2(Pn−1, 1)/S2
(where S2 interchanges the two marked points) and the blow-up of M0,1(Pn−1, 2)
along the locus of three irreducible components. The centers of the blow-downs are
respectively the S2-quotient of a (Pn−2)2-bundle on M0,2(Pn−1, 1) and a (Pn−2)3/S3-
bundle on Pn−1. In particular, ψ̄0 is an isomorphism when n = 2.

Here of course, Sk denotes the symmetric group on k letters.
Let P0 = P(Sym3(C2) ⊗ Cn)s be the stable part of P(Sym3(C2) ⊗ Cn) with

respect to the action of SL(2) induced from the canonical action on C2. Let P1 be
the blow-up of P0 along the locus of n-tuples of homogeneous polynomials having
three common zeros (or, base points). We get P2 by blowing up P1 along the proper
transform of the locus of two common zeros. Let P3 be the blow-up of P2 along
the proper transform of the locus of one common zero. Then we can construct a
family of stable maps of degree 3 to Pn−1 parameterized by P3 by using elementary
modification. Thus we obtain an SL(2)-invariant morphism

ψ3 : P3 −→M0,0(Pn−1, 3).

The proper transform of the exceptional divisor of the second blow-up turns
out to be a P1-bundle on a smooth variety and the normal bundle is O(−1) on
each fiber. So, we can blow down this divisor and obtain a complex manifold P4.
Further, the proper transform of the exceptional divisor of the first blow-up now
becomes a P2-bundle on a smooth variety and the normal bundle is O(−1) on each
fiber. Hence we can blow down P4 to obtain a complex manifold P5. The morphism
ψ3 is constant along the fibers of the blow-downs P3 → P4 → P5 and hence factors
through a holomorphic map ψ5 : P5 −→M0,0(Pn−1, 3) which induces

ψ̄5 : P5/SL(2) −→M0,0(Pn−1, 3).

We can check that this is bijective and therefore ψ̄5 is an isomorphism of projective
varieties by the Riemann existence theorem [9, p.442], because M0,0(Pn−1, 3) is a
normal projective variety. In summary, we have the following diagram.

P3
π3 //

π4

��

p3

$$IIIIIIIII P2
π2 // P1

π1 // P0

��

P4

π5

��

P3/SL(2)

��

//

ψ̄3

**UUUUUUUUUUUUUUUU P0/SL(2)

ψ̄0
��

P5
p5 // P5/SL(2)

∼=

ψ̄5

// M0,0(Pn−1, 3).
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Theorems 1.1 and 1.2 provide us with a new way of calculating the cohomology
rings of the moduli spaces of stable maps. By [13, 14, 15], the cohomology ring of
the SL(2)-quotient of a projective space is easy to determine. As an application of
Theorem 1.1, we prove the following in §3 by the blow-up formula of cohomology
rings.

Theorem 1.3. (1) The rational cohomology ring H∗(M0,0(Pn−1, 2)) is isomorphic
to

Q[ξ, α2, ρ]/

〈
(ρ+ 2α+ ξ)n − ξn

ρ+ 2α
+

(ρ− 2α+ ξ)n − ξn

ρ− 2α
,

(ρ+ 2α+ ξ)n + (ρ− 2α+ ξ)n, ξnρ〉
where ξ, ρ, and α2 are generators of degree 2, 2, 4 respectively.

(2) The Poincaré polynomial Pt(M0,0(Pn−1, 2)) =
∑
k≥0 t

k dimHk(M0,0(Pn−1, 2))
is

(1− t2n+2)(1− t2n)(1− t2n−2)

(1− t2)2(1− t4)
.

(3) The integral Picard group of M0,0(Pn−1, 2) is

Pic(M0,0(Pn−1, 2)) =

{
Z⊕ Z for n ≥ 3

Z for n = 2

Behrend-O’Halloran [1, Proposition 4.27] gave a recursive formula for a set of
generators of the relation ideal but closed expressions for a set of generators were
unknown. The Poincaré polynomial is equivalent to the calculation of Getzler
and Pandharipande [7]. The rational Picard group Pic(M0,0(Pn−1, 2)) ⊗ Q was
calculated by Pandharipande [18].

In §6, we deduce the following from Theorem 1.2.

Theorem 1.4. (1) The Poincaré polynomial Pt(M0,0(Pn−1, 3)) is

Pt(M0,0(Pn−1, 3)) =

(
1− t2n+8

1− t6
+ 2

t4 − t2n+2

1− t4

)
(1− t2n)

(1− t2)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)
.

(2) The rational cohomology ring of H∗(M0,0(P∞, 3)) = limn→∞H∗(M0,0(Pn−1, 3))
is isomorphic to

Q[ξ, α2, ρ31, ρ
2
2, ρ3, σ]/〈α2ρ31, ρ31σ, σ2 − 4α2ρ23〉

where ξ, ρ3 are degree 2 classes, σ, ρ22, α
2 are degree 4 classes, and ρ31 is a degree 6

class. The rational cohomology ring of H∗(M0,0(P1, 3)) is isomorphic to

Q[ξ, α2]/〈 (ξ+ α)2(ξ+ 3α)2 − (ξ− α)2(ξ− 3α)2

2α
,
(ξ+ α)2(ξ+ 3α)2 + (ξ− α)2(ξ− 3α)2

2
〉.

(3) The Picard group of M0,0(Pn−1, 3) is

Pic(M0,0(Pn−1, 3)) =

{
Z⊕ Z for n ≥ 3

Z for n = 2

The generators are 1
3 (H + ∆) and ∆ for n ≥ 3 and 1

3 (H + ∆) for n = 2, where ∆
is the boundary divisor of reducible curves and H is the locus of stable maps whose
images meet a fixed codimension two subspace in Pn−1.
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It may be possible to find the cohomology ring of M0,0(Pn−1, 3) for all n from
Theorem 1.2 but we content ourselves with the P∞ case and the P1 case in this
paper. The above description of H∗(M0,0(P∞, 3)) is equivalent to the description of
Behrend-O’Halloran [1, Theorem 4.15] and the Poincaré polynomial is equivalent to
the calculation given by Getzler and Pandharipande [7]. The rational Picard group
Pic(M0,0(Pn−1, 3))⊗Q was calculated by Pandharipande [18] but the calculation
of the integral Picard group seems new.

In a subsequent paper, we shall work out the case for d = 4 and higher. In
[3], we compare the Kontsevich moduli space M0,0(P3, 3), the Hilbert scheme of
twisted cubics and Simpson’s moduli space of stable sheaves.

2. Preliminaries

2.1. Kontsevich moduli space. The Kontsevich moduli space M0,k(Pn−1, d) or
the moduli space of stable maps to Pn−1 of genus 0 and degree d with k marked
points is a compactification of the space of smooth rational curves of degree d in
Pn−1 with k marked points. It is the coarse moduli space of morphisms f : C →
Pn−1 of degree d where C are connected nodal curves of arithmetic genus 0 with
k nonsingular marked points p1, · · · , pk on C such that the automorphism groups
of (f, p1, · · · , pk) are finite. Here, an automorphism of a stable map means an
automorphism φ : C→ C that satisfies f ◦φ = f and that fixes the marked points.
See [6] for the construction and basic facts on M0,k(Pn−1, d).

By [6, 12], M0,k(Pn−1, d) is a normal irreducible projective variety with at worst
orbifold singularities.

2.2. Cohomology of blow-up. We recall a few basic facts on the cohomology
ring of a blow-up along a smooth submanifold from [8]. To begin with, we consider
the cohomology ring of a projective bundle π : PN→ Y where N is a vector bundle
of rank r. Let ρ = c1(OPN(1)) and consider the exact sequence

0 −→ O(−1) −→ π∗N −→ Q −→ 0

where Q is the cokernel of the tautological monomorphism O(−1)→ π∗N. By the
Whitney formula, (1− ρ)(1+ c1(Q) + c2(Q) + · · · ) = 1+ c1(N) + · · ·+ cr(N). By
expanding, we obtain cr(Q) = ρr + ρr−1c1(N) + · · · + cr(N) = 0 because Q is a
vector bundle of rank r− 1. By spectral sequence, we see immediately that this is
the only relation on H∗(Y) and ρ. In other words,

H∗(PN) = H∗(Y)[ρ]/〈ρr + ρr−1c1(N) + · · ·+ ρcr−1(N) + cr(N)〉.

