
BIRATIONAL CONTRACTIONS OF M0,n AND COMBINATORICS OF EXTREMAL
ASSIGNMENTS

HAN-BOM MOON, CHARLES SUMMERS, JAMES VON ALBADE, AND RANZE XIE

ABSTRACT. From Smyth’s classification, modular compactifications of the moduli space of pointed
smooth rational curves are indexed by combinatorial data, so-called extremal assignments. We ex-
plore their combinatorial structures and show that any extremal assignment is a finite union of atomic
extremal assignments. We discuss a connection with the birational geometry of the moduli space of
stable pointed rational curves. As applications, we study three special classes of extremal assign-
ments: smooth, toric, and invariant with respect to the symmetric group action. We identify them
with three combinatorial objects: simple intersecting families, complete multipartite graphs, and spe-
cial families of integer partitions, respectively.

1. INTRODUCTION

A fascinating fact about the moduli space M0,n of stable n-pointed rational curves is that it has
rich combinatorial structures. There is a natural stratification indexed by the set of stable n-labeled
trees, or matroid polytope decompositions ([Kap93a]). The closure of each stratum is isomorphic
to a product of M0,n’s with a small number of marked points, and the universal family over M0,n

is isomorphic to M0,n+1, so there are two inductive structures. The limit computation on M0,n can
be explained in terms of Bruhat-Tits building ([Kap93b]). A natural connection with root systems
of type A was also observed ([Sek96]).

Recently Smyth found yet another example of an interplay between geometry on M0,n and
combinatorics. In [Smy13], he gave a classification of modular compactifications of the moduli
space M0,n of smooth rational curves with n distinct points in the algebraic stack of all pointed
curves. He showed that these compactifications can be indexed by combinatorial data, so-called
extremal assignments. An extremal assignment Z is a collection of subsets Z(G) ⊂ V (G) for every
stable n-labeled tree G, with two conditions (Definition 3.1):

(1) Z(G) 6= V (G);
(2) For any contraction G  G′ which contracts {v1, v2, · · · , vk} ⊂ V (G) to v′ ∈ V (G′),

v1, v2, · · · , vk ∈ Z(G) if and only if v′ ∈ Z(G′).

For each extremal assignment Z, Smyth constructed a moduli space M0,n(Z) of n-pointed rational
curves with certain singularities, in the category of algebraic spaces. It is shown that there is a
dominant regular map M0,n → M0,n(Z) which preserves M0,n (Proposition 3.9). Thus M0,n(Z) is a
birational contraction of M0,n.

The aim of this paper is to study the combinatorics of extremal assignments and to translate the
result in terms of birational contractions of M0,n.
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1.1. Structure theorem of extremal assignments. Although the definition of an extremal assign-
ment is simple and natural, answering the following natural questions is surprisingly subtle.

Question 1.1. LetG1, G2, · · · , Gk be stable n-labeled trees and let v1 ∈ V (G1), v2 ∈ V (G2), · · · , vk ∈
V (Gk).

(1) Is there an extremal assignment Z such that vi ∈ Z(Gi)?
(2) Describe the smallest Z such that vi ∈ Z(Gi). Or equivalently, for anyG and any v ∈ V (G),

determine whether v must be assigned or not.

To answer these questions, first we prove a structure theorem of extremal assignments. An
atomic extremal assignment is the smallest extremal assignment with an assigned vertex. We will
explain relevant notations (mainly for the partial ordering of set partitions) in the statement below
in Section 6.

Theorem 1.2. (1) (Proposition 6.5) There is a one-to-one correspondence between the set of atomic
extremal assignments and the set of set partitions P of [n] with 3 ≤ |P | ≤ n− 1.

(2) (Lemma 6.7) Any extremal assignment Z of order n is a union of finitely many atomic extremal
assignments.

(3) (Proposition 6.9 and Theorem 6.10) For atomic extremal assignments Z1, Z2, · · · , Zk and the
corresponding set partitions P1, P2, · · · , Pk, the union Z :=

⋃k
i=1 Zi is an extremal assignment if

and only if for any two Q1 � Pi and Q2 � Pj with the tight upper bound R, there is P` such that
R ≤ P`.

Based on Theorem 1.2, we provide an algorithm and its implementation for finding the smallest
Z in Question 1.1.

1.2. Smooth models and simple intersecting families. As applications of the structure theorem,
we explore three special cases of extremal assignments and their associated birational models.

The first natural class is the collection of smooth models. We give a characterization of extremal
assignments that provide smooth models. A smooth extremal assignment is an extremal assignment
Z such that for any G and v ∈ Z(G), there is G′ with two vertices and v′ ∈ Z(G′) such that G G′

and v  v′.

Theorem 1.3. (1) (Theorem 7.8) An extremal assignment Z provides a smooth birational contraction
M0,n(Z) if and only if Z is equivalent to a smooth extremal assignment.

(2) (Theorem 7.10) There is a one-to-one correspondence between the set of smooth extremal assign-
ments of order n and the set of simple intersecting families of order n, rank ≤ n − 2, and antirank
≥ 2.

A simple intersecting family is a special class of hypergraphs ([Ber89, Section 1.3]) such that any
two hyperedges properly intersect.

1.3. Toric models and complete multipartite graphs. The next class of examples is toric models.
The Losev-Manin space M

LM
0,n ([LM00]) is the closest toric variety to M0,n among Hassett’s moduli
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spaces M0,A of weighted stable curves ([Has03]). M
LM
0,n is constructed as an iterated toric blow-

up of Pn−3. Thus if we take an intermediate space of this construction, it gives a toric birational
model of M0,n. For any connected graph G of order n − 2, one can associate a polytope PG, a
so-called graph associahedron, and its corresponding toric variety X(PG) is one of the intermediate
spaces. In [dRJR16], the authors found a characterization of G where X(PG) is indeed one of
Hassett’s moduli spaces of weighted stable curves, and asked when X(PG) is indeed isomorphic
to a modular birational model of M0,n ([dRJR16, Remark 12]). Here we answer the question.

Theorem 1.4 (Theorem 8.5). For any connected graph G of order n − 2, X(PG) is M0,n(Z) for some
extremal assignment Z if and only if G is a complete multipartite graph.

Therefore for almost every graph G, X(PG) is not modular. This implies that for the study of
contractions of M0,n, studying modular compactifications from extremal assignments is insuffi-
cient.

1.4. Sn-invariant models and integer partitions. We study Sn-invariant extremal assignments.
The natural Sn-action permuting n labels induces the Sn-action on M0,n and the set of extremal
assignments of order n. For an Sn-invariant extremal assignment Z, on M0,n(Z), Sn acts too, and
the contraction M0,n → M0,n(Z) is Sn-equivariant. Thus an Sn-invariant extremal assignment Z
provides a contraction M̃0,n := M0,n/Sn → M0,n(Z)/Sn.

