
LOG CANONICAL MODELS FOR THE MODULI SPACE OF

STABLE POINTED RATIONAL CURVES

HAN-BOM MOON

Abstract. We run Mori’s program for the moduli space of stable pointed

rational curves with divisor K +
∑
aiψi. We prove that the birational model

for the pair is either the Hassett space of weighted pointed stable rational

curves for the same weights, or the GIT quotient of the product of projective

lines with the linearization given by the same weights.

1. Introduction

The Knudsen-Mumford space M0,n, or the moduli space of stable pointed ratio-
nal curves, is one of the most concrete and well-studied moduli spaces in algebraic
geometry. For example, it is well-known that M0,n is a smooth projective fine
moduli space ([Kee92, Knu83]). Also the cohomology ring, the Chow ring, and
the Picard group are known ([Kee92]). There are several concrete constructions by
using explicit methods such as smooth blow-ups ([Kap93, Kee92]) or by geomet-
ric invariant theory (GIT) as quotients by SL(2) ([HK00, KM11]). Furthermore,
there are various different compactifications of the space of smooth pointed ra-
tional curves such as Hassett’s moduli spaces of weighted stable pointed rational
curves M0,A ([Has03]), the GIT quotients of the product of the projective lines
([Kap93]) with various effective linearizations, and the moduli spaces of pointed
conics ([GS10]). All of them are birational models of M0,n.

In spite of these numerous achievements, the birational geometric aspects ofM0,n

are not fully understood yet. For instance, the Mori cone NE1(M0,n) (dually, the

nef cone Nef(M0,n)) is unknown. There is only a conjectural description of this
cone which is proved for n ≤ 7 ([KMc96]).

Conjecture 1.1 (F-conjecture). Any effective curve in M0,n is numerically equiva-
lent to a nonnegative linear combination of F-curves. In other words, every extremal
ray of NE1(M0,n) is generated by F-curve classes.

Recently, there has been a tremendous amount of interest in the birational ge-
ometry of M0,n ([AS08, Fed10, FS08, GG11, GS10, GKM02, Has03, HK00, Kap93,

Sim07]) and more generally of Mg,n. In particular, one can run Mori’s program (or

the minimal model program) for M0,n with a big Q-divisor D of M0,n, by finding
a birational model

(1) M0,n(D) := Proj

⊕
l≥0

H0(M0,n,O(lD))


where the sum is taken over l sufficiently divisible.
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The most prominent two results in this direction are the following. Set m = bn2 c.
Let εk be a rational number in the range 1

m+1−k < εk ≤ 1
m−k for k = 1, 2, · · · ,m−2.

For ε > 0, let n · ε = (ε, · · · , ε) be a symmetric weight datum.

Theorem 1.2 (Simpson [AS08, FS08, KM11, Sim07]). Let β be a rational number
satisfying 2

n−1 < β ≤ 1 and let D = M0,n−M0,n denote the total boundary divisor.
Then the log canonical model

(2) M0,n(KM0,n
+ βD) = Proj

⊕
l≥0

H0(M0,n,O(l(KM0,n
+ βD)))


satisfies the following:

(1) If 2
m−k+2 < β ≤ 2

m−k+1 for 1 ≤ k ≤ m − 2, then M0,n(KM0,n
+ βD) ∼=

M0,n·εk .

(2) If 2
n−1 < β ≤ 2

m+1 , then M0,n(KM0,n
+ βD) ∼= (P1)n//SL(2) where the

quotient is taken with respect to the symmetric linearization O(1, · · · , 1).

The other result concerning both non-symmetric weights and higher genera is the
following theorem of Fedorchuk. It is an answer to a question of Hassett ([Has03,
Problem 7.1]).

Theorem 1.3. [Fed10] For every genus g and weight datum A, there exists a log
canonical divisor Dg,A on Mg,n such that the log canonical model Mg,n(KMg,n

+

Dg,A) is isomorphic to Mg,A.

In this paper, we prove a universal formula generalizing Theorem 1.2 to non-
symmetric weights A = (a1, · · · , an).

Theorem 1.4. Let A = (a1, · · · , an) be a weight datum.

(1) If
∑n
i=1 ai > 2, then the log canonical model M0,n(KM0,n

+
∑n
i=1 aiψi) is

isomorphic to M0,A.

(2) Assume that n ≥ 5. If
∑n
i=1 ai = 2, then M0,n(KM0,n

+
∑n
i=1 aiψi) is

isomorphic to (P1)n//LSL(2) where L is the linearization O(a1, · · · , an).

In Theorem 1.4 item (2), if n = 4 it is easy to check that KM0,4
+
∑4
i=1 aiψi is

numerically trivial.