Example. Let Y = BC∗ = P∞ be the classifying space of C∗ and let α =
c1(EC∗ ×C∗ C) where C∗ acts on C with weight 1. Let N be a vector space on
which C∗ acts with weights w1, · · · , wr. Then the rational equivariant cohomology
ring of the projective space PN is

H∗C∗(PN) = H∗(EC∗ ×C∗ PN) = Q[ρ, α]/〈
r∏
i=1

(ρ+wiα)〉.

Let X be a connected complex manifold and ı : Y ↪→ X be a smooth connected
submanifold of codimension r. Let π : X̃ → X be the blow-up of X along Y and
Ỹ = PYN be the exceptional divisor where N is the normal bundle of Y. From [8,
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p.605], we have an isomorphism

H∗(X̃) ∼= H∗(X)⊕
r−1⊕
k=1

ρkH∗(Y)

of vector spaces where ρ = c1(OX̃(−Ỹ)). Suppose the Poincaré dual [Y] ∈ H2r(X)

of Y in X is nonzero. The ring structure of H∗(X̃) is not hard to describe. First,
H∗(X) ∼= π∗H∗(X) is a subring of H∗(X̃) since π∗ is a monomorphism. For γ ∈ H∗(X)
and ρkβ (β ∈ H∗(Y), 1 ≤ k < r), their product is γ · ρkβ = ı∗(γ)βρk because ρ is
supported in Ỹ. Finally, we have the relation

(2.1) ρr + c1(N)ρr−1 + · · ·+ cr−1(N)ρ+ π∗[Y] = 0

in the cohomology ring H∗(X̃). For the left hand side of (2.1) restricts to a relation
on the projective bundle Ỹ and thus it comes from a class in H∗(X) which has
support in Y. By the Thom-Gysin sequence, we have an exact diagram

H0(Y)

∪[Y]
$$IIIIIIIII

// H2r(X) //

��

H2r(X− Y)

H2r(Y)

Since [Y] 6= 0, ∪[Y] is injective and hence we obtain the relation (2.1).
In particular, we have the following

Proposition 2.1. If ı∗ : H∗(X) → H∗(Y) is surjective and [Y] 6= 0, then we have
an isomorphism of rings

H∗(X̃) = H∗(X)[ρ]/〈ρ · ker(ı∗), ρr + c1(N)ρr−1 + · · ·+ cr−1(N)ρ+ π∗[Y]〉.

Remark. Everything in this subsection holds true for equivariant cohomology rings
when there is a group action on X preserving Y. For we can simply replace X and Y
by the homotopy quotients XG = EG×G X and YG = EG×G Y respectively, where
EG is a contractible free G-space and BG = EG/G. Recall that H∗G(X) = H∗(XG)
by definition.

2.3. Atiyah-Bott-Kirwan theory. Let X be a smooth projective variety on which
a complex reductive group G acts linearly, i.e. X ⊂ PN for some N and G acts via
a homomorphism G → GL(N + 1). We denote by Xs (resp. Xss) the open subset
of stable (resp. semistable) points in X. Then there is a stratification {Sβ|β ∈ B} of
X indexed by a partially ordered set B such that Xss is the open stratum S0 and
the Gysin sequence for the pair (Uβ = X − ∪γ>βSγ, Uβ − Sβ) splits into an exact
sequence in rational equivariant cohomology

0→ H
j−2λ(β)
G (Sβ)→ H

j
G(Uβ)→ H

j
G(Uβ − Sβ)→ 0

where λβ is the codimension of Sβ. As a consequence, we obtain an isomorphism

H
j
G(X) ∼= H

j
G(Xss)⊕

⊕
β6=0

H
j−2λ(β)
G (Sβ)

of vector spaces and an injection of rings

(2.2) H∗G(X) = H∗T (X)W
� � // H∗T (X)

� � ⊕i
∗
F //
⊕
F∈F H

∗
T (F)
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where T is the maximal torus of G, W the Weyl group, F the set of T -fixed compo-
nents F, iF : F ↪→ X the inclusion. Hence by finding the image of Hj−2λ(β)

G (Sβ) for
β 6= 0 in

⊕
F∈F H

∗
T (F), we can calculate the kernel of the surjective homomorphism

κ : H∗G(X) −→ H∗G(Xss)

induced by the inclusion Xss → X. Often H∗G(X) is easy to calculate and in that case
we can calculate the cohomology ring of H∗G(Xss) which is isomorphic to H∗(X//G)
when Xss = Xs. See [13, 15] for details.

Example. Let Wd = SymdC2 on which G = SL(2) acts in the canonical way.
Then the Poincaré polynomial Pt(P(Wd⊗Cn)//SL(2)) =

∑
k≥0 t

k dimHk(P(Wd⊗
Cn)//SL(2)) is

(1− t2mn−2)(1− t2mn)

(1− t2)(1− t4)

for d = 2m − 1 odd. The case n = 1 is worked out in [13] and the general
case is straightforward. In case d = 2m even, the equivariant Poincaré series
P
SL(2)
t (P(Wd ⊗ Cn)ss) =

∑
k≥0 t

k dimHkSL(2)(P(Wd ⊗ Cn)ss) is

1− t2n(m+1)−2 − t2n(m+1) + t2n(2m+1)−2

(1− t2)(1− t4)
.

Example. Let G = SL(2) act on C2 in the obvious way and trivially on Cn. Let
P0 be the semistable part of P = P(Sym2(C2)⊗Cn) with respect to the action of
G. Let us determine the equivariant cohomology ring H∗G(P0). From the previous
subsection, we have an isomorphism of rings

H∗G(P) = Q[ξ, α2]/〈ξn(ξ− 2α)n(ξ+ 2α)n〉

where ξ is the equivariant first Chern class of O(1) because the weights of the action
of the maximal torus T = C∗ on Sym2(C2)⊗Cn are 2, 0,−2, each with multiplicity
n. By the localization theorem, we have an inclusion

i∗ = (i∗2, i
∗
0, i
∗
−2) : H∗G(P) ↪→ H∗T (Z2)⊕H∗T (Z0)⊕H∗T (Z−2)

where Zk ∼= Pn−1 for k = 2, 0,−2 are the T -fixed components of weight k. With
the identification H∗T (Zk) ∼= Q[ξ, α]/〈ξn〉, the homomorphism i∗ sends ξ to (ξ −

2α, ξ, ξ+ 2α) and α2 to (α2, α2, α2). There is only one unstable stratum Sβ in P,
namely GZ2 = GZ−2. The composition of the Gysin map

j∗ : H
∗−(4n−2)
G (Sβ) ↪→ H∗G(P)

with i∗2 or i∗−2 is the multiplication by the Euler class of the normal bundle to Sβ
because Z2, Z−2 ⊂ Sβ. Hence

i∗±2 ◦ j∗(1) =
(ξ∓ 2α)n(ξ∓ 4α)n

∓2α
as the normal bundle to Z±2 in P has Euler class (ξ ∓ 2α)n(ξ ∓ 4α)n and the
normal bundle to Z±2 in Sβ has Euler class ∓2α. Since Z0 is disjoint from Sβ,
i∗0 ◦ j∗(1) = 0. It is easy to see that

(2.3)
ξn(ξ+ 2α)n

2α
+
ξn(ξ− 2α)n

−2α
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is the unique element in H∗G(P) whose image by i∗ is (i∗2◦j∗(1), i∗0◦j∗(1), i∗−2◦j∗(1)).
Hence, j∗(1) is (2.3) and similarly any element in the image of j∗ is of the form

f(ξ, α)
ξn(ξ+ 2α)n

2α
+ f(ξ,−α)

ξn(ξ− 2α)n

−2α

for a polynomial f(ξ, α). Consequently, we have an isomorphism of rings

(2.4) H∗G(P0) ∼= Q[ξ, α2]/〈ξn (ξ+ 2α)n − (ξ− 2α)n

2α
, ξn

(ξ+ 2α)n + (ξ− 2α)n

2
〉.

Example. Let P0 be the stable part of P = P(Sym3(C2) ⊗ Cn) with respect to
the action of G = SL(2). As above, the action on Cn is trivial and the action
of G on C2 is the obvious one. As in the previous example, we can calculate the
cohomology ring

(2.5) H∗G(P0) ∼= Q[ξ, α2]/〈 (ξ+ α)n(ξ+ 3α)n − (ξ− α)n(ξ− 3α)n

2α
,

(ξ+ α)n(ξ+ 3α)n + (ξ− α)n(ξ− 3α)n

2
〉.

We leave the verification as an exercise.