We prove the following analogue of the structure theorem of ordinary extremal assignments.
As one may expect, the theorem can be described in terms of integer partitions, rather than set
partitions. However, the result is not a simple restatement, because if we forget labels, then there
are nontrivial automorphisms of the underlying graphs even for trees. For the definition of the
special family of integer partitions, see Definition 9.3.

Theorem 1.5 (Theorem 9.5). There is a one-to-one correspondence between the set of Sn-invariant ex-
tremal assignments and the set of special families of integer partitions.

In summary, in these three special cases, one may translate a question about extremal assign-
ments or modular contractions of M0,n into the terms of simpler combinatorial objects. We may
summarize the situation as Figure 1.

1.5. Computer programs. Based on Theorem 1.2 (resp. Theorem 1.5), we are able to describe an
algorithm for finding the smallest extremal assignment Z in Question 1.1. We implemented this
algorithm as a program in Sage ([S+]). It can be found on the website of the first author:

http://www.hanbommoon.net/publications/extremal

1.6. Classification of contractions and projectivity question. In the moduli-theoretic viewpoint,
there are two known families of birational contractions of M0,n. One is obtained from extremal
assignments, as we discussed above. The other family, the so-called family of Veronese quotients,
is obtained from geometric invariant theory (GIT) ([GJM13, GJMS13]). Constructions of birational
contractions in these two viewpoints are very general and exhaustive in some sense, so one may
wonder whether all of the projective birational contractions (in the sense of Mori’s program or the
log minimal model program) of M0,n are essentially obtained from these two families.

http://www.hanbommoon.net/publications/extremal
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Modular birational contractions M0,n(Z)
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FIGURE 1. Three correspondences of combinatorial objects

The structure of the nef cone of M0,n is generally open for n ≥ 8, and it is complicated even for
small n. Thus we focused on the Sn-invariant nef cone of M0,n, or, equivalently, the nef cone of
M̃0,n := M0,n/Sn. In Section 10, we show that for n ≤ 8, all birational models are obtained from
extremal assignments and Veronese quotients, but from n = 9, some contractions do not come
from these two families.

One interesting result is the following. A priori, the modular contractions M0,n(Z) from ex-
tremal assignments exist in the category of algebraic spaces. However, some of them are not
projective varieties. We give three explicit examples of non-projective contractions. Indeed, two
of them are smooth proper non-projective varieties. Thus, by using extremal assignments, we
are able to construct many examples of smooth, non-projective proper algebraic varieties. Finally,
for smooth extremal assignments, we give a partial criterion for the projectivity (Corollary 7.13,
Proposition 7.15), and show that the associated birational contractions are always varieties (Propo-
sition 11.5).

1.7. Further works. There have been many results ([Man95, Cey09, Moo11, BH11, BM13, BM14])
on the computation of motivic invariants of M0,n, and more generally, for M0,A. For instance, their
Poincaré polynomials were computed in some special cases ([Moo11, BM13, BM14]). It would be
great if one could find a concise closed or iterative formula describing the Poincaré polynomial
for arbitrary weight data. However, it appears that the weight data are not appropriate input data
for such a formula, as many different weights give the same space. We expect that the formula
may be extracted from the associated smooth extremal assignment, since it determines the moduli
space uniquely. We will explore this motivic computation in a forthcoming paper.

1.8. Structure of the paper. This paper is organized in the following format. In Section 2, we
review the definition and basic properties of M0,n, its subvarieties, and dual graphs. We recall
the definition of an extremal assignment and its functorial properties in Section 3. Section 4 gives
some important classes of examples. In Section 5, we give a complete list of equivalence classes of
extremal assignments for n = 5, as a warm-up. Section 6 is devoted to the proof of the structure
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theorem (Theorem 6.10). In the next several sections, we give applications of this structure the-
orem. In Section 7, we give a characterization of extremal assignments giving smooth birational
contractions. In Section 8, we study toric birational models. Sn-invariant extremal assignments
are discussed in Section 9. By applying this theory, we compute the birational contractions associ-
ated to the nef cone of M̃0,n for small n in Section 10. Finally, we give examples of non-projective
models in the last section.

Notation.

• Let [n] := {1, 2, · · · , n}. A k-subset of [n] is S ⊂ [n] such that |S| = k.
• A labeled graph is a graphGwith a bijective map between the set of end vertices and a given

label set. Usually we use [n] as a label set.
• For any labeled graph G, V (G) is the set of internal (thus non-labeled) vertices.
• An n-labeled tree G is called a star if every internal vertex is connected to a single vertex v.
v is called a central vertex.
• S(n) is the set of all stable n-labeled trees. When we use a specific label set X instead of

[n], we use S(X).
• P(n) is the set of set partitions of [n].
• A tail T of a graph (or labeled graph) G is a connected subgraph of G such that there is

only one vertex v ∈ T which is adjacent to T c.
• For a subgraph T , the label set `(T ) is the set of all labels adjacent to T . `(v) = `({v}).
• We denote an n-dimensional weight vector (a, a, · · · , a) by an. (a, a, · · · , a, b) is denoted by

(an−1, b), and so on.

Acknowledgements. The first author would like to thank Andreas Blass, Daniel Soltész, and
David Swinarski. The authors would like to thank anonymous referees for careful reading and
many suggestions. The first, second, and third authors were partially supported by the Fordham
University Summer Undergraduate Research Program.

2. PRELIMINARIES

2.1. The moduli space M0,n. In this section, we summarize the definition and basic facts of the
moduli space M0,n of stable n-pointed rational curves.

Definition 2.1. A stable n-pointed rational curve is a complex n-pointed curve (C, x1, x2, · · · , xn)

such that

(1) C is a connected, projective curve of arithmetic genus 0 with at worst nodal singularities;
(2) xi’s are distinct smooth points on C;
(3) Every irreducible component of C has at least 3 special points (singular points or marked

points).

Let M0,n be the moduli space of stable n-pointed rational curves.

The space M0,n is a fine moduli space and it is a smooth projective variety of dimension n − 3.
If we want to use a specific index set S instead of [n], we denote by M0,S .
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By considering loci of singular curves with fixed topological types, we can obtain subvarieties
that define a stratification structure on M0,n.

Definition 2.2. For any I ⊂ [n] with 2 ≤ |I| ≤ n − 2, let DI be the closure of the locus of curves
(C = C1 ∪ C2, x1, x2, · · · , xn) with two irreducible components C1 and C2 such that xi ∈ C1 if
and only if i ∈ I . By definition, DI = DIc . DI is called a boundary divisor. Let D =

⋃
I DI and

Di =
⋃
|I|=iDI .