Here is an outline of the proof of Theorem 1.4 item (1). Let ∆A = KM0,n
+∑n

i=1 aiψi. Let ϕA : M0,n → M0,A be the reduction morphism (See Section 2.1.).
By computing the push-forwards and pull-backs of divisors (See Section 2.2.), we
prove that ∆A − ϕ∗AϕA∗(∆A) is an effective divisor supported on the exceptional
locus of ϕA. Thus

H0(M0,n,O(l∆A)) ∼= H0(M0,A,O(lϕA∗(∆A)))
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for any positive integer l by [Deb01, Lemma 7.11]. Hence if we prove that ϕA∗(∆A)
is ample on M0,A, then we have

M0,n(∆A) = Proj

⊕
l≥0

H0(M0,n,O(l∆A))


∼= Proj

⊕
l≥0

H0(M0,A,O(lϕA∗(∆A)))

 ∼= M0,A.

For proving the ampleness of ϕA∗(∆A), we follow the strategy of Fedorchuk in
[Fed10]. Firstly, we can express ϕA∗(∆A) in terms of tautological divisors on M0,A.
Then by using a positivity result of Fedorchuk (Proposition 3.3) and induction on
the dimension, we prove that ϕA∗(∆A) intersects all effective curves non-negatively,
so is nef. Moreover, we prove that small perturbations of ϕA∗(∆A) by boundary
divisors are again nef. Since the Neron-Severi vector space N1(M0,A) is generated
by the boundary divisor classes, this implies that ϕA∗(∆A) lies in the interior of
Nef(M0,A), so it is ample by Kleiman’s criterion.

This paper is organized as follows. In section 2, we give some well-known facts
about M0,A and its divisor classes. Essentially there is no new result in this section.
In section 3, we give a proof of Theorem 1.4.

2. Some Preliminaries

2.1. Moduli space of weighted pointed rational stable curves. A weight
datum A = (a1, · · · , an) is a sequence of rational numbers such that 0 < ai ≤ 1.
A family of nodal curves of genus g with n marked points over a base scheme B
consists of a flat proper morphism π : C → B whose geometric fibers are nodal
connected curves with arithmetic genus g, and n sections s1, · · · , sn of π.

Definition 2.1. [Has03, Section 2] Let A be a weight datum satisfying 2g − 2 +∑n
i=1 ai > 0. A family of nodal curves of genus g with n marked points π :

(C, s1, · · · , sn)→ B is A-stable if

(1) the sections s1, · · · , sn lie in the smooth locus of π;
(2) for any subset {si1 , · · · , sir} of nonempty intersection, ai1 + · · ·+ air ≤ 1;
(3) ωπ +

∑n
i=1 aisi is π-ample.

For any weight datum A such that 2g−2+
∑n
i=1 ai > 0, there exists a connected

irreducible smooth Deligne-Mumford stackMg,A such that its coarse moduli space

Mg,A is projective ([Has03, Theorem 2.1]). Note that when a1 = · · · = an = 1,

Mg,A =Mg,n. If g = 0, thenM0,A is a fine moduli space soM0,A = M0,A. From
now on, we will focus on the g = 0 case only.

Let A = (a1, · · · , an), B = (b1, · · · , bn) be two weight data and suppose that
ai ≥ bi for all i = 1, 2, · · · , n. Then there exists a birational reduction morphism
([Has03, Theorem 4.1])

ϕA,B : M0,A →M0,B.

For (C, s1, · · · , sn) ∈ M0,A, ϕA,B(C, s1, · · · , sn) is obtained by collapsing compo-
nents on which ωC +

∑
bisi fails to be ample. Every reduction morphism is a
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composition of smooth blow-downs ([KM11, Mo11]). In this article, we use reduc-
tion morphisms from M0,n only. So we use more concise notation

ϕA := ϕ(1,··· ,1),A : M0,n →M0,A.

2.2. Tautological divisors on M0,A. In this section, we recall some information

about several functorial divisors on M0,A. The results in this section are drawn
from several sources, including [AC96, AC99, Fed10, FS08, HM98, Has03].

Let [n] = {1, · · · , n}. For I ⊂ [n] such that 2 ≤ |I| ≤ n − 2, let DI ⊂ M0,n

be the closure of the locus of curves C with two irreducible components CI , CIc

such that i-th marked point lying on CI if and only if i ∈ I. So DI = DIc . These
divisors are called boundary divisors. By [Kee92], boundary divisors generate the
Picard group Pic(M0,n) and Neron-Severi vector space N1(M0,n).

Definition 2.2. Let A = (a1, · · · , an) be a weight datum such that
∑n
i=1 ai > 2.

For I ⊂ [n], let wI :=
∑
i∈I ai. There are two kinds of boundary divisor classes in

M0,A for a general weight datum A.

(1) Boundary of nodal curves: Suppose that wIc ≥ wI > 1. Let DI be the
divisor of M0,A corresponding the closure of the locus of curves with two
irreducible components CI , CIc and si ∈ CI if and only if i ∈ I. Let Dnod

be the sum of all boundaries of nodal curves.
(2) Boundary of curves with coincident sections: Suppose that I = {i, j} and

wI ≤ 1. Since w = w[n] > 2, this implies wIc > wI . Let DI be the locus
of si = sj . Let Dsec be the sum of all boundaries of curves with coincident
sections.

Since the reduction morphism ϕA is a composition of smooth blow-ups, one can
easily derive following push-forward and pull-back formulas for divisor classes.