2.4. Stability after blow-up. We recall a few basic results about GIT stability
from [14, §3]. Let G be a complex reductive group acting on a smooth variety X with
a linearization on an ample line bundle L. Let Y be a nonsingular G-invariant closed
subvariety of X and let π : X̃ → X be the blow-up of X along Y with exceptional
divisor E. The line bundle Ld = π∗L⊗d⊗O(−E) is very ample for d sufficiently large
and the action of G on L lifts to an action on Ld. With respect to this linearization,
we consider the (semi)stability of points in X̃. We recall the following ([14, (3.2)
and (3.3)]):

(1) If π(y) is not semistable in X then y is not semistable in X̃ ;
(2) If π(y) is stable in X then y is stable in X̃.

In particular, if Xs = Xss, then X̃s = X̃ss = π−1(Xs). If Xs/G = X//G is projective,
then blYsXs/G = X̃//G is projective as well.

In case Xs 6= Xss, π−1(Xss) is the union of some of the strata S̃β described in
[13]. (See [14, (3.4)].) For G = SL(2), the indexing β are the weights of the actions
of the maximal torus C∗, on the fibers of Ld at C∗-fixed points in π−1(Xss).

2.5. Variation of GIT quotients. We recall the variation of Geometric Invariant
Theory (GIT) quotients from [4, 19]. Let G = SL(2) and let X be an irreducible
smooth projective variety acted on by G. Since G is simple, there exists at most
one linearization on any ample line bundle L on X. Let L0 and L1 be two ample line
bundles on X with G-linearizations for which semistability coincides with stability.
Let Lt = L1−t0 ⊗ Lt1 for rational t ∈ [0, 1]. Then we have the following.

(1) [0, 1] is partitioned into subintervals 0 = t0 < t1 < · · · < tn = 1 such that on
each subinterval (ti−1, ti) for 1 ≤ i ≤ n, the GIT quotient X//tG with respect to
Lt remains constant.
(2) The walls ti are precisely those ample line bundles Lt for which there exists
x ∈ X where the maximal torus C∗ of G fixes x and acts trivially on the fiber of Lt
over x.
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Let τ = ti be such a wall and let X0 be the union of G-orbits of all such x as in
(2) for τ. Let τ± = τ ± δ for sufficiently small δ > 0 and let L± = Lτ± , L0 = Lτ.
Further let Xss(∗) be the set of semistable points with respect to L∗ for ∗ = 0,+,−.
Let X± = Xss(0) −Xss(∓) and let X//G(∗) be the quotient of X with respect to L∗

for ∗ = 0,+,−. Let v± be the weight of the C∗ action on the fiber of L± at x ∈ X0.
Suppose (v+, v−) = 1 and the stabilizer of x is C∗ for x ∈ X0. Then we have the
following.

(3) Let N be the normal bundle to X0 in X and N± be the positive (resp. negative)
weight space of N. Then X±//G is the locally trivial fibration over X0//G with fiber
weighted projective space P(|w±j |) where w±j are the weights of N± and X//G(±)−

X±//G = X//G(0) − X0//G.
(4) The blow-up of X//G(∗) at X∗//G for ∗ = 0,+,− is the fiber product X//G(−)×X//G(0)

X//G(+).

Example. Let X = P(Sym2C2) × P(C2 ⊗ Cn) where G = SL(2) acts on C2 and
Sym2C2 in the obvious way and trivially on Cn. Let us study the variation of the
GIT quotient X//(1,m)G as we vary the line bundle O(1,m). The weights of the
maximal torus C∗ on Sym2C2 are 2, 0,−2 and the weights on C2 ⊗ Cn are 1,−1.
Hence, there is only one wall, namely at m = 2, and X0 is the union of the G-orbits
of {t20}× P(t1 ⊗ Cn) ∼= Pn−1 where t0, t1 are homogeneous coordinates of P1. The
normal bundle N to X0 has rank n and the positive weight space N+ has rank n−1
while the negative weight space N− has rank 1. Let L0 = O(1, 1) and L1 = O(1, 3).
Then v+ = −1 and v− = 1. So X+//G is a Pn−2-bundle on X0//G = Pn−1, namely
the projective tangent bundle PTPn−1 , and X−//G = X0//G = Pn−1. Therefore,
X//(1,m)G = X//G(+) for m >> 0 is the blow-up of X//(1,1)G = X//G(−) along
Pn−1.

3. Degree two case

In this section, we work out the degree two case as a warm-up. We prove the
following.

Theorem 3.1. (1) M0,0(Pn−1, 2) is the blow-up of P(Sym2C2 ⊗ Cn)//SL(2)

along P(Sym2C2)× P(Cn)//SL(2) = Pn−1.
(2) The rational cohomology ring H∗(M0,0(Pn−1, 2)) is

Q[ξ, α2, ρ]/

〈
(ρ+ 2α+ ξ)n − ξn

ρ+ 2α
+

(ρ− 2α+ ξ)n − ξn

ρ− 2α
,

(ρ+ 2α+ ξ)n + (ρ− 2α+ ξ)n, ξnρ〉
where ξ, ρ, and α2 are generators of degree 2, 2, 4 respectively.

(3) The Poincaré polynomial Pt(M0,0(Pn−1, 2)) =
∑
k≥0 t

k dimHk(M0,0(Pn−1, 2))
is

(1− t2n+2)(1− t2n)(1− t2n−2)

(1− t2)2(1− t4)
.

(4) The Picard group of M0,0(Pn−1, 2) is

Pic(M0,0(Pn−1, 2)) =

{
Z⊕ Z for n ≥ 3

Z for n = 2
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Item (1) is Theorem 4.1 in [11]. We include the proof of (1) for reader’s con-
venience. Let W = W2 = Sym2C2 and V = Cn. Let G = SL(2) act on W in the
obvious way and trivially on V. An element x in P(W ⊗ V) is represented by an
n-tuple of homogeneous quadratic polynomials in two variables t0, t1. We call the
common zero locus in P1 of such n-tuple, the base points of x.

Let P0 be the open subset of semistable points in P(W ⊗V) with respect to the
action of G. Let Σk0 ⊂ P0 be the locus of k base points for k = 0, 1, 2 so that we
have a decomposition

P0 = Σ00 t Σ10 t Σ20.

For x ∈ P0 to have two base points, the n homogeneous polynomials representing x
should be all linearly dependent and hence Σ20 = [PW×PV ]ss where the superscript
ss denotes the semistable part with respect to O(1, 1).

Let π1 : P1 → P0 be the blow-up along the smooth closed variety Σ20 and
let Ps1 be the stable part of P1 with respect to the linearization on O(1ε) :=
π∗1O(1)⊗O(−εE1) for sufficiently small ε > 0 where E1 is the exceptional divisor
of π1.

We claim that there is a family of stable maps to PV of degree 2 parameterized
by Ps1, which gives us a G-invariant morphism

ψ1 : Ps1 →M0,0(Pn−1, 2)

and thus a morphism ψ̄1 : Ps1/G→M0,0(Pn−1, 2), such that ψ̄1 is an isomorphism
on Σ00/G. Note that Σ00 is the space of all holomorphic maps from P1 to PV of degree
2. Since semistability coincides with stability for P1, Ps1/G is irreducible projective
normal and so is M0,0(Pn−1, 2) because Pn−1 is convex. Therefore, to deduce that
ψ̄1 is an isomorphism, it suffices to show ψ̄1 is injective.

To construct a family of stable maps parameterized by Ps1, we start with the
evaluation map W∗ ⊗ (V ⊗W) −→ V which gives rise to

H0(P1 ×P0,O(2, 1)) = W ⊗ (V ⊗W)∗ ←− V∗ = H0(PV,O(1)).

Hence we have a rational map

ϕ0 : P1 ×P0 99K PV = Pn−1

which is a morphism on the open set P1 × Σ00. For x ∈ Σ10, we can choose ho-
mogeneous coordinates t0, t1 of P1 such that x is represented by an n-tuple of
homogeneous quadratic polynomials which are all linear combinations of t20 and
t0t1. So x is a strictly semistable point in P0 whose orbit closure intersects with
Σ20. Hence x becomes unstable in P1 (see [14, §6]). The proper transform of Σ10
does not appear in Ps1.