Each DI is a divisor of M0,n, and it is isomorphic to M0,I∪{p} ×M0,Ic∪{q}. The total boundary
divisor D is a simple normal crossing divisor. Thus, by taking a nonempty intersection of its
irreducible components, we obtain a subvariety with the expected codimension. The intersection
DI1 ∩ DI2 ∩ · · · ∩ DIr is nonempty if and only if for any two distinct indices i and j, Ii ⊂ Ij or
Ii ∩ Ij = ∅. The stratification on M0,n obtained by these nonempty intersections of boundary
divisors is called the boundary stratification.

Definition 2.3. Let I1 t I2 t I3 t I4 = [n] be a set partition. For each i, we define a ‘tail’ Ci as the
following. If |Ii| > 1, we define Ci as the P1 with |Ii|+ 1 distinct fixed points with labels Ii ∪ {pi}.
If |Ii| = 1, Ci = {pi} is a point. Construct (C, x1, x2, · · · , xn) ∈ M0,n by gluing four fixed tails Ci to
a four pointed curve (P1, q1, q2, q3, q4) along pi and qi. An F-curve FI1,I2,I3,I4 ⊂ M0,n is obtained by
varying the cross ratio of qj ’s. On M̃0,n := M0,n/Sn, we define an F-curve Fi1,i2,i3,i4 as any F-curve
FI1,I2,I3,I4 so that |Ij | = ij .

An F-curve FI1,I2,I3,I4 is numerically equivalent to any 1-dimensional nonempty intersection of
boundaries  ⋂

|Ii|>1

DIi

 ∩DJ1 ∩DJ2 ∩ · · · .

The intersection number of a boundary divisor and an F-curve is given by the following lemma.

Lemma 2.4. [KM13, Lemma 4.3].

FI1,I2,I3,I4 ·DJ =


1, J = Ii ∪ Ij for two i, j,

−1, J = Ii,

0, otherwise.

Boundary divisors generate N1(M0,n), and F-curves generate N1(M0,n).

2.2. Graph theoretic notation. The boundary stratification of M0,n can be described in terms of
stable labeled trees. In this section, we briefly review their combinatorics.

Definition 2.5. A stable n-labeled tree is a finite graph with n leaves {1, 2, · · · , n} satisfying:

(1) The underlying graph is a tree (i.e., there is no circuit).
(2) Every (internal) vertex has at least 3 adjacent edges.
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Let S(n) be the set of all stable n-labeled trees. Let Sk(n) ⊂ S(n) be the subset of stable n-labeled
trees with precisely k internal vertices. It is straightforward to check that

S(n) =

n−2⋃
k=1

Sk(n).

If there is no further explanation, a vertex of a labeled tree is always an internal vertex.

We can impose a natural partially ordered set structure on S(n).

Definition 2.6. For G,G′ ∈ S(n), we say G′ is a contraction of G (denoted by G  G′) if we can
make G′ from G by repeating the following collapsing operation: Replace a nonempty connected
subgraph by a vertex. For a contraction π : G  G′ and v′ ∈ V (G′), by abuse of notation we
denote V (G)→ V (G′) by π. If {v1, v2, · · · , vk} = π−1(v′), we write {v1, v2, · · · , vk} v.

Let G ≤ G′ if G G′. Then S(n) is a partially ordered set.

Example 2.7. Figure 2 shows two stable 6-labeled trees such that G G′ and {v0, v1} v′.

v0

1 2

3 4

5 6

v1

G

 
v′

G′
1 2

3 4

5 6

FIGURE 2. An example of contraction

Definition 2.8. For X := (C, x1, x2, · · · , xn) ∈ M0,n, the dual graph G is a stable n-labeled tree
constructed as the following. The set V (G) of vertices is the set of irreducible components of C.
Two vertices v, w are connected if two corresponding irreducible components meet. We put a
label i on a vertex v if xi lies on the corresponding irreducible component. The condition (3) of
Definition 2.1 implies the stability of G.

Example 2.9. Figure 3 shows a curve in M0,6 and its dual graph.

1

2

3 4

5

6

1 2

3 4

5 6

FIGURE 3. A stable 6-pointed rational curve and its dual graph
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Example 2.10. Suppose thatG is a tree with two vertices, and the set of labels on a vertex is I ⊂ [n].
Then the corresponding curve X = (C1, x1, x2, · · · , xn) is on DI .

ForG ∈ S(n), letDG ⊂ M0,n be the locus of curves whose dual graph isG. ThenDG is a smooth
locally-closed subvariety of M0,n that is an intersection of several boundary divisors. Also G ≤ G′

if and only if DG ⊂ DG′ .

3. EXTREMAL ASSIGNMENTS AND BIRATIONAL CONTRACTIONS OF M0,n

In [Smy13], Smyth introduced a combinatorial object, a so-called extremal assignment, which
defines a contraction of M0,n. In this section, we give its definition and basic properties.

Definition 3.1. (1) An assignment Z on T ⊂ S(n) is a rule assigning for each G ∈ T a subset
Z(G) ⊂ V (G).

(2) An assignment Z on S(n) is called an extremal assignment of order n if:
(a) Z(G) 6= V (G) for any G ∈ S(n);
(b) If G G′ and {v1, v2, · · · , vk} v′, then v′ ∈ Z(G′)⇔ v1, v2, · · · , vk ∈ Z(G).

Remark 3.2. In [Smy13, Definition 1.5], Smyth defines an extremal assignment for arbitrary genus
g graphs. It is straightforward to see that his condition (2) is trivial for the g = 0 case, because any
stable n-labeled tree has a trivial automorphism group.

We define several natural operations.

Definition 3.3. An extremal assignment Z ′ is called a sub extremal assignment of Z if Z ′(G) ⊂ Z(G)

for every G ∈ S(n). We denote by Z ′ ⊂ Z.

Definition 3.4. Let Z1, · · · , Zk be extremal assignments. The intersection Z :=
⋂k
i=1 Zi is defined

by Z(G) :=
⋂k
i=1 Zi(G). Z is also an extremal assignment.

However, in general the union Z :=
⋃k
i=1 Zi, which is defined by Z(G) =

⋃k
i=1 Zi(G), is not an

extremal assignment.

Example 3.5. Let G ∈ S2(n) have two vertices, v1 and v2. Let Z1 and Z2 be two extremal as-
signments with v1 ∈ Z1(G) and v2 ∈ Z2(G). Then Z1 ∪ Z2 is not an extremal assignment, since
Z(G) = V (G).

For a classification of modular compactifications of M0,n, extremal assignments have a central
role. A modular compactification of M0,n is a compactification that can be interpreted as a moduli
space of a certain type of pointed curves. More precisely, it is defined as a proper open substack
M of the stack of all n-pointed genus 0 curves containing M0,n.