Lemma 2.3. Let ϕA : M0,n → M0,A be the reduction morphism. For I ⊂ [n], let
wI =

∑
i∈I ai. Assume wI ≤ wIc for every DI .

(1) ϕA∗(DI) =

{
0, |I| ≥ 3 and wI ≤ 1

DI , otherwise.

(2) ϕ∗A(DI) =

DI +
∑

J⊃I,wJ≤1

DJ , DI is a boundary of curves with coincident sections

DI , otherwise.

Let π : U → M0,A be the universal curve and σi : M0,A → U for i = 1, · · · , n
be the universal sections. Let ω = ωU/M0,A

be the relative dualizing bundle. We

define tautological divisors on M0,A as follows.

(1) The kappa class is κ = π∗(c
2
1(ω)). This definition is different from κ1 in

[AC99].
(2) For 1 ≤ i ≤ n, let Li be the line bundle on M0,A, whose fiber over

(C, s1, s2, · · · , sn) is ΩC |si , a cotangent space at si in C. The i-th psi class is
ψi = c1(Li). In terms of the intersection theory, ψi = π∗(ω ·σi) = π∗(−σ2

i ).
The total psi class is ψ =

∑n
i=1 ψi.

(3) The boundary of curves with coincident sections D{i,j} is equal to π∗(σi·σj).
We focus on the genus zero case only, so the lambda class λ = c1(π∗(ω)) is zero.

Next, consider the push-forwards and pull-backs of several divisors.
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Lemma 2.4. Let ϕA : M0,n →M0,A be the reduction morphism.

(1) ϕA∗(KM0,n
) = KM0,A

.

(2) ϕA∗(ψi) = ψi +
∑

j 6=i
ai+aj≤1

D{i,j}.

(3) ϕ∗A(ψi) = ψi −
∑

i∈I
wI≤1

DI .

Proof. Since the discrepancy is supported on the exceptional locus, item (1) follows
immediately. Items (2) and (3) are more careful observations of the proof of [FS08,
Lemma 2.4] and [FS08, Lemma 2.8] respectively. Item (3) is also a corollary of
cumbersome computation using Lemma 2.3 and 2.9. �

For I = {i1, · · · , ir} ⊂ [n], let DI be a boundary of nodal curves. Set Ic =
{j1, · · · , js}. Then DI is isomorphic to M0,AI×M0,AIc where AI = (ai1 , · · · , air , 1)

and AIc = (aj1 , · · · , ajs , 1). Let ηI : M0,AI × M0,AIc → DI ↪→ M0,A be the

inclusion morphism. Define πi for i = 1, 2 as the projection from M0,AI ×M0,AIc
to the i-th component.

Lemma 2.5. Let ηI : M0,AI ×M0,AIc → DI ↪→M0,A be the inclusion morphism.
Let p (resp. q) denote the last index of AI (resp. AIc) with weight one.

(1) η∗I (κ) = π∗1(κ+ ψp) + π∗2(κ+ ψq).

(2) η∗I (ψi) =

{
π∗1(ψi), i ∈ I
π∗2(ψi), i ∈ Ic.

(3) For J ⊂ [n], suppose that DJ be a boundary of nodal curves.

η∗I (DJ) =


π∗1(DJ), J ( I

π∗2(DJ), J ( Ic

π∗1(−ψp) + π∗2(−ψq), J = I

0, otherwise.

(4) Suppose that ai + aj ≤ 1.

η∗I (D{i,j}) =


π∗1(D{i,j}), i, j ∈ I
π∗2(D{i,j}), i, j ∈ Ic

0, otherwise.

Proof. The proof of these items are essentially identical to the case of M0,n. Item
(1) is in [AC96, Section 1]. Items (2), (4) are clear. The only non obvious part of
item (3) is due to [HM98, Proposition 3.31]. �

Let J ⊂ [n] be a subset of [n] such that
∑
j∈J aj ≤ 1. Let A′ be the new weight

datum obtained by replacing weights indexed by J by one weight
∑
j∈J aj . Then

the locus of σi = σj for all i, j ∈ J is isomorphic to M0,A′ because we can replace

sections {σj}j∈J by one section with weight
∑
j∈J aj . Let χJ : M0,A′ ↪→ M0,A be

the replacement morphism.

Lemma 2.6. Let χJ : M0,A′ →M0,A be the replacement morphism. Let p denote
the unique index of A′ replacing indices in J .

(1) χ∗J(ψi) =

{
ψi, i /∈ J
ψp, i ∈ J.

(2) χ∗J(Dnod) = Dnod.



6 HAN-BOM MOON

(3) Suppose that D{i,j} is a boundary of curves with coincident sections.

χ∗J(D{i,j}) =


D{i,j}, i, j /∈ J
D{i,p}, i /∈ J, j ∈ J
−ψp, i, j ∈ J.

Proof. Essentially this is a restatement of [FS08, Lemma 2.9]. �

Finally, let us recall the canonical divisor of M0,A. The following formula is
a consequence of Hassett’s computation of the canonical divisor and the weighted
version of Mumford’s relation. By [Has03, Section 3.3.1],

(3) KM0,A
=

13

12
κ− 11

12
Dnod +

n∑
i=1

ψi.