Let ϕ ′1 be the composition of ϕ0 and id×π1 : P1 × Ps1 → P1 × P0. The
two base points of each x ∈ Σ20 are distinct by semistability and thus the locus in
P1×Ps1 where ϕ ′1 is undefined consists of two sections over Ps1 because Σ20 is simply
connected. Let µ1 : Γ1 → P1 × Ps1 be the blow-up along the two sections and let
ϕ1 = ϕ ′1 ◦ µ1. The evaluation map above gives us a homomorphism V∗ ⊗ OΓ1 →
µ∗1OP1×Ps1

(2, 1) which vanishes simply along the exceptional divisor E1 of µ1 and
hence we obtain a surjective homomorphism

V∗ ⊗OΓ1 � µ∗1OP1×Ps1
(2, 1)⊗OΓ1(−E1).
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Therefore, we obtain a diagram

Γ1
f //

π

��

Pn−1

Ps1

The first map is a flat family of semistable curves and the restriction of the second
map to each fiber of π is a degree 2 map. Further f factors through the contraction
of the middle components in Γ1 over the exceptional divisor of π1. So we get
a family of stable maps to Pn−1 of degree 2 parameterized by Ps1 and thus a
morphism ψ1 : Ps1 → M0,0(Pn−1, 2). By construction, ψ1 is G-invariant and
factors through a morphism ψ̄1 : Ps1/G→M0,0(Pn−1, 2). The locus Σ00 of no base
points is the set of all holomorphic maps P1 → Pn−1 of degree two and ψ̄1|Σ00/G is an
isomorphism onto the open subset in M0,0(Pn−1, 2) of irreducible stable maps. The
complement M0,0(Pn−1, 2)− ψ̄1(Σ

0
0) is the locus of stable maps of degree two with

two irreducible components and thus M0,0(Pn−1, 2)−ψ̄1(Σ
0
0) is a (Pn−2×Pn−2)/S2

bundle on Pn−1. Pn−1 determines the image of the intersection point of the two
irreducible components and (Pn−2×Pn−2)/S2 determines the pair of lines in Pn−1

passing through the chosen point.
On the other hand, let C = (fλj = ajt0t1 + λbjt

2
0 + λcjt

2
1)1≤j≤n,λ∈C represent a

curve in P0 passing through (ajt0t1)1≤j≤n ∈ Σ20. Suppose (aj) is not parallel to
(bj) and (cj) in Cn. Then ϕ0 restricts to (fλ1 : · · · : fλn) : P1 × C 99K Pn−1 and Γ1
over C is the blow-up of P1×C along {0,∞}× {0}. By direct local computation, we
see immediately that the morphism constructed above Γ1 → Pn−1 at λ = 0 is the
map of the tree of three P1’s, whose left (resp. right) component is mapped to the
line joining (aj) and (bj) (resp. (cj)), and whose middle component is mapped to
the point (aj). This proves that ψ̄1 is bijective.

Next we study the cohomology ring of M0,0(Pn−1, 2). By the isomorphism
M0,0(Pn−1, 2) ∼= Ps1/G, we have an isomorphism in rational cohomology

H∗(M0,0(Pn−1, 2)) ∼= H∗G(Ps1).

¿From §2.3, the Poincaré series of H∗G(P0) = H∗SL(2)(P(V ⊗W)ss) is

P
SL(2)
t =

1

(1− t2)(1− t4)
(1− t4n−2 − t4n + t6n−2)

and by (2.4), we have
(3.1)

H∗G(P0) = Q[ξ, α2]/

〈
ξn

(ξ+ 2α)n − (ξ− 2α)n

2α
, ξn

(ξ+ 2α)n + (ξ− 2α)n

2

〉
where ξ and α2 are generators of degree 2 and 4 respectively.

By the blow-up formula [8, p.605], we have

P
SL(2)
t (P1) = P

SL(2)
t (P0) +

1

1− t4
1− t2n

1− t2
t2 − t4n−4

1− t2

as Σ20/G = Pn−1. To find the ring H∗G(P1), we need to compute the normal bundle
N to the blow-up center (P2×Pn−1)ss. Let K and C be respectively the kernel and
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cokernel of the composition

O⊕n � O(0, 1) ↪→ O(1, 1)⊕3

on P2×Pn−1, induced from the tautological homomorphisms O⊕n � O(1) on Pn−1

and O ↪→ O(1)⊕3 on P2. By a simple diagram chase with the Euler sequences for
the projective spaces, we see immediately that the normal bundle N to P2 × Pn−1

in P3n−1 is the bundle Hom(K,C). By definition, the total Chern characters of K
and C are respectively

ch(K) = n− eξ2 and ch(C) = eξ1+ξ2+2α + eξ1+ξ2 + eξ1+ξ2−2α − eξ2

where ξ1 = c1(O(1, 0)) and ξ2 = c1(O(0, 1)). Therefore,

ch(Hom(K,C)) = ch(K∗)ch(C) = (n−e−ξ2)(eξ1+ξ2+2α+eξ1+ξ2+eξ1+ξ2−2α−eξ2).

If we restrict to the semistable part (P2 × Pn−1)ss where ξ1 = 0, we obtain

ch(Hom(K,C)) = e2α(neξ − 1) + e−2α(neξ − 1)

with ξ = ξ2 and thus the Chern classes are given by
2n−2∑
k=0

tkc2n−2−k(N) =
(t+ 2α+ ξ)n − ξn

t+ 2α

(t− 2α+ ξ)n − ξn

t− 2α

for a formal variable t. The restriction of the Poincaré dual of the blow-up center to
the exceptional divisor is the constant term in t of the above polynomial. Hence the
difference between the constant term and the Poincaré dual of the blow-up center is
a multiple of ξn because ξn generates the kernel of the restriction homomorphism

H∗G(P0)� H∗G((P2 × Pn−1)ss) ∼= Q[ξ, α2]/〈ξn〉.
Therefore, by Proposition 2.1

H∗G(P1) = H∗G(P0)[ρ]/〈ξnρ,
(ρ+ 2α+ ξ)n − ξn

ρ+ 2α

(ρ− 2α+ ξ)n − ξn

ρ− 2α
+ξnq(ρ, ξ, α)〉

for some homogeneous polynomial q(ρ, ξ, α) of degree n− 2. Now, we subtract out
the unstable part in P1. By the recipe of [14], we obtain

P
SL(2)
t (Ps1) = P

SL(2)
t (P1) −

1

1− t2
1− t2n

1− t2
t2n−2(1− t2n−2)

1− t2

(3.2) =
(1− t2n+2)(1− t2n)(1− t2n−2)

(1− t2)2(1− t4)
.

The above normal bundle N splits into the direct sum of two subbundles N+ and
N− with respect to the weights. Their Chern classes are the coefficients of the
polynomials in t

(t+ 2α+ ξ)n − ξn

t+ 2α
and

(t− 2α+ ξ)n − ξn

t− 2α
.

The restrictions, of the normal bundle to the unstable stratum, to fixed point
components are given by the pullbacks of N+ and N− respectively, tensored with
O(1).

Using the notation of §2.3, the image of Hj−2λ(β)
G (Sβ) for the unique unstable

stratum Sβ in H∗G(P1) is generated by

(3.3)
(ρ+ 2α+ ξ)n − ξn

ρ+ 2α
+

(ρ− 2α+ ξ)n − ξn

ρ− 2α
, (ρ+2α+ξ)n+(ρ−2α+ξ)n+cξn
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for some c ∈ Q, because ξn generates the kernel of the restriction homomorphism

H∗G(P1) −→ H∗T (PN+)⊕H∗T (PN−)

by direct calculation. It is an elementary exercise to check that the two polynomials
in (3.3) and ξnρ are pairwisely coprime and hence the Poincaré polynomial of
the quotient ring of Q[ξ, α2, ρ] by the ideal generated by the three polynomials
coincides with (3.2). Therefore, the three polynomials generate the relation ideal
for H∗G(Ps1) ∼= H∗(M0,0(Pn−1, 2)). From the condition that the three polynomials
generate the relations in (3.1), it is easy to deduce that c = 0. So we proved

H∗G(Ps1) ∼= Q[ξ, α2, ρ]/

〈
(ρ+ 2α+ ξ)n − ξn

ρ+ 2α
+

(ρ− 2α+ ξ)n − ξn

ρ− 2α
,

(ρ+ 2α+ ξ)n + (ρ− 2α+ ξ)n, ξnρ〉
as desired.

In [1], Behrend and O’Halloran prove that H∗(M0,0(Pn−1, 2)) = Q[b, t, k]/(Gn)
where b, t are degree 2 generators and k is a degree 4 generator. Here, Gn denotes
three polynomials defined recursively by the matrix equation Gn = An−1G1, where

A =

 b 0 0

1 0 k

0 1 t

 , G1 =

 b(2b− t)
2b− t
2

 .
This presentation is equivalent to ours by the following change of variables

b = ξ, t = 2(ξ+ ρ), k = 4α2 − (ξ+ ρ)2.