By using an extremal assignment Z, we can define a modular compactification M0,n(Z) as fol-
lows. Since there is a one-to-one correspondence between the set of irreducible components on
(C, x1, · · · , xn) ∈ M0,n and V (G) for its dual graph G, Z(G) defines a subset of irreducible compo-
nents of C. We will denote the subset by Z(C).
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Definition 3.6 ([Smy13, Definition 1.8]). Let Z be an extremal assignment. An n-pointed curve
(C, x1, x2, · · · , xn) of arithmetic genus 0 is Z-stable if there exists (Cs, xs1, · · · , xsn) ∈ M0,n and a
map φ : (Cs, xs1, · · · , xsn)→ (C, x1, · · · , xn) satisfying

(1) φ is surjective with connected fibers;
(2) φ|Cs−Z(Cs) is an isomorphism;
(3) For a connected component Z ′ of Z(Cs), φ(Z ′) is a single point.

We can naturally define the notion of flat families of Z-stable curves. Let M0,n(Z) be the moduli
stack of Z-stable curves.

Theorem 3.7 ([Smy13, Theorem 1.9, Theorem 1.21]). Let Z be an extremal assignment. Then M0,n(Z)

is a modular compactification of M0,n. Conversely, for any modular compactification M of M0,n, there
exists an extremal assignment Z such that M ∼= M0,n(Z). The compactification M0,n(Z) exists in the
category of algebraic spaces.

Remark 3.8. Smyth proved a more general result for arbitrary genus g. In the case of genus 0,
which will be discussed in this paper, we have the following result as well.

Proposition 3.9. (1) For any extremal assignment Z, there is a birational contraction πZ : M0,n →
M0,n(Z) which has connected fibers.

(2) More generally, if Z1 ⊂ Z2, there is a birational map πZ1,Z2 : M0,n(Z1) → M0,n(Z2). Further-
more, for any three extremal assignments Z1 ⊂ Z2 ⊂ Z3, there is a commutative diagram

M0,n(Z1)
πZ1,Z3

//

πZ1,Z2 &&

M0,n(Z3)

M0,n(Z2).

πZ2,Z3

88

Proof. For any family (ρ : C → S, σ1, · · · , σn : S → C) of stable n-pointed rational curves, by
contracting irreducible components assigned by the data Z, we obtain a family of Z-stable curves
C′ → S. At the image of a contracted component, a fiber of C′ has a singularity of arithmetic genus
zero. From the classification of arithmetic genus zero singularities ([Smy13, Lemma 1.17]), it is a
multinodal singularity, which is locally the union of coordinate axes in Ck. In particular, there is
no nontrivial moduli for this singularity. Therefore, the contracted curve is defined uniquely, so
we have a well-defined map πZ : M0,n → M0,n(Z). This proves (1).

If Z1 ⊂ Z2, it is straightforward to check that for any x ∈ M0,n(Z1), the fiber π−1Z1
(x) ⊂ M0,n is

contracted to a single point in M0,n(Z2) by πZ2 . By the rigidity lemma, the map πZ2 factors through
M0,n(Z1). We will denote this map by πZ1,Z2 . The commutativity is clear from their set theoretic
descriptions. �

The contracted locus of the reduction map πZ1,Z2 can be described in terms of restricted extremal
assignments.

Definition 3.10. Fix an extremal assignment Z. Let G ∈ S(n) and let v ∈ V (G) \ Z(G). Recall that
`(v) is the set of labels adjacent to v. Let Ev be the set of edges adjacent to v. With new label set
`(v) ∪ Ev, we can define the restriction Z|v of Z as the following. For any H ∈ S(`(v) ∪ Ev), there
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is a contraction π : G′  G such that G′ is obtained from G by replacing v and adjacent edges by
H . Then for w ∈ V (H), set w ∈ Z|v(H)⇔ w ∈ Z(G′). See Figure 4. If G ∈ S2(n) with two vertices
v, w and the label set for v (resp. w) is B (resp. Bc), then we write ZB := Z|v (resp. ZB

c
:= Z|w).

1 2

6

7

5
3

4

v

Z(G)

 

1 2

3

4

5

67

Z(G′)

H

⇒

e1 5

e267

Z|v(H)

FIGURE 4. The restriction of an extremal assignment. The dotted vertices are assigned.

Remark 3.11. For a graphG ∈ S(n), recall thatDG ⊂ M0,n is the locus of curves whose dual graph
is G. We denote its image on M0,n(Z1) with the same notation. Then

DG
∼=

∏
v∈V (G)\Z1(G)

M0,|`(v)∪Ev |(Z1|v).

The image πZ1,Z2(DG) is obtained by forgetting newly assigned components. More precisely,

πZ1,Z2(DG) ∼=
∏

v∈V (G)\Z2(G)

M0,|`(v)∪Ev |(Z2|v).

Example 3.12. Let Z be an extremal assignment that assigns v ∈ V (G) for the dual graph G in
Figure 5. Let (C, x1, x2, · · · , x6) ∈ M0,n be a stable 6-pointed curve whose dual graph is G. Then
the central component is assigned, thus the contraction (C ′, x′1, x

′
2, · · · , x′6) is a Z-stable curve. See

Figure 5. In general, two or more marked points may collide, and some marked points may lie
on a singular point. If an assigned vertex has three or more adjacent internal vertices, then the
contracted curve has a multinodal singularity.

3

4

21

6 5

v

G
2

1

3

4

5
6

3 = 4

2
1

5
6

C C ′

π

FIGURE 5. An example of contraction map

Sometimes for two extremal assignments Z1, Z2, the corresponding contractions M0,n(Z1) and
M0,n(Z2) are bijective. We would like to identify these cases.
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Definition 3.13. Let G ∈ S(n) and W (G) ⊂ V (G). A vertex v ∈ W (G) is called isolated if none of
the vertices adjacent to v is in W (G).

Definition 3.14. We say two extremal assignments Z1 and Z2 of order n are equivalent (denoted by
Z1 ∼ Z2) if for anyG ∈ S(n), both Z1(G)\Z2(G) and Z2(G)\Z1(G) are unions of isolated 3-valent
points.

Lemma 3.15. The equivalence of extremal assignments is an equivalence relation.

Proof. From the definition, Z ∼ Z and Z1 ∼ Z2 ⇒ Z2 ∼ Z1 are clear. Suppose that Z1 ∼ Z2 and
Z2 ∼ Z3. Suppose that v1, v2 are two adjacent 3-valent vertices in Z1(G) \ Z3(G). Let G′ ∈ S(n) be
the graph obtained by contracting v1, v2 to a 4-valent vertex w from G. Then w ∈ Z1(G

′). Since w
is a 4-valent vertex, Z1(G

′) = Z2(G
′) = Z3(G

′). From w ∈ Z3(G
′), v1, v2 ∈ Z3(G), so there arises a

contradiction. So only one of v1 and v2 can be in Z1(G) \ Z3(G) and Z1(G) \ Z3(G) is a union of
isolated 3-valent points. Z3(G) \ Z1(G) is the same. �

The below proposition justifies the definition of the equivalence relation.