In the proof of Mumford’s relation κ = 12λ − Dnod ([Mum77]) for Mg, Mumford
used only the facts 1) the parametrized curves has at worst nodal singularities only,
2) the singular locus of the morphism from the universal curve to the moduli space
has codimension two. Thus the same proof holds for M0,A, too. Note that λ = 0
for the genus zero case.

Lemma 2.7.

(4) KM0,A
= −2Dnod +

n∑
i=1

ψi = 2κ+

n∑
i=1

ψi.

2.3. Numerical results for M0,n. It is well known that the Neron-Severi vec-

tor space N1(M0,n) of numerical divisor classes is generated by boundary divisors

([Kee92]). Many natural divisors on M0,n are already expressed as linear combina-
tions of boundary divisors. For j = 2, 3, · · · , n− 2, let Dj =

∑
|I|=j DI .

Lemma 2.8. [Pan97, Proposition 2]

KM0,n
≡
bn/2c∑
j=2

(
j(n− j)
n− 1

− 2

)
Dj .

To describe psi-classes as combinations of boundary divisors, we recall a notation
in [FG03, Section 2]. For I ⊂ [n], let

DI,i
j :=

∑
A⊂I , |A|=i
B⊂Ic, |B|=j

DA∪B .

Lemma 2.9. On M0,n,

(1)

ψi ≡
n−3∑
j=1

(n− 1− j)(n− 2− j)
(n− 1)(n− 2)

D
{i},1
j .

(2)

ψ ≡
bn/2c∑
j=2

(
j(n− j)
n− 1

)
Dj ≡ KM0,n

+ 2D.

Proof. The first item is [FG03, Lemma 1]. The second item follows from a direct
computation using (1) and Lemma 2.8. �
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Let I1 t I2 t I3 t I4 = [n] be a partition. Let FI1,I2,I3,I4 be an F-curve class
corresponding to the partition ([KMc96, Section 4]). The intersection numbers of
F-curves and boundary divisors are well-known.

Lemma 2.10. [KMc96, Lemma 4.3] Let F = FI1,I2,I3,I4 be an F-curve, and let DI

be a boundary divisor.

(1) DI · F = −1 if I or Ic is one of Ii.
(2) DI · F = 1 if I is Ii t Ij for some distinct i, j.
(3) Otherwise, DI · F = 0.

From these results, we can calculate all intersection numbers we want.

3. Proof of the Theorem

In this section, we prove our main theorem. Throughout this section, we will
assume n ≥ 4. If n = 3, then M0,3 is a point, so there is nothing to prove.

Theorem 3.1. Let A = (a1, · · · , an) be a weight datum such that
∑n
i=1 ai > 2.

Then the log canonical model M0,n(KM0,n
+
∑n
i=1 aiψi) is isomorphic to M0,A.

Proof. Fix a weight datum A = (a1, · · · , an). Let ∆A = KM0,n
+
∑n
i=1 aiψi. Set

T = {I ⊂ [n]|wI =
∑
i∈I ai ≤ 1, 2 ≤ |I| ≤ n − 2}. By Lemmas 2.4 and 2.7, it is

straightforward to check that

ϕA∗(∆A) = KM0,A
+

n∑
i=1

aiψi +
∑
i<j

ai+aj≤1

(ai + aj)D{i,j}

= −2Dnod +

n∑
i=1

(1 + ai)ψi +
∑
i<j

ai+aj≤1

(ai + aj)D{i,j}.

(5)

By Lemmas 2.3 and 2.4,

ϕ∗AϕA∗(∆A) = −2Dnod + 2
∑
I∈T

DI +

n∑
i=1

(1 + ai)ψi −
∑
I∈T

(|I|+ wI)DI

+
∑
i<j

ai+aj≤1

(ai + aj)D{i,j} +
∑
I∈T
|I|≥3

(|I| − 1)wIDI

= −2Dnod +

n∑
i=1

(1 + ai)ψi +
∑
I∈T

(|I| − 2)(wI − 1)DI .

(6)

So

(7) ∆A − ϕ∗AϕA∗(∆A) =
∑
I∈T

(|I| − 2)(1− wI)DI .

Note that for every I ∈ T , |I| ≥ 2 and wI ≤ 1 by the definition of T . So the differ-
ence ∆A − ϕ∗AϕA∗(∆A) is supported on the exceptional locus of ϕA and effective.
This implies that

H0(M0,n,∆A) ∼= H0(M0,n, ϕ
∗
AϕA∗(∆A)) ∼= H0(M0,A, ϕA∗(∆A))
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by [Deb01, Lemma 7.11]. The same statement holds for a positive multiple of ∆A,
too. Therefore from the definition of the log canonical model, we obtain

M0,n(KM0,n
+

n∑
i=1

aiψi) = Proj

⊕
l≥0

H0(M0,n,O(l∆A))


= Proj

⊕
l≥0

H0(M0,A,O(lϕA∗(∆A)))

 .