Finally, the Picard group of P0 is Z and the group Pic(P0)G of equivariant line
bundles is a subgroup because the acting group is G = SL(2). Hence, Pic(P0)G = Z.
By the blow-up formula of the Picard group [9, II,§8], we obtain Pic(M0,0(Pn−1, 2)) ∼=
Pic(Ps1)

G = Z2 for n ≥ 3 because the blow-up center is invariant. The first iso-
morphism comes from Kempf’s descent lemma [5]. When n = 2, M0,0(Pn−1, 2) is
P2 and hence the Picard group is Z.

4. A birational transformation

In this section, we study a birational transformation that will be used in the
subsequent section.

Let Vi = Cn for i = 1, · · · , r and let V = ⊕ri=1Vi. For z ∈ V, we write
z = (z1, · · · , zr) with zi ∈ Vi. For any subset I ⊂ {1, · · · , r}, we let

Σ̄I = {z ∈ V | zi = 0 for i ∈ I} and Σ̄k0 = ∪|I|=kΣ̄
I

for k ≤ r. We will blow up V, r times and then blow down (r− 1) times to obtain∏r
i=1OPVi(−1), a rank r vector bundle on (Pn−1)r.
The blow-ups are defined inductively as follows. Let X0 = V. For 1 ≤ j ≤ r, let

πj : Xj → Xj−1 be the blow-up of Σ̄r−j+1j−1 and let Σ̄kj be the proper transform of
Σ̄kj−1 for k 6= r− j+ 1, while Σ̄r−j+1j is the exceptional divisor of πj. We claim then
that Xr can be blown down first along Σ̄2r , next along the proper transform Σ̄3r+1
of Σ̄3r , next along the proper transform Σ̄4r+2 of Σ̄4r and so on until the blow-down
along the proper transform Σ̄r2r−2 of Σ̄rr.

Proposition 4.1. After the r blow-ups and (r−1) blow-downs as above, V becomes∏r
i=1OPVi(−1).
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Proof. We use induction on r. For r = 1, there is nothing to prove. Suppose it
holds true for r − 1. We have an open covering X1 = ∪ri=1Ui of X1 = OPV(−1)

with Ui = X1 − Σ̄
{i}
1 where Σ̄{i}

1 is the proper transform of Σ̄{i} = {z ∈ V | zi = 0},
since ∩ri=1Σ̄

{i}
1 = ∅. Then Ui = OPn−1(−1)⊕OPn−1(1)⊕(r−1)n. Over an affine open

subset Cn−1 of Pn−1, Ui is Cn × ⊕r−1i=1Cn and the blow-ups described above give
us the corresponding blow-ups of ⊕r−1i=1Cn. By considering an affine open cover of
Pn−1 and by the induction hypothesis, we see that after (r− 1) more blow-ups and
(r− 2) blow-downs, Ui becomes

O(Pn−1)r(−1,
−→
0 )⊕

r−1⊕
k=1

O(Pn−1)r(1,−
−→ek)

where −→e1, · · · ,−→e r−1 are standard basis vectors. Therefore, after r blow-ups and
(r− 2) blow-downs, V becomes a smooth projective variety X2r−2 which admits an
open covering ∪ri=1(O(Pn−1)r(−1,

−→
0 ) ⊕

⊕r−1
k=1O(Pn−1)r(1,−

−→ek)). By checking the
transition maps at general points, we see that X2r−2 is the total space of O(−1)
over P(⊕ri=1O(−−→ei)) over (Pn−1)r. Hence, X2r−2 is the blow-up of ⊕ri=1O(−−→ei)
over (Pn−1)r along the zero section. Hence we can blow down X2r−2 further to
obtain

⊕ri=1O(Pn−1)r(−
−→ei) =

r∏
i=1

OPVi(−1)

as desired. �

Remark 4.2. More generally, let E→ X be a fiber bundle locally the direct sum of
r vector bundles of rank n. Then we can similarly define Σ̄k0 and perform r blow-ups
and (r − 1) blow-downs as above. Proposition 4.1 holds true in this slightly more
general setting by the same proof.

5. Main construction

Let n ≥ 2 and V = Cn. Let Wd = SymdC2 = H0(P1,O(d)) be the space
of homogeneous polynomials of degree d in two variables t0, t1 ∈ H0(P1,O(1)).
We will frequently drop the subscript d for convenience. The identity element
C→ Hom(W,W) = W ⊗W∗ gives us a nontrivial homomorphism

(5.1) H0(P1 × P(V ⊗W),O(d, 1)) = W ⊗ (V ⊗W)∗ ← V∗ = H0(PV,O(1))

and thus we obtain a rational map

(5.2) P1 × P(V ⊗W) 99K PV.

Let P = P(V ⊗Wd) ∼= P(d+1)n−1. The irreducible SL(2)-representation on Wd
induces a linear action of SL(2) on P and let Ps be the stable part of P with respect
to this action in Mumford’s GIT sense. Then (5.2) restricts to a rational map

(5.3) ϕ0 : P1 ×Ps 99K PV

which gives us a rational map ψ0 : Ps 99KM0,0(Pn−1, d). Since this map is clearly
SL(2)-invariant, we obtain a rational map

(5.4) ψ̄0 : P(d+1)n−1//SL(2) = Ps/SL(2) 99KM0,0(Pn−1, d).

In this section, we prove the following.
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Theorem 5.1. For d = 3, the birational map ψ̄0 is the composition of three
blow-ups followed by two blow-downs. The blow-up centers are respectively, Pn−1,
M0,2(Pn−1, 1)/S2 (where S2 interchanges the two marked points) and the blow-up
of M0,1(Pn−1, 2) along the locus of three irreducible components. The centers of the
blow-downs are respectively the S2-quotient of a (Pn−2)2-bundle on M0,2(Pn−1, 1)
and a (Pn−2)3/S3-bundle on Pn−1.

5.1. Stratification of Ps. An element ξ ∈ P is represented by a choice of n
sections of H0(P1,O(d)). If there is no base point (i.e. common zero) of ξ, we get
a regular morphism ϕ0|P1×{ξ} from P1 to Pn−1 of degree d and thus ψ0 : Ps 99K
M0,0(Pn−1, d) is well defined at ξ.

Let us focus on the d = 3 case, from now on. The following is immediate from
the Hilbert-Mumford criterion for stability [16].

Lemma 5.2. (1) Semistability coincides with stability, i.e. Pss = Ps.
(2) Ps consists of ξ ∈ P which has no base point of multiplicity ≥ 2.

Let P0 = Ps. We decompose Ps by the number of base points:

(5.5) P0 = Σ00 t Σ10 t · · · t Σd0
where Σk0 is the locus in P0 of ξ with k base points for k = 0, 1, · · · , d. We put the
subscript 0 is to keep track of the blow-ups and -downs in what follows. When it
is necessary to specify the degree d, we shall write Pj(d) for Pj and Σij(d) for Σij.
The rational map ϕ0 is well-defined on the open set P1 × Σ00 and thus we have a
family of degree d stable maps to Pn−1.

By Lemma 5.2, no element of Ps admits a base point of multiplicity ≥ 2. The
following proposition gives us a local description of the stratification (5.5).

Lemma 5.3. (1) For k = 1, 2, 3, Σ4−k0 are locally closed smooth subvarieties of P0
whose SL(2)-quotients are respectively, Pn−1, M0,2(Pn−1, 1)/S2 and M0,1(Pn−1, 2).

(2) The normal cone of Σ30 in the closure Σ̄20 is a fiber bundle locally the union
of three transversal rank n− 1 subbundles of the normal bundle NΣ30/P0 .

(3) The normal cone of Σ30 in the closure Σ̄10 is a fiber bundle locally the union
of three transversal rank 2(n− 1) subbundles of the normal bundle NΣ30/P0 .

(4) The normal cone of Σ20 in the closure Σ̄10 is a fiber bundle locally the union
of two transversal rank n− 1 subbundles of the normal bundle NΣ20/P0 .

The deepest stratum is easy to describe. In order to have three base points, ξ
must be represented by a rank 1 homomorphism in P(V ⊗W) = P Hom(V∗,W).
Since any rank 1 homomorphism factors through C, the locus of rank 1 homomor-
phisms in P Hom(V∗,W) is PV ×PW and hence Σ30 = [P3×Pn−1]s. Since the GIT
quotient PW//SL(2) is just a point,

(5.6) Σ30//SL(2)
∼= Pn−1.

It is important to remember that the stabilizer in PGL(2) = SL(2)/{±1} of a point ξ
in Σ30 is the symmetric group S3. This group will act nontrivially on the exceptional
divisors after blow-ups.