Proposition 3.16. Let Z1, Z2 be two extremal assignments. If Z1 ∼ Z2, then there is a homeomorphism
between M0,n(Z1) and M0,n(Z2), which preserves M0,n. In this case, if Xν is the normalization of X , then
M0,n(Z1)

ν ∼= M0,n(Z2)
ν .

Proof. Suppose that Z1 ∼ Z2. Let Z3 := Z1∩Z2. Then it is straightforward to check that Z1 ∼ Z3 ∼
Z2. By Proposition 3.9, we have two morphisms

(1) M0,n(Z3)
πZ3,Z1

&&

πZ3,Z2

yy

M0,n(Z1) M0,n(Z2).

These are surjective since they are dominant morphisms between proper varieties. For X :=

(C, x1, x2, · · · , xn) ∈ M0,n(Z3), two maps πZ3,Z1 and πZ3,Z2 contract 3-pointed components of X
only. Since there is no positive-dimensional moduli on 3-pointed rational curves, πZ3,Z1 and πZ3,Z2

are bijective.

Furthermore, since πZi : M0,n → M0,n(Zi) is a morphism from a smooth variety with connected
fibers, the normalization map M0,n(Zi)

ν → M0,n(Zi) is bijective. Therefore M0,n(Z3)
ν → M0,n(Zi)

ν

is a bijective map between normal varieties, so it is an isomorphism. �

If Z2 ⊂ Z1, unless Z1(G)\Z2(G) is a disjoint union of isolated 3 valent vertices, there is a further
contraction on the moduli space. Thus πZ2,Z1 : M0,n(Z2)→ M0,n(Z1) is not injective. Thus we have
the following partial converse.

Proposition 3.17. Suppose that Z2 ⊂ Z1 and the reduction map πZ2,Z1 : M0,n(Z2) → M0,n(Z1) is
bijective. Then Z1 ∼ Z2.
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4. EXAMPLES

Before investigating their combinatorics, we leave some important classes of examples of ex-
tremal assignments.

4.1. Trivial assignment. If Z(G) = ∅ for every G ∈ S(n), then there is no contracted component
on any (C, x1, x2, · · · , xn) ∈ M0,n. Therefore M0,n(Z) = M0,n.

4.2. Weight assignments. In [Has03], Hassett introduced a large family of modular contractions
of M0,n.

Definition 4.1. Fix weight data A = (a1, a2, · · · , an), that is, a sequence of ai ∈ Q such that 0 <

ai ≤ 1 and
∑
ai > 2. A pointed curve (C, p1, p2, · · · , pn) is A-stable if

(1) C is a connected, projective curve of arithmetic genus zero with at worst nodal singulari-
ties;

(2) pi’s are all smooth points on C;
(3) For any smooth point x ∈ C,

∑
pi=x

ai ≤ 1;
(4) For every irreducible component K of C, the number of singular points plus

∑
pi∈K ai is

greater than 2.

Let M0,A be the moduli space of A-stable curves.

Remark 4.2. It is straightforward to check that M0,A = M0,n if A = (1, 1, · · · , 1).

Theorem 4.3 ([Has03, Theorem 4.1]). For any weight data A = (a1, a2, · · · , an),

(1) M0,A is a smooth projective variety;
(2) If B = (b1, b2, · · · , bn) is some other weight data such that bi ≥ ai, there is a reduction map

ρB,A : M0,B → M0,A.

Any M0,A can be described as M0,n(Z) for some Z.

Definition 4.4. Let A be a collection of weight data. Define an extremal assignment ZA as follows.
For G ∈ S(n),

ZA(G) = {v ∈ G | ∃ a tail T ⊂ G, v ∈ T,
∑
i∈T

ai ≤ 1}.

We will call ZA a weight assignment from weight data A.

It was shown that M0,A = M0,n(ZA) ([Smy13, Example 1.11]).

4.3. Kontsevich-Boggi compactification. Define ZB(G) as the set of all vertices without any la-
bels on G. Then Z is an extremal assignment. The corresponding birational model M0,n(ZB) is
called Kontsevich-Boggi compactification, which was introduced in [Bog99] with completely different
terminology.
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4.4. GIT compactifications. All of the above examples were unified and generalized in [GJM13].
There is a broader family of Veronese quotients or GIT compactifications. This is also a generalization
of (P1)n//SL2, which is a natural compactification of M0,n from the viewpoint of invariant theory.
It contains M0,n itself, Hassett’s moduli spaces of weighted pointed curves, and Kontevich-Boggi
compactification.

Fix a positive integer d. We fix (γ, c1, c2, · · · , cn) ∈ Qn+1 such that (d − 1)γ +
∑
ci = d + 1 and

0 ≤ γ < 1 and 0 < ci < 1 for all i. For G ∈ S(n) and its tail T , cT :=
∑

i∈T ci. Assume that cT−11−γ is
not an integer for any T (Remark 4.7). Define a degree of T as

(2) σ(T ) =


d cT−11−γ e, if 1 < cT < c[n] − 1,

0, if cT < 1,

d, if cT > c− 1.

Note that any vertex v ∈ V (G) is a difference of two tails T1 ⊂ T2, so we may define σ(v) :=

σ(T2)− σ(T1). Two combinatorial results in [GJM13, Section 3] are:

(1) The degree function σ : V (G)→ Z is well-defined;
(2)

∑
v∈V (G) σ(v) = d.

Definition 4.5. Define an assignment Zγ,~c as the following:

Zγ,~c(G) = {v ∈ V (G) | σ(v) = 0}

Then it is indeed an extremal assignment ([GJM13, Proposition 5.7]).

Theorem 4.6 ([GJM13, Theorem 1.1, Theorem 5.2]). For any parameters d ∈ N and (γ,~c) ∈ Qn+1
>0 such

that (d − 1)γ +
∑
ci = d + 1, there is a projective variety V d

γ,~c with a birational contraction morphism
M0,n → V d

γ,~c with connected fibers. The space V d
γ,~c is constructed as a GIT quotient Ud,n//γ,~cSLd+1 where

Ud,n is an incidence variety in Chow1,d(Pd) × (Pd)n. Furthermore, if cT−11−γ is not an integer for every tail
T of G ∈ S(n), V d

γ,~c
∼= M0,n(Zγ,~c).

Remark 4.7. If cT−11−γ is an integer for some tail T , then σ is not well-defined. However, still V d
γ,~c has

a moduli theoretic meaning in a weak sense, namely, as a good moduli space of an Artin stack.
For the details, see [GJM13, Section 6.3].