(8)

If we prove ϕA∗(∆A) is ample, then the last birational model is exactly M0,A. So

to prove the main theorem, it suffices to show that ϕA∗(∆A) is ample on M0,A.
This is done in Proposition 3.2 and 3.5. �

Proposition 3.2. Let A = (a1, · · · , an) be a weight datum and let ∆A = KM0,n
+∑n

i=1 aiψi. Then ϕA∗(∆A) is a nef divisor on M0,A.

The key ingredient is the following positivity result of Fedorchuk ([Fed10]). Fe-
dorchuk gives an elementary and beautiful intersection theoretical proof of this
result. As Fedorchuk mentioned in [Fed10], it can be proved by using the semipos-
itivity method of Kollár in [Kol90, Corollary 4.6, Proposition 4.7].

Proposition 3.3. [Fed10, Proposition 2.1] Let π : S → B be a generically smooth
family of nodal curves of arithmetic genus g, with n sections σ1, · · · , σn over a
smooth complete curve B. For a weight datum A = (a1, · · · , an), suppose that

L := ωπ +

n∑
i=1

aiσi

is π-nef. Suppose further that σi1 , · · · , σik can coincide only if
∑k
j=1 aij ≤ 1. Then

L is nef on S.

If π : S → B is a generically smooth family of A-stable curves, or more generally
A-semi-stable curves (allowing irreducible rational components with 2 nodes and
no marked points), then the hypotheses of Proposition 3.3 are satisfied by the
definition of A-stability.

We need an effectivity result first.

Lemma 3.4. Let π : S → B be a family of A-semi-stable rational curves with
n sections σ1, · · · , σn over a smooth complete curve B. Then 2ωπ +

∑n
i=1 σi is

effective.

Proof. We will use induction on n. For n = 4 case, the result is a direct computa-
tion.

By [HM98, 118p.], S has at worst Ak singularities only. An Ak singularity is Du

Val, so if ρ : S̃ → S is a minimal resolution, then ωπ◦ρ = ρ∗(ωπ) and ρ∗(ωπ◦ρ) = ωρ.
Thus we may assume that S is smooth.

Suppose that for J ⊂ [n] with |J | ≥ 2, σi = σj for all i, j ∈ J . We may
assume that J = {1, 2, · · · ,m} for some m ≤ n. After pulling-back along χJ :
M0,A′ → M0,A (see Section 2.2), we may assume that (π : S → B, σ1, · · · , σn) is
a family of A′-stable curves (π : S → B, σm, σm+1, · · · , σn) with |J | − 1 additional
sections σ1, σ2, · · · , σm−1. By induction hypothesis, 2ωπ +

∑n
i=m σi is effective. So
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2ωπ+
∑n
i=1 σi = (2ωπ+

∑n
i=m σi)+

∑m−1
i=1 σi is effective, too. Thus we may assume

that all sections are distinct.
After taking several blow-ups along points with two or more sections meet, we

obtain a family of (1, · · · , 1)-semi-stable curves (π1 : S1 → B, σ1
1 , · · · , σ1

n). Let
ρ1 : S1 → S be the blow-up. If there exist (−1) curves with exactly 2 sections,
after contracting these (−1) curves by blowing-down, we get a family (π2 : S2 →
B, σ2

1 , · · · , σ2
n) of (1/2, · · · , 1/2)-semi-stable curves. Let ρ2 : S1 → S2 be the blow-

down morphism. Over S2, 2ωπ2 +
∑n
i=1 σ

2
i is nef by Proposition 3.3 and thus

effective.

(9) S1

ρ1

����
��

��
�� ρ2

  
AA

AA
AA

A

π1

��

S

π
��

@@
@@

@@
@@

S2

π2
~~}}

}}
}}

}}

B

From (1/2, · · · , 1/2)-stability, we know that for each point in S2, at most two
sections meet at that point. Let x1, · · · , xk ∈ S2 be points with coincident sections.
Then ρ2 is the blow-up along x1, · · · , xk. Let E1, · · · , Ek be the exceptional divisors.

By the blow-up formula, ωπ1 = ρ∗2(ωπ2)+
∑k
j=1Ej . Also

∑n
i=1 σ

1
i = ρ∗2(

∑n
i=1 σ

2
i )−

2
∑k
j=1Ej . Thus

(10) 2ωπ1
+

n∑
i=1

σ1
i = ρ∗2(2ωπ2

+

n∑
i=1

σ2
i ),

so 2ωπ1
+
∑n
i=1 σ

1
i is effective.

Finally, ρ1∗(ωπ1) = ωπ and ρ1∗(σ
1
i ) = σi since ρ1 is a composition of point blow-

ups. Thus 2ωπ +
∑n
i=1 σi = ρ1∗(2ωπ1

+
∑n
i=1 σ

1
i ) is a push-forward of an effective

divisor. Hence it is effective, too. �

Proof of Proposition 3.2. For n = 4 case, since M0,A ∼= M0,n
∼= P1, KM0,n

≡
O(−2) and ψi ≡ O(1), the result is a consequence of a simple direct computation.
So we can use induction on the number n of marked points.