For Σ10 and Σ20, we consider the multiplication morphism

(5.7) Φk : Pk × P(Cn ⊗ C4−k) −→ P(Cn ⊗ C4)
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defined by Φk ((a0 : · · · : ak), (bi,0 : · · · : bi,3−k)1≤i≤n) → (ci,j)1≤i≤n,0≤j≤3 where
ci,j =

∑j
l=0 albi,j−l. Here al = 0, bi,j = 0 unless 0 ≤ l ≤ k, 0 ≤ j ≤ 3 − k. Then

for k ≤ l, we have (Φk)−1(Σl0(3)) = [Pk × Σl−k0 (3 − k)]s where the superscript s
denotes the stable part with respect to the SL(2)-action on O(1, 1). Furthermore,
Φk maps [Pk × Σ00(3 − k)]s bijectively onto Σk0(3) = Σk0 . It is easy to see that the
tangent map of Φk is injective over the open locus of distinct (or no) base points
in P(Cn ⊗ C4), and hence we obtain an isomorphism [Pk × Σ00(3 − k)]s ∼= Σk0 for
k = 1, 2. Therefore

Σk0/SL(2) = [Pk × Σ00(3− k)]//SL(2) ∼= M0,k(Pn−1, 3− k)/Sk

because Σ00(3− k) is the space of holomorphic maps P1 → Pn−1 of degree 3− k.
Next, let us determine the normal cones CΣ30/Σ̄10 , CΣ30/Σ̄20 and CΣ20/Σ̄10 . As ob-

served above, Φ2 and Φ1 are immersions into P0 and they are clearly three to one
over Σ30. Since Φk are immersions, we see by local computation that the directions
of the locus Σ20 of two base points in the normal bundle NΣ30/P0 consists of a fiber
bundle locally the union of three transversal subbundles of rank n− 1 and that the
directions of the locus Σ10 of one base point consists of a fiber bundle locally the
union of three transversal subbundles of rank 2n − 2 whose mutual intersections
are precisely the rank n− 1 subbundles for Σ20. Similarly by local computation, we
obtain that the normal cone to Σ20 in Σ̄10 consists of a fiber bundle locally the union
of two transversal subbundles of rank n− 1 of the normal bundle NΣ20/P0 .

5.2. Blow-ups. As in the previous subsection, we let P0 be the stable part of
P(V⊗W) and let Σ̄k0 be the closure of Σk0 in P0. Let P1 be the blow-up of P0 along
the smooth subvariety Σ30 and let Σ̄k1 be the proper transform of Σ̄k0 for k = 1, 2. Let
Σ̄31 be the exceptional divisor of the blow-up. Then by Lemma 5.3, Σ̄21 is a smooth
subvariety of P1 and in fact Σ̄21 is the line bundle O(−1) over the disjoint union of
three projective bundles on Σ30 in a neighborhood of Σ̄31∩Σ̄21. Furthermore, Σ̄11 about
Σ̄11 ∩ Σ̄31 is the union of three projective subbundles of PNΣ30/P0 of fiber dimension
2n− 3 whose mutual intersections are the three projective bundles Σ̄31 ∩ Σ̄21.

Next we blow up P1 along the smooth subvariety Σ̄21 and obtain a variety P2.
Let Σ̄k2 be the proper transform of Σ̄k1 for k = 1, 3 and let Σ̄22 be the exceptional
divisor of the blow-up. Then by Lemma 5.3 again, Σ̄12 is a smooth subvariety of
P2.

Let P3 be the blow-up of P2 along the smooth subvariety Σ̄12 and let Σ̄k3 be the
proper transform of Σ̄k2 for k 6= 1. Let Σ̄13 be the exceptional divisor of the blow-up.

By [14, Lemma 3.11], blow-up commutes with quotient. Therefore, P3 is a
smooth quasi-projective variety whose quotient by the induced SL(2) action is the
blow-up of P(V ⊗W)//SL(2) along Σ30/SL(2) = Pn−1, Σ̄21/SL(2) and Σ̄12/SL(2).

Lemma 5.4. (1) Σ̄21/SL(2) is the blow-up of the GIT quotient P2×P(Cn⊗C2)//(1,1)SL(2)

with respect to the linearization O(1, 1), along P2 × P1 × Pn−1//(1,1,1)SL(2) with
respect to the linearization O(1, 1, 1).

(2) Σ̄12/SL(2) is the blow-up of P1 × P(Cn ⊗ C3)//(1,1)SL(2), first along P1 ×
P2×Pn−1//(1,1,1)SL(2) and second along the proper transform of P1×P1×P(Cn⊗
C2)//(1,1,1)SL(2).

Proof. We claim that for k = 1, 2, the morphism

Φk : [Pk × P(Cn ⊗ C4−k)]s → Σ̄k0 ⊂ P0
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becomes an equivariant isomorphism after 3− k blow-ups. Since Σ̄k3−k for k = 1, 2

are smooth, it suffices to show that the induced map

Φk3−k : [Pk × P(Cn ⊗ C4−k)]s3−k → Σ̄k3−k ⊂ P3−k

is bijective where [Pk × P(Cn ⊗ C4−k)]s3−k denotes the result of 3 − k blow-ups
along [Pk × Σ̄3−k−i

i (3 − k)]s for i = 0, · · · , 3 − k − 1. By Lemma 5.3, this is a
straightforward exercise. For instance, when k = 2, the fiber of π1 : Σ̄21 → Σ̄20 over
a point in Σ30 is the disjoint union of three copies of Pn−2 which is the same as the
fiber of π1 ◦Φ21 = Φ2 ◦ π̃1 where π̃1 is the blow-up map of [P2×P(Cn⊗C2)]s along
the smooth subvariety [P2 ×Σ10(1)]s of codimension n− 1, since Φ2 is three to one
over Σ30.

By the above claim, Σ̄21/SL(2) is isomorphic to the blow-up of the GIT quotient
P2 × P(Cn ⊗ C2)//(1,1)SL(2) with respect to the linearization O(1, 1), along P2 ×
P1 × Pn−1//(1,1,1)SL(2) with respect to the linearizaiton O(1, 1, 1). Similarly, we
obtain (2). �

Corollary 5.5. (1) Σ̄21/SL(2) is M0,2(Pn−1, 1)/S2. In other words, it is PSym2(U)
over the Grassmannian Gr(2, n) where U is the universal rank 2 bundle. In partic-
ular, the Poincaré polynomial of Σ̄21/SL(2) is that of P2 ×Gr(2, n).

(2) Σ̄12/SL(2) is the blow-up of M0,1(Pn−1, 2) along the locus of three irreducible
components. This locus is the S2-quotient of the fiber product P(O⊕n/O(−1))×Pn−1

P(O⊕n/O(−1)). In particular, the Poincaré polynomial of Σ̄12/SL(2) is that of
P1 × Pn−1 × Pn−1 × Pn−2.

Proof. (1) Note that P(Cn ⊗ C2)//SL(2) is the Grassmannian Gr(2, n) and the
quotient P2×P(Cn⊗C2)//(1,m)SL(2) with respect to the linearization O(1,m) for
m > 2 is PSym2(U) over the Grassmannian Gr(2, n) where U is the universal rank
2 bundle. We study the variation of GIT quotients as we vary our linearization
from O(1, 1) to O(1,m) with m > 2. (See [19, 4].) There is only one wall at m = 2

and the flip consists of only the blow-up along P2 × P1 × Pn−1//(1,1,1)SL(2) with
respect to the linearizaiton O(1, 1, 1). See §2.5.

(2) By the degree two case in §3, we have

blΣ20(2)P(Cn ⊗ C3)//1εSL(2) ∼= M0,0(Pn−1, 2)

where the linearization is π∗1O(1)⊗O(−εE) =: O(1ε) with E the exceptional divisor
of the blow-up π1 of P(Cn ⊗ C3). Let

P1(2) = blΣ20(2)P(Cn ⊗ C3)s

and Ps1(2) be its stable part. Then P1 × Ps1(2)//(1,m·1ε)SL(2) for m >> 0 is a
P1-bundle over M0,0(Pn−1, 2). There is only one wall at m0 = 1/2ε as we vary the
linearization from (1, 1ε) to (1,m · 1ε) with m >> 0. It is straightforward to check
that the flip at m0 is the composition of a blow-up and a blow-down as follows: the
blow-up is precisely the quotient of the blow-up

µ1 : Γ1 −→ P1 ×Ps1(2)

in §3 while the blow-down contracts the middle components of the curves in Γ1
lying over Σ21(2). The result of the blow-down is obviously the universal curve
M0,1(Pn−1, 2) over M0,0(Pn−1, 2). �
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5.3. Blow-downs. Now we show that P3 can be blown down twice. First, note
that locally the normal bundle to Σ̄21 is the direct sum of two vector bundles, say
V1 ⊕ V2, and the normal cone in Σ̄11 is V1 ∪ V2. Hence the proper transform of
Σ̄21 in P3 is the blow-up of P(V1 ⊕ V2) along PV1 t PV2, which is a P1-bundle on
PV1×Σ̄21 PV2. From §4, we can blow down along this P1-bundle to obtain a complex
manifold P4 with a locally free action of SL(2). The proper transform of Σ̄21 in P4
is a (Pn−2)2-bundle on Σ̄21.