5. n = 5 CASE

As a first nontrivial case, in this section we classify all equivalence classes of extremal assign-
ments of order 5. Note that there are three topological types of 5-labeled trees.

Lemma 5.1. Suppose that Z1 and Z2 are two extremal assignments of order 5 and both Z1(G) \ Z2(G)

and Z2(G) \ Z1(G) are empty or isolated 3-valent for all G ∈ S2(5). Then Z1 ∼ Z2.

Proof. Suppose not. If Z1 6∼ Z2, then there is a graphGwith two adjacent 3-valent vertices v1, v2 in
Z1(G) \ Z2(G). Then G ∈ S3(5) and there is G′ ∈ S2(5) such that G  G′ and {v1, v2}  v′. Then
`(v′) = 4 and v′ ∈ Z1(G

′) \ Z2(G
′). This makes a contradiction. �
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type I II III

graph

contained in S1(5) S2(5) S3(5)

TABLE 1. topological types of dual graphs in S(5)

Lemma 5.2. Suppose that Z is an extremal assignment and G1, G2 ∈ S2(5). Assume that v1, v2 are 4-
valent vertices ofG1 andG2 respectively. Furthermore, the labels adjacent to v1 are i, j, k and those adjacent
to v2 are k, `,m. Then at most one of v1, v2 can be assigned.

Proof. Suppose that K ∈ S3(5) is the common degeneration of G1 and G2. If v1 ∈ Z(G1) and
v2 ∈ Z(G2), then all of three vertices of K must be assigned. This violates the first condition of
extremal assignments. �

Proposition 5.3. There are precisely 76 equivalence classes of extremal assignments of order 5.

Proof. A subset S ⊂
(
[5]
3

)
is called a contraction indicator if for any B,B′ ∈ S, B ∪ B′ 6= [5] (The

name will be justified soon). For each extremal assignment Z, we can construct SZ ⊂
(
[5]
3

)
such

that B ∈ SZ if and only if B is the set of labels adjacent to the 4-valent vertex v ∈ V (G) and
v ∈ Z(G) for some G ∈ S2(5). Then by Lemma 5.2, SZ is a contraction indicator. Also from
Definition 3.14, it is straightforward to see that SZ = SZ′ if Z ∼ Z ′. Conversely, by Lemma 5.1,
if SZ = SZ′ , then Z ∼ Z ′. Thus there is an injective map φ from the set of equivalence classes of
extremal assignments of order 5 to the set of contraction indicators.

We show that for each contraction indicator S there is an extremal assignment ZS such that
SZS = S. Define an assignment ZS on S2(5) by v ∈ ZS(G) if G ∈ S2(5), v is the 4-valent vertex
of G, and the set B of three labels adjacent to v is in S. We may extend ZS to S(5) by setting for
any H ∈ S3(5), w ∈ ZS(H) if there is G ∈ S2(5) such that H  G, w  v and v ∈ ZS(G). It is
straightforward to check that ZS is an extremal assignment. Thus φ in the previous paragraph is
bijective.

For each contraction indicator S = {Bi}, by taking the set of its complements {bi} where bi =

Bc
i , we obtain a subgraph of K5 since |bi| = 2. Furthermore, Bi ∪Bj 6= [5] implies that bi ∩ bj 6= ∅.

Therefore, there is a one-to-one correspondence between the set of equivalence classes of extremal
assignments of order 5 and

C := {H | H is a subgraph of K5, any two edges of H meet}.

There are exactly three types of such graphs: the empty graph, stars, and K3’s. There are
(
5
2

)
+ 5×(

4
2

)
+ 5×

(
4
3

)
+ 5 = 65 stars and

(
5
3

)
= 10 K3’s. �

Remark 5.4. This result will be generalized in Section 7 in terms of smooth extremal assignments.
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Proposition 5.5. Every M0,5(Z) is isomorphic to M0,A for some weight data A. In particular, every
M0,5(Z) is a smooth projective variety.

Proof. Let k be the size of the associated contraction indicator. If k = 0, Z is an empty assignment
and M0,5(Z) = M0,5. If k = 1, (say the corresponding contraction indicator is {{1, 2, 3}}) then
M0,5(Z) ∼= M0,((1/3)3,12). If k = 2 and the contraction indicator is {{1, 2, 3}, {1, 2, 4}}, M0,5(Z) ∼=
M0,((1/4)2,(1/2)2,1). When k = 3, up to S5-action, there are two cases. If {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}
is assigned, then M0,5(Z) ∼= M0,(1/5,(2/5)3,1). If {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} is assigned, then M0,5(Z) ∼=
M0,((1/6)2,(2/3)3). Finally, if k = 4 and the contraction indicator is the set of 3-sets excluding 5, then
M0,5(Z) ∼= M0,((1/3)4,1). �

Remark 5.6. It is well-known that M0,5 is isomorphic to the blow-up of P2 along four general
points. The 76 equivalence classes in Proposition 5.3, or equivalently, 76 birational contractions of
M0,5 are in bijection with contractions of (−1)-curves on M0,5. Note that in the proof of Proposition
5.5, if k = 1, M0,A = Bl3P2 and if k = 2, M0,A = Bl2P2. If k = 3, M0,A is either Bl1P2 or P1 × P1.
Finally, if k = 4, M0,A = P2.

Remark 5.7. The number of extremal assignments is already huge. There are 15 type III graphs.
We may freely assign an arbitrary number of central vertices to make an extremal assignment.
Therefore the number of extremal assignments of order 5 is larger than 215. Note that all of these
215 extremal assignments are equivalent to the empty assignment.

6. STRUCTURE THEOREM FOR EXTREMAL ASSIGNMENTS

In this section we will answer Question 1.1 and provide a structure theorem for extremal as-
signments, which will be useful to study concrete examples.

Let G ∈ S(n) \ S1(n) be a star and v be a central vertex of G. We say (G, v) is called a basic pair.
For a basic pair (G, v), we can assign a set partition P := {B1, B2, · · · , Bk} where Bi is the set of
labels on a tail of (G, v). Note that |P | ≥ 3 and there is Bi such that |Bi| ≥ 2. Conversely, for any
set partition P with 3 ≤ |P | ≤ n− 1, we can construct a basic pair (G, v). Let P(n) be the set of set
partitions of [n].

Example 6.1. Consider G ∈ S3(6) in Figure 6. For the basic pair (G, v1), the corresponding set
partition is P = {{1, 2}, {3}, {4}, {5, 6}}. For (G′, v′) in Figure 6, the corresponding set partition is
P ′ = {{1}, {2}, {3}, {4}, {5, 6}}.