To prove the nefness of ϕA∗(∆A), it suffices to show that for every complete
irreducible curve B →M0,A, the restriction of ϕA∗(∆A)|B has nonnegative degree.
By composing with the normalization Bν → B, we may assume that B is smooth.

By equations (4) and (5), it is straightforward to check that

ϕA∗(∆A) = 2κ+

n∑
i=1

(1 + ai)ψi +
∑
i<j

ai+aj≤1

(ai + aj)D{i,j}(11)

= π∗

(
2ω2 +

n∑
i=1

(1 + ai)(ω · σi) +
∑
i<j

ai+aj≤1

(ai + aj)(σi · σj)
)
.(12)

For a boundary divisor DI of nodal curves, let ηI : M0,AI ×M0,AIc → DI ↪→M0,A
be the inclusion of boundary. We will use the same notation as in Section 2.2. By
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Lemma 2.5 and (11), it is straightforward to check

(13) η∗I (ϕA∗(∆A)) = π∗1(ϕAI∗(∆AI )) + π∗2(ϕAIc∗(∆AIc )).

Thus for a curve B supported on a boundary of nodal curves, the degree of ϕA∗(∆A)
is non-negative by induction. Therefore it suffices to check for a family S → B of
nodal curves over a smooth curve B, whose general fiber is a nonsingular curve.

Note that ω · σi = −σ2
i by adjunction and σi · σj = 0 if ai + aj > 1. Therefore

2ω2 +

n∑
i=1

(1 + ai)(ω · σi) +
∑
i<j

ai+aj≤1

(ai + aj)(σi · σj)

= 2ω2 +
n∑
i=1

(ω · σi) +

n∑
i=1

2ai(ω · σi) +

n∑
i=1

aiσ
2
i +

∑
i<j

(ai + aj)(σi · σj)

= (ω +

n∑
i=1

aiσi) · (2ω +

n∑
i=1

σi).

(14)

Hence it suffices to check that deg π∗
(
(ω +

∑n
i=1 aiσi) · (2ω +

∑n
i=1 σi)

)
|B ≥ 0. By

Proposition 3.3, ω+
∑n
i=1 aiσi is nef on S. By Lemma 3.4, 2ω+

∑n
i=1 σi is effective

on S. Thus the intersection is non-negative and the result follows. �

Next, we prove the ampleness of ϕA∗(∆A). This is an application of the pertur-
bation technique of Fedorchuk and Smyth introduced in [FS08].

Proposition 3.5. With the same hypotheses of Proposition 3.2, ϕA∗(∆A) is an
ample divisor on M0,A.

Proof. Fix a metric || · ||A on N1(M0,A) for each weight datum A. We will prove

the following statement: For M0,A, there exists εA > 0 such that ϕA∗(∆A) + P is

nef for every P ∈ N1(M0,A) satisfying ||P ||A < εA. This implies that ϕA∗(∆A)

lies in the interior of Nef(M0,A), so by Kleiman’s criterion, ϕA∗(∆A) is ample.

We will use induction on n. When n = 4, then M0,A ∼= P1 and the result is
straightforward.

Let B be an integral complete curve on M0,A. Since we only consider the
intersection numbers, we may assume B is nonsingular by applying normalization.
We will divide into three cases:

Case 1. B is in a component of nodal boundary.

By (13) and induction hypothesis, when we restrict ϕA∗(∆A) to a component of
boundary of nodal curves, the restriction is ample. So there exists εA,I > 0 such

that η∗I (ϕA∗(∆A) + P ) is nef for all P ∈ N1(M0,A) such that ||P ||A < εA,I .

Case 2. A general point of B parametrizes a smooth curve and there exists
J ⊂ [n] with |J | ≥ 2 such that σi = σj for all i, j ∈ J .

We may assume that J is maximal among such subsets. In this case, B is
contained in the image of χJ : M0,A′ → M0,A defined in section 2.2. Let p be the
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unique index of A′ = (a′j) replacing indices in J . Then by (5) and Lemma 2.6,

χ∗J(ϕA∗(∆A)) = χ∗J

(
− 2Dnod +

n∑
i=1

(1 + ai)ψi +
∑
i<j

ai+aj≤1

(ai + aj)D{i,j}

)

= −2Dnod +
∑
i∈Jc

(1 + ai)ψi +
∑
i∈J

(1 + ai)ψp +
∑

i<j, i,j∈Jc
ai+aj≤1

(ai + aj)D{i,j}

+
∑

i∈J, j∈Jc∑
i∈J ai+aj≤1

(ai + aj)D{p,j} −
∑

i<j, i,j∈J
(ai + aj)ψp

= −2Dnod +
∑
i∈Jc

(1 + ai)ψi + (1 +
∑
j∈J

aj)ψp + (|J | − 1)ψp +
∑

i<j, i,j∈Jc
ai+aj≤1

(ai + aj)D{i,j}

+
∑
j∈Jc∑

i∈J ai+aj≤1

(
(
∑
i∈J

ai) + aj

)
D{p,j} + (|J | − 1)

∑
j∈Jc∑

i∈J ai+aj≤1

ajD{p,j} − (|J | − 1)
(∑
i∈J

ai

)
ψp

= ϕA′∗(∆A′) + (|J | − 1)
(

(1−
∑
i∈J

ai)ψp +
∑
j∈Jc∑

i∈J ai+aj≤1

ajD{p,j}

)

= ϕA′∗(∆A′) + (|J | − 1)π∗

(
(ω +

∑
a′jσj) · σp

)
.