Next, the normal bundle to Σ30 is locally the direct sum of three vector bundles,
say V1 ⊕V2 ⊕V3 and the normal cone in Σ̄20 is V1 ∪V2 ∪V3 while the normal cone
in Σ̄10 is

⋃
i6=j(Vi ⊕ Vj). Hence the proper transform of Σ30 in P3 is the blow-up of

P(V1 ⊕ V2 ⊕ V3) along tiPVi and then along ti 6=j ˜P(Vi ⊕ Vj) where ˜P(Vi ⊕ Vj) is
the blow-up of P(Vi⊕Vj) along PVi tPVj. From §4, we can blow down P4 further
along the proper transform Σ̄34 of Σ̄33, to obtain a complex manifold P5. The image
Σ̄35 in P5 of Σ̄34 is a (Pn−2)3-bundle on Σ30.

5.4. The Kontsevich moduli space as an SL(2)-quotient. In this subsection,
we prove that there is a family of stable maps of degree 3 to Pn−1 parameterized
by P3 so that the rational map ψ0 : P0 99K M0,0(Pn−1, 3) extends to a mor-
phism ψ3 : P3 →M0,0(Pn−1, 3). Furthermore, ψ3 factors through the blow-downs
P3 → P4 → P5 and we obtain an SL(2)-invariant map ψ5 : P5 →M0,0(Pn−1, 3).
The induced map ψ̄5 : P5/SL(2) → M0,0(Pn−1, 3) is bijective and hence an iso-
morphism of varieties because M0,0(Pn−1, 3) is normal projective.

In summary, we have the following diagram.

P3
π3 //

π4

��

p3

$$IIIIIIIII P2
π2 // P1

π1 // P0

��

P4

π5

��

P3/SL(2)

��

//

ψ̄3

**UUUUUUUUUUUUUUUU P0/SL(2)

ψ̄0
��

P5
p5 // P5/SL(2)

∼=

ψ̄5

// M0,0(Pn−1, 3).

Proposition 5.6. P5/SL(2) is isomorphic to M0,0(Pn−1, 3).

Let ϕ ′1 : P1×P1 → P1×P0 99K Pn−1 be the composition of id×π1 and ϕ0. The
locus of undefined points of ϕ ′1 lying over Σ̄31 consists of three sections over Σ̄31 and
let µ1 : Γ1 → P1 × P1 be the blow-up along the union of the three sections which
is a codimension 2 subvariety. Let H1 = µ∗1OP1×P1(3, 1) ⊗ OΓ1(−E1) where E1 is
the exceptional divisor of the blow-up µ1. Then the evaluation homomorphism
ev ′1 : O⊕nΓ1 → µ∗1OP1×P1(3, 1) factors through ev1 : O⊕nΓ1 → H1 since ev ′1 vanishes
along E1 by construction. Obviously Γ1 → P1 is a flat family of semistable curves
of genus 0. Let ϕ1 = ϕ ′1 ◦ µ1.

Next, we let ϕ ′2 : Γ1 ×P1 P2 → Γ1 99K Pn−1 be the composition of ϕ1 with the
obvious morphism Γ1 ×P1 P2 → Γ1. Over the divisor Σ̄22, there are two sections
on Γ1 ×P1 P2 where ϕ ′2 is not defined. Let µ2 : Γ2 → Γ1 ×P1 P2 be the blow-
up along the union of these two sections. Certainly Γ2 is a family of semistable
curves of genus 0 and the pull-back ev ′2 : O⊕nΓ2 → µ∗2H1 of ev1 factors through
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ev2 : O⊕nΓ2 → H2 = µ∗2H1 ⊗ OΓ2(−E2) where E2 is the exceptional divisor of µ2,
since ev ′2 is vanishing along E2. Let ϕ2 = ϕ ′2 ◦ µ2.

Similarly, let ϕ ′3 : Γ2 ×P2 P3 → Γ2 99K Pn−1 be the composition of ϕ2 with the
obvious morphism Γ2×P2 P3 → Γ2. Let µ3 : Γ3 → Γ2×P2 P3 be the blow-up of the
section of undefined points of ϕ ′3 over Σ̄13. Then Γ3 is a family of semistable curves
of genus 0 parameterized by P3 and the pull-back ev ′3 : O⊕nΓ3 → µ∗3H2 of ev2 factors
through ev3 : O⊕nΓ3 → H3 = µ∗3H2 ⊗ OΓ3(−E3) where E3 is the exceptional divisor
of µ2. We claim ev3 is surjective and thus ϕ3 = ϕ ′3 ◦ µ3 is a morphism extending
ϕ0.

Indeed, we can check this by direct local computation. For example, let (aj) 6= 0

in Cn and let x = (ajt0t1(t0 + t1))1≤j≤n be a point in Σ30. For (bj), (cj), (dj) in
Cn − {0}, not parallel to (aj), consider the curve

C = (fλj = ajt0t1(t0 + t1) + λcjt
3
0 + λ(cj − bj + dj)t

2
0t1 + λbjt

3
1)1≤j≤n,λ∈C

in P0 passing through x at λ = 0. If we restrict the above construction to C, then
Γ1 at λ = 0 is the comb of four P1’s and the restriction of ev1 to each irreducible
component is respectively given by

(ajt0 + bjt1), (ajt0 + cjt1), (ajt0 + djt1), (aj)

for homogeneous coordinates t0, t1 of P1. Hence there is no base point of ev1 and
the stable map to Pn−1 thus obtained depends only on the three points in Pn−2

corresponding to (bj), (cj) and (dj).
Next, let (aj), (bj) 6= 0 and (aj) is not parallel to (bj) in Cn. Let x = ((ajt0 +

bjt1)t0t1)1≤j≤n be a point in Σ21. For (cj) which not parallel to (aj) and for (dj)
which is not parallel to (bj), consider the curve

D = ((ajt0 + bjt1)t0t1 + λcjt
3
0 + λdjt

3
1)1≤j≤n,λ∈C.

This represents a curve passing through x at λ = 0. Then Γ2 restricted to λ = 0 is
the union of three lines and they are mapped to Pn−1 by

(ajt0 + bjt1), (ajt0 + cjt1), (bjt0 + djt1).

This obviously is a stable map to Pn−1.
Finally, suppose (cj) = (0) in the above case. This is the case where you choose

the normal direction to Σ21 contained in Σ̄11. Then the fiber corresponding to λ = 0

in Γ2 has three irreducible components and the evaluation maps on the components
are respectively

(ajt0 + bjt1), (ajt0), (bjt0 + djt1).

So still there is a point (in the second component) at which the map to Pn−1 is not
well-defined. We choose a curve in P2 to this point, whose direction is normal to
Σ12. This amounts to considering the limits of

Dµ = ((ajt0 + bjt1)t0t1 + λµejt
3
0 + λdjt

3
1)1≤j≤n,λ∈C, µ ∈ C

for some (ej) not parallel to (aj). By the previous case, for µ 6= 0, the fiber of Dµ
in Γ2 at λ = 0 has three components and they are mapped to Pn−1 respectively by

(ajt0 + bjt1), (ajt0 + µejt1), (bjt0 + djt1).

So we have a family of nodal curves parameterized by µ ∈ C and stable maps
from Eµ|λ=0 for µ 6= 0. The construction of Γ3 blows up the only base point
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(t0 : t1) = (0 : 1) in the second component for µ = 0 and ev3 becomes

(ajt0 + bjt1), (aj), (ajt0 + ejt1), (bjt0 + djt1)

by the elementary modification. If we contract down the constant component, then
we get a stable map of three irreducible components

(ajt0 + bjt1), (ajt0 + ejt1), (bjt0 + djt1).

By checking case by case as above, we conclude that ev3 is surjective and ψ3
factors through a holomorphic map ψ : P5 → M0,0(Pn−1, 3). The bijectivity of
ψ̄5 can be also checked by case by case local computation as above. We omit the
cumbersome details.

When n = 2, the third blow-up map π3 is an isomorphism since Σ̄12 is a divisor
and π2 is canceled with π4 while π1 is canceled with π5. Therefore, ψ̄0 is an
isomorphism and we have M0,0(P1, 3) ∼= P0/G = P(Sym3(C2)⊗ C2)//SL(2).