Definition 6.2. Let (G, v) be a basic pair and let P ∈ P(n) be the associated set partition.

(1) The assignment generated by (G, v) is an assignment ZP defined by

ZP (H) = {w ∈ V (H) | ∃H  G,w  v}.

It is not an extremal assignment in general.
(2) The atomic extremal assignment generated by (G, v) is the smallest extremal assignment Z

such that v ∈ Z(G). The existence follows from the fact that any intersection of extremal
assignments is an extremal assignment (Definition 3.4).
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FIGURE 6. An example of contraction

Let P = {B1, B2, · · · , Br}, Q = {C1, C2, · · · , Cs} be two set partitions of [n]. We say Q ≤ P if
for any Bi ∈ P , there is Cj ∈ Q such that Bi ⊂ Cj . In this situation, we say that P is a refinement
of Q and Q is a corruption of P . With respect to this partial order, P(n) is a partially ordered set.
The maximum element is the complete partition {{1}, {2}, · · · , {n}}, and the minimum element is
{[n]}.

Definition 6.3. We denote byQ � P ifQ ≤ P and there is noB ∈ Q such thatB is a union of some
singleton sets in P . In other words, if P = {{i1}, {i2}, · · · , {ir}, B1, B2, · · · , Bs}with |Bi| ≥ 2, then
there is no B ∈ Q such that |B| ≥ 2 and B ⊂ {i1, i2, · · · , ir}.

Lemma 6.4. Let Q ≤ P . Then there is Q′ � P such that Q ≤ Q′. Furthermore, ZQ ⊂ ZQ′ .

Proof. If B ∈ Q is a union of singleton sets in P , by splitting it into singleton sets, we obtain Q′.
Let (GQ, vQ) (resp. (GQ′ , v

′
Q)) be the basic pair associated to Q (resp. Q′). Then GQ  GQ′ and

vQ  vQ′ . Therefore ZQ(GQ) ⊂ ZQ′(GQ). This implies ZQ(G) ⊂ ZQ′(G) for all G. �

The following proposition describes the atomic extremal assignment generated by (G, v).

Proposition 6.5. Let (G, v) be a basic pair with a set partition P . The atomic extremal assignment gener-
ated by (G, v) is

Z :=
⋃

Q≤P, |Q|≥3

ZQ =
⋃

Q�P, |Q|≥3

ZQ.

Proof. For Q ≤ P , let (GQ, vQ) be the associated basic pair.

Step 1. The second equality holds.

If Q ≤ P , then for any v ∈ ZQ(G), by Lemma 6.4, there is Q′ such that v ∈ ZQ′(G), Q ≤ Q′ and
Q′ � P . Thus we have ⋃

Q≤P,|Q|≥3

ZQ ⊂
⋃

Q�P, |Q|≥3

ZQ.

We leave the other inclusion to the reader to check.

Next we show that Z is indeed an extremal assignment.

Step 2. For every H ∈ S(n), Z(H) 6= V (H).

Assume that Z(H) = V (H). Then by definition, V (H) =
⋃
Q�P, |Q|≥3 ZQ(H), where ZQ(H) =

{v ∈ V (H) | ∃H  GQ, v  vQ}. For each vertex wi adjacent to label i, wi ∈ ZQ(H) for some
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Q ≤ P . Then Q has a singleton set {i}. Since P is a refinement of Q, {i} ∈ P . Therefore P is the
complete partition, which is a contradiction. Therefore Z(H) 6= V (H).

Step 3. If π : H  H ′ and {v1, v2, · · · , vk} v′, then v′ ∈ Z(H ′) if and only if {v1, v2, · · · , vk} ∈
Z(H).

Suppose that v′ ∈ Z(H ′). By definition of Z, there is Q � P such that H ′  GQ, v′  vQ. Then
H  GQ and {v1, v2, · · · , vk} vQ. Thus v1, v2, · · · , vk ∈ Z(H).

Conversely, assume that {v1, v2, · · · , vk} ∈ Z(H). We will use induction on k. Consider the case
of k = 1. There is Q � P with corresponding basic pair (GQ, vQ) so that q : H  GQ and v  vQ.
On the other hand, let (GQ′ , vQ′) be the basic pair obtained from H ′ by:

• Contracting all non-contracted vertices in π(q−1(vQ)) (including v′) to a single vertex vQ′ ;
• Contracting each tail connected to vQ′ to a vertex.

Let Q′ be the associated set partition. Then Q′ ≤ Q. Thus Q′ ≤ P and v′ ∈ H ′ is in Z(H ′). See
Figure 7.
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H H ′

FIGURE 7. k = 1 case

Now consider a general case. Since {v1, v2, · · · , vk} forms a connected subgraph of H , there are
two adjacent vertices (say v1, v2). Then by definition of Z, v1 ∈ ZQ(H) and v2 ∈ ZR(H) for some
Q,R � P . If Q = R, then we can contract v1 and v2 to a single vertex w and make a new graph H .
Then stillH  GQ andw  vQ, thusw ∈ Z(H). NowH  H ′ and {w, v3, v4, · · · , vk} v′. So it is
reduced to the k−1 vertices case, which is true by the induction hypothesis. IfZQ(H)∩ZR(H) 6= ∅,
then both v1, v2 are in one of them, say, ZQ(H). Then if we replace R by Q, it is reduced to the
Q = R case.

Finally, suppose that ZQ(H) ∩ ZR(H) = ∅. If Q = {C1, C2, · · · , Cs} and R = {D1, D2, · · · , Dt},
then there areCi andDj such thatCi =

⋃
k 6=j Dk andDj =

⋃
k 6=iCk. SinceQ andR are corruptions

of P , P is a refinement of P ′ := {Ck}k 6=i
⋃
{Dk}k 6=j . Then P ′ � P and for H  GP ′ , both v1, v2

are contracted to the central vertex vP ′ ∈ V (GP ′). Therefore, after replacing Q,R by P ′, we are
reduced to the case of Q = R.

Step 4. Z is the smallest extremal assignment such that v ∈ Z(G).
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Note that for any extremal assignmentZ ′with v ∈ Z ′(G), by applying degeneration/contraction
operations, one can check that vQ ∈ Z ′(GQ) for Q � P . By the second axiom of extremal assign-
ments, the assignment ZQ generated by (GQ, vQ) is contained in Z ′. Therefore Z =

⋃
Q�P,|Q|≥3 ZQ

is in Z ′. �

Remark 6.6. Let Z be an atomic extremal assignment. Then for anyG ∈ S(n), Z(G) is a connected
subset of V (G) if it is nonempty.

Every extremal assignment can be described using atomic extremal assignments.

Lemma 6.7. Any nonempty extremal assignment Z is a union of finitely many atomic extremal assign-
ments.