(15)

The index of the first sum in the third line follows from the fact that D{i,j} for

i ∈ J, j /∈ J meets χJ(M0,A′) only if
∑
i∈J ai + aj ≤ 1.

By induction hypothesis, ϕA′∗(∆A′) is ample. Since ω+
∑
a′jσj is nef by Propo-

sition 3.2, the second term in the last line in (15) is nonnegative on B (See also
[Fed10, Theorem 1]). Hence there exists εA,J > 0 such that χ∗J(ϕA∗(∆A) + P ) is

nef for all P ∈ N1(M0,A) with ||P ||A < εA,J .

Case 3. Otherwise.

In this case, a general point of B parametrizes a smooth curve. Note that
there exists δ > 0 such that every A = (a1, · · · , an)-stable curve is also Aδ =
(a1 − δ, · · · , an − δ)-stable too. Therefore M0,A = M0,Aδ and ϕA = ϕAδ , so
ϕA∗(∆Aδ) is nef by Proposition 3.2. Thus

ϕA∗(∆A) = ϕA∗(KM0,n
+

n∑
i=1

aiψi)

= ϕA∗(KM0,n
+

n∑
i=1

(ai − δ)ψi) + δϕA∗(ψ) = ϕA∗(∆Aδ) + δϕA∗(ψ).

On M0,n, ψ =
∑bn/2c
j=2

j(n−j)
n−1 Dj by Lemma 2.9. Thus ϕA∗(∆A) is a sum of a nef

divisor ϕA∗(∆Aδ) and an effective divisor δϕA∗(ψ) supported on the boundary.
Note that ψ and ϕA∗(ψ) are positive linear combinations of all boundary compo-
nents. So there exists εA,0 > 0 such that for P ∈ N1(M0,A) with ||P ||A < εA,0,
δϕA∗(ψ) + P is an effective sum of boundary divisors. Since B intersects with
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the complement of boundary divisors, (δϕA∗(ψ) + P ) · B ≥ 0. Therefore B inter-
sects non-negatively with ϕA∗(∆A) +P = ϕA∗(∆Aδ) + (δϕA∗(ψ) +P ), for every P
satisfying ||P ||A < εA,0.

Note that there exists only finitely many strata on M0,A. So if we take εA to be

the minimum among εA,0, εA,I and εA,J , ϕA∗(∆A) +P is nef for all P ∈ N1(M0,A)
such that ||P ||A < εA. �

Next, we prove item (2) of Theorem 1.4. In this case, Kapranov’s morphisms πA :
M0,n → (P1)n//LSL(2) for any effective ample linearization L = O(a1, · · · , an)
plays the same role as ϕA ([Kap93]).

Theorem 3.6. Assume that n ≥ 5. Let A = (a1, · · · , an) be a weight datum
satisfying

∑n
i=1 ai = 2. Then the log canonical model M0,n(KM0,n

+
∑
aiψi) is

isomorphic to (P1)n//LSL(2) where L = O(a1, · · · , an).

Proof. For each subset I ⊂ [n], set wI :=
∑
i∈I ai. Let S be the set of I ⊂ [n] such

that

(1) 2 ≤ |I| ≤ n− 2,
(2) wI < wIc or wI = wIc , |I| < |Ic| or wI = wIc , |I| = |Ic|, 1 ∈ I.

So there is a bijection between S and the set of irreducible components DI of the
boundary divisor of M0,n. Set T = {I ⊂ [n]|wI ≤ 1, 2 ≤ |I| ≤ n − 2} as before.
Define

(16) ∆′A := (n− 4)
∑
I∈S

(
−
(
|I|
2

)
2

(n− 1)(n− 2)
+
|I| − 1

n− 2
wI

)
DI .

Then by Lemma 2.8 and 2.9, it is straightforward to check that ∆A −∆′A is equal
to the right side of (7).

The morphism πA contracts all the boundary divisors except DI with |I| = 2.
The coefficient of DI in ∆A −∆′A is nonnegative if |I| ≥ 3 (since wI ≤ 1) and zero
if |I| = 2. Thus ∆A −∆′A is also effective and supported on the exceptional locus

of πA. Therefore, by the same argument of the proof of Theorem 3.1, M0,n(∆A) ∼=
M0,n(∆′A).

For a partition I1 t I2 t I3 t I4 = [n], set wj = wIj =
∑
i∈Ij ai. We may assume

that w1 ≤ w2 ≤ w3 ≤ w4. By Lemma 2.10 it is straightforward to check

(17) ∆′A · FI1,I2,I3,I4 =


0, w4 ≥ 1

(n− 4)(1− w4), w4 ≤ 1 and w1 + w4 ≥ 1

(n− 4)w1, w4 ≤ 1 and w1 + w4 ≤ 1.