Finally, from the Riemann existence theorem [9, p.442] we deduce that P5/SL(2)
is a projective variety and ψ̄5 is an isomorphism of varieties.

6. Cohomology ring of M0,0(Pn−1, 3)

In this section, we study the cohomology of M0,0(Pn−1, 3) by using Theorem
5.1.

6.1. Betti numbers. We compute the Poincaré polynomial of M0,0(Pn−1, 3) in
this subsection. We use the notation

Pt(X) =
∑

tk dimHk(X) and PGt (X) =
∑

tk dimHkG(X)

for a topological space X. Let G = SL(2).
¿From §2.3, the equivariant Poincaré series of P0 is

PGt (P0) =
(1− t4n−2)(1− t4n)

(1− t2)(1− t4)
.

By the blow-up formula, we have

PGt (P1) = PGt (P0) +
t2 − t6n−6

1− t2
(1− t2n)

(1− t2)

since the blow-up center Σ30 has quotient Pn−1. Similarly, because Σ̄21/G is a P2-
bundle over the Grassmannian Gr(2, n), we get

PGt (P2) = PGt (P1) +
t2 − t4n−4

1− t2

(
(1+ t2 + t4)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)

)
.

Since Σ̄12/G is the blow-up of M0,1(Pn−1, 2) along Pn−2×S2 Pn−2 bundle on Pn−1,
we have

PGt (P3) = PGt (P2) +
t2 − t2n−2

1− t2

(
(1+ t2)

(1− t2n)2(1− t2n−2)

(1− t2)3

)
.

The map P3/G→ P4/G contracts the proper transform of the exceptional divisor
of the second blow-up, Σ̄23/G. It is the blow-up of Σ̄22/G along (Σ̄12 ∩ Σ̄22)/G, and
this blow-up center is Pn−2 bundle over P1×P1 bundle over Gr(2, n). So we obtain

PGt (P4) = PGt (P3) −
t2

1+ t2

(
(1+ t2 + t4)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)

(1− t4n−4)

(1− t2)
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+
t2 − t2n−2

1− t2
(1+ t2)2

(1− t2n−2)(1− t2n)

(1− t2)(1− t4)

(1− t2n−2)

(1− t2)

)
.

One should be careful about the S2 action. Similarly, after the second blow-down,
we obtain

PGt (P5) = PGt (P4) −
t2 + t4

1+ t2 + t4
(1− t2n)2(1− t2n−2)(1− t2n+2)

(1− t2)3(1− t4)
.

In summary, we proved

Pt(M0,0(Pn−1, 3)) =
(1− t4n−2)(1− t4n)

(1− t2)(1− t4)
+
t2 − t6n−6

1− t2
(1− t2n)

(1− t2)

+
t2 − t4n−4

1− t2

(
(1+ t2 + t4)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)

)
+
t2 − t2n−2

1− t2

(
(1+ t2)

(1− t2n)2(1− t2n−2)

(1− t2)3

)
−

t2

1+ t2

(
(1+ t2 + t4)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)

(1− t4n−4)

(1− t2)
+

t2 − t2n−2

1− t2
(1+ t2)2

(1− t2n−2)(1− t2n)

(1− t2)(1− t4)

(1− t2n−2)

(1− t2)

)
−

t2 + t4

1+ t2 + t4
(1− t2n)2(1− t2n−2)(1− t2n+2)

(1− t2)3(1− t4)

=

(
1− t2n+8

1− t6
+ 2

t4 − t2n+2

1− t4

)
(1− t2n)

(1− t2)

(1− t2n)(1− t2n−2)

(1− t2)(1− t4)
.

6.2. Cohomology ring. Since we know how to compare the cohomology rings
before and after a blow-up and we know H∗G(P0) from (2.2), it should be possible,
at least in principle, to calculate the cohomology ring of M0,0(Pn−1, 3) explicitly.
However it seems extremely difficult to work out the details in reality. We content
ourselves with the limit case where n→∞, i.e. H∗(M0,0(P∞, 3)).

First of all, by (2.5), we have

H∗G(P0) ∼= Q[ξ, α2]/〈 (ξ+ α)n(ξ+ 3α)n − (ξ− α)n(ξ− 3α)n

2α

(ξ+ α)n(ξ+ 3α)n + (ξ− α)n(ξ− 3α)n

2
〉.

for a degree 2 class ξ and a degree 4 class α2. If we take n → ∞, we obtain
H∗G(P0) = Q[ξ, α2]. The first blow-up gives us a new degree 2 generator ρ1 and we
obtain

H∗G(P1) = Q[ξ, α2, ρ1]/〈α2ρ1〉
because α2 generates the kernel of the surjective restriction to the center of the first
blow-up whose codimension is infinite. Next, it is easy to check that the restriction
to the center of the second blow-up is an isomorphism and the codimension is
infinite. Hence, we have

H∗G(P2) = Q[ξ, α2, ρ1, ρ2]/〈α2ρ1〉.
For the third blow-up, the restriction to the blow-up center is not surjective any
more. The blow-up center is obtained by blowing up [P1 × P3n−1]s. Let ξ1 and
ξ2 be the generators of P1 and P3n−1 respectively. Let ρ3 be minus the Poincaré
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dual of the exceptional divisor. Then in addition to ρ3, we need to include another
generator ρ3ξ1 of degree 4 which we denote by σ. Then by a routine calculation,
we obtain

H∗G(P3) = Q[ξ, α2, ρ1, ρ2, ρ3, σ]/〈α2ρ1, ρ1σ, σ2 − 4α2ρ23〉.
Now, H∗G(P4) is a subring of H∗G(P3). By the description of the normal bundle to
Σ̄24 in the previous section and the blow-up formula, we see that

H∗G(P4) = Q[ξ, α2, ρ1, ρ
2
2, ρ3, σ]/〈α2ρ1, ρ1σ, σ2 − 4α2ρ23〉.

Similarly, we obtain

H∗G(P5) = Q[ξ, α2, ρ31, ρ
2
2, ρ3, σ]/〈α2ρ31, ρ31σ, σ2 − 4α2ρ23〉.

So we proved

H∗(M0,0(P∞, 3)) = Q[ξ, α2, ρ31, ρ
2
2, ρ3, σ]/〈α2ρ31, ρ31σ, σ2 − 4α2ρ23〉.

where ξ, ρ3 are degree 2 classes, σ, ρ22, α
2 are degree 4 classes, and ρ31 is a degree 6

class. This is isomorphic to the description in [1].
When n = 2, H∗(M0,0(P1, 3)) ∼= H∗G(P0) because ψ̄0 is an isomorphism. Hence

H∗(M0,0(P1, 3)) is given by (2.5).

6.3. Picard group. We use the notation of §5. Since the locus of nontrivial auto-
morphisms in M0,0(Pn−1, 3) has codimension at least two, we can delete them when
calculating the Picard group. We also delete Σ̄25/G and Σ̄35/G whose codimensions
are at least two. Then on the resulting open set of M0,0(Pn−1, 3), the birational
map ψ̄−1 : M0,0(Pn−1, 3) = P5/G 99K P0/G coincides with the blow-up map π3
since the blow-up/down centers for π1, π2, π4, π5 were deleted. Hence ψ̄−1 is an
honest blow-up along a smooth subvariety. For n = 2 only, ψ̄−1 is an isomorphism.
By the blow-up formula for Picard groups in [9, II,§8], we obtain

Pic(M0,0(Pn−1, 3)) ∼=

{
π∗3Pic(P0/G)⊕ Z∆ for n ≥ 3
π∗3Pic(P0/G) for n = 2

where ∆ = Σ̄15/G is the boundary divisor of reducible curves. On the other hand,
by Kempf’s descent lemma [5] and by checking the action of the stabilizers on the
fibers of line bundles, we obtain that the Picard group Pic(P0/G) is isomorphic to
the equivariant Picard group Pic(P0)G = ZO(2) which is a subgroup of Pic(P0) ∼=
Pic(P4n−1) ∼= ZO(1).

Lastly, we note that the closure of the codimension one subset of elements in
P0 whose images meet a fixed codimension 2 subspace is O(6): Given two linear
equations for the subspace, we obtain two polynomials of degree three in t0, t1 ∈
H0(P1,O(1)). The condition for a degree 3 curve to meet the subspace is given by
the resultant of the two polynomials of degree 3 in t0, t1. This divisor is smooth
and contains Σ1. Hence π∗3O(6) is H + ∆. Therefore, π∗3O(2) = 1

3 (H + ∆). This
completes the proof of Theorem 1.4.
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