These intersection numbers are proportional to those of π∗A(O(a1, · · · , an)//SL(2))

in [AS08, Lemma 2.2]. Since N1(M0,n) is generated by F-curves, ∆′A is propor-
tional to the pull-back of the canonical ample divisor O(a1, · · · , an)//SL(2) on
(P1)n//LSL(2). Therefore M0,n(∆A) ∼= (P1)n//LSL(2). �

Remark 3.7. Theorem 3.1 shows an interesting relation between log canonical
models of stable pointed rational curves parametrized by M0,n and that of the

parameter space M0,n. Let (C, x1, · · · , xn) be a stable pointed rational curve.
Then the log canonical model C(ωC +

∑
aixi) is an A-stable curve. More precisely,

it is ϕA(C, x1, · · · , xn). The same weight datum determines the log canonical model
of parametrized curve (C, x1, · · · , xn) and that of parameter space M0,n itself.
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Remark 3.8. Suppose that the weight datum A = (a1, · · · , an) is symmetric, i.e,
a1 = · · · = an = α for some 2/n < α ≤ 1. Then by Lemma 2.8 and 2.9,

(18) ψ =

bn/2c∑
j=2

j(n− j)
n− 1

Dj = KM0,n
+ 2D.

So for α > 0,

(19) KM0,n
+ αψ = (1 + α)(KM0,n

+
2α

1 + α
D).

Therefore the log canonical model of the pair (M0,n,KM0,n
+ αψ) is equal to the

log canonical model of the pair (M0,n,KM0,n
+ 2α

1+αD). If we substitute β = 2α
1+α ,

then we obtain Theorem 1.2, except the range of bigness of the divisor KM0,n
+βD.

Hence Theorem 1.4 is a generalization of Simpson’s theorem (Theorem 1.2).

Remark 3.9. In [Kee92], Keel proved that

rank Pic(M0,n) = dim N1(M0,n) = 2n−1 −
(
n

2

)
− 1.

This dimension increase exponentially, so one can expect that the whole picture
of the birational geometry of M0,n is extremely complicated. The moduli spaces

M0,A give a family of birational models for M0,n. These models are smooth, are

the targets of birational morphisms from M0,n which are smooth blow-downs, and
most importantly, they are moduli spaces for another moduli problem. But from
Theorem 3.1, one can conclude that this family of birational models of M0,n are

detected by only an n-dimensional subcone of effective cone of M0,n. So it seems

that there are still many more birational models of M0,n to be discovered.

Remark 3.10. Let S = {I ⊂ [n] | 2 ≤ |I| ≤ bn/2c, 1 ∈ I if |I| = n/2} be
the standard index set of boundary divisors. A divisor ∆ on M0,n is called log
canonical if

∆ = r(KM0,n
+
∑
I∈S

cIDI)

for some r > 0 and 0 ≤ cI ≤ 1 (compare to the definition in [AGS10, Definition
6.2]). If cI = cJ for I, J ∈ S such that |I| = |J |, then we say ∆ is symmetrically log
canonical. For a divisor ∆ which is numerically equivalent to a log canonical divisor,
it is nef if and only if ∆ intersects with F-curves non-negatively ([FG03, Theorem
4]). So if ϕ∗AϕA∗(∆A) in (6) is log canonical, computing intersection numbers with
F-curves are sufficient to prove Theorem 3.1.

But in general, ϕ∗AϕA∗(∆A) is not numerically equivalent to a log canonical di-
visor. For example, if n = 15 and A = (1/6, 1/6, · · · , 1/6), then by using computer
algebra system, we can check that ϕ∗AϕA∗(∆A) is not symmetrically log canonical.
By Proposition 3.11, it is not numerically equivalent to a log canonical divisor. Thus
Theorem 3.1 cannot be proved by checking intersection numbers with F-curves.

Proposition 3.11 is due to the referee.

Proposition 3.11. Let ∆ be an Sn-invariant divisor on M0,n. Suppose that ∆
is numerically equivalent to a log canonical divisor. Then ∆ is symmetrically log
canonical.
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Proof. By hypothesis, we have

(20) ∆ +
∑

aiRi = r(KM0,n
+
∑

cIDI)

where Ri denote the Rulla relations ([Rul06, Lemma 2.1]), 0 ≤ cI ≤ 1 for all I.
The summation is over the set of boundary divisors.

The Rulla relations form an irreducible Sn-module ([MS11, Proposition 2.3]).
Thus

∑
σ∈Sn σRi = 0 for all i. Therefore by symmetrizing both sides of (20), we

obtain

∆ = r(KM0,n
+

bn/2c∑
j=2

1(
n
j

) (
∑
|I|=j

cI)Dj).

Since 0 ≤ cI ≤ 1, we have 0 ≤ 1

(nj)
(
∑
|I|=j cI) ≤ 1, hence ∆ is symmetrically log

canonical. �
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