Proof. For any G ∈ S(n) and v ∈ Z(G), take the maximal connected subset W of Z(G) containing
v. By contracting W to a single vertex v′, we obtain G′ and v′ ∈ Z(G′). By contracting each tail to
a vertex adjacent to v′, we obtain a star G′′ and a central vertex v′′ so that G  G′′, v  v′′, and
v′′ ∈ Z(G′′). Let Zv be the atomic extremal assignment generated by (G′′, v′′). Then v ∈ Zv(G) and
Zv ⊂ Z, since it is the smallest extremal assignment where v is assigned. Now it is clear that

Z =
⋃

v∈Z(G),G∈S(n)

Zv.

�

Definition 6.8. (1) Two partitions P,Q ∈ P(n) are called incompatible if P 6≤ Q and Q 6≤ P .
(2) For P,Q ∈ P(n), we say that R is a common upper bound if P ≤ R and Q ≤ R. A common

upper bound R is tight if every B ∈ R is in either P or Q.
(3) Two partitions P 6= Q ∈ P(n) are transversal if P,Q do not have a tight common upper

bound. P,Q are strongly transversal if for every P ′ � P , Q′ � Q such that |P ′|, |Q′| ≥ 3 and
P ′ and Q′ are incompatible, P ′ and Q′ are transversal.

Proposition 6.9. Let Z be an extremal assignment.

21 3

9 4

8 57 6

2

8

5

4

6

1 3

9 7

89 7

1 6

2 53 4

  

Q = {{1}, {2}, {3}, {4, 5, 6, 7, 8, 9}}

R = {{1, 2, 3}, {4}, {5}, {6}, {7, 8, 9}}

P ′ = {{1}, {2}, {3}, {4}, {5}, {6}, {7, 8, 9}}

FIGURE 8. The case that ZQ(H) ∩ ZR(H) = ∅ in Step 3.
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(1) There are finitely many atomic extremal assignments Z1, Z2, · · · , Zk with corresponding set parti-
tions P1, P2, · · · , Pk such that
(a) Pi is not the complete partition;
(b) If i 6= j, Pi and Pj are incompatible;
(c) Z =

⋃k
i=1 Zi.

(2) Suppose that Qi � Pi and Qj � Pj . If R is a tight common upper bound of Qi and Qj , then
R ≤ P` for some P`.

Proof. The existence of finitely many atomic extremal assignments is obtained by Lemma 6.7. By
Proposition 6.5, if Pi ≤ Pj , then Zi ⊂ Zj . Therefore, by eliminating non-maximal Pi’s, we obtain a
finite collection of set partitions satisfying (a), (b), and (c). This proves (1).

Let (G, v) be the basic pair associated to R. Then there is a degeneration F  G such that

(1) {v1, v2} v;
(2) Two basic pairs (Fi, wi) and (Fj , wj) associated to Qi and Qj respectively have the follow-

ing property: there is a contraction F  Fi (resp. F  Fj) so that v1  wi (resp. v2  wj).

Since wi ∈ Z(Fi) and wj ∈ Z(Fj), v1, v2 ∈ Z(F ). Then v ∈ Z(G). Therefore v ∈ Z`(G) for some `.
Then by Proposition 6.5, R ≤ P`. �

The following is a converse.

Theorem 6.10. Let {P1, P2, · · · , Pk} be a set of incomplete set partitions of order n such that Pi 6≤ Pj for
any i 6= j. Let (Gi, vi) be the basic pair corresponding to Pi and let Zi be the atomic extremal assignment
generated by (Gi, vi). Suppose that for any i 6= j and Qi � Pi and Qj � Pj , if R is a tight common upper
bound of Qi and Qj , then there is P` such that R ≤ P`. Then Z :=

⋃k
i=1 Zi is extremal.

Proof. Step 1. For every H ∈ S(n), Z(H) 6= V (H).

Assume not. So there exists H with V (H) = Z(H) =
⋃k
i=1 Zi(H). Suppose that for i 6= j,

Zi(H) ∩ Zj(H) 6= ∅. Let W = Zi(H) ∩ Zj(H). Both Zi(H) and Zj(H) are connected subsets
(Remark 6.6) of a tree;W is connected too. IfZi(H) 6= Zj(H), then we may assume that there is v′ ∈
Zi(H)\Zj(H) that is adjacent to v ∈W . LetH  H be the contraction such that {v, v′} w. Since
Zi, Zj are extremal, w ∈ Zi(H) but w /∈ Zj(H). But still Z(H) = V (H). By applying this procedure
several times, we may assume that for two i and j, either Zi(H) = Zj(H) or Zi(H) ∩ Zj(H) = ∅.

Next, take a contraction H  H which contracts Zi(H) to a single vertex wi. Then still wi ∈
Zi(H) and Zj(H) can be identified with Zj(H). Thus Z(H) = V (H). Thus we may assume that
each Zi(H) is a single vertex. Let Zi(H) = {wi}.

By contracting each tail connected to wi into a single vertex, we can obtain a basic pair (Fi, wi)

whose corresponding set partition isQi = {C1, C2, · · · , Cs}. By Proposition 6.5,Qi � Pi. Similarly,
we can construct a set partition Qj = {D1, D2, · · · , Dt} � Pj . Then there are Ci and Dj such that
Ci =

⋃
k 6=j Dk and Dj =

⋃
k 6=iCk. So Qi and Qj are incompatible, but R := {Ck}k 6=i ∪ {Dk}k 6=j is a

tight common upper bound of them. By the assumption, there is P` such that R ≤ P`.

On the other hand, if we contract wi and wj to a vertex x and contract each tail to a vertex,
we obtain a basic pair (F, x), which corresponds to R. Thus x ∈ Z`(F ). Since H  F and
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{wi, wj}  x, we have wi, wj ∈ Z`(H). This makes a contradiction, since Z`(H) is a singleton set.
Therefore Z(H) 6= V (H).

Step 2. IfH  H ′ and {v1, v2, · · · , vk} v′, then v′ ∈ Z(H ′) if and only if v1, v2, · · · , vk ∈ Z(H).

If v′ ∈ Z(H ′), then v′ ∈ Zi(H ′) for some i. Then v1, v2, · · · , vk ∈ Zi(H) ⊂ Z(H).

Conversely, suppose that v1, v2, · · · , vk ∈ Z(H). Take two adjacent vertices v1, v2 ∈ Z(H). Then
v1 ∈ Zi(H) and v2 ∈ Zj(H) for some i and j. If i = j, then contract v1 and v2 to a single vertex
w and make a new graph H . Then H  H ′, w  v′, and w ∈ Zi(H) ⊂ Z(H). Therefore we can
reduce to the (k − 1) vertices case. If Zi(H) ∩ Zj(H) 6= ∅, one of Zi(H) and Zj(H) (say Zi(H))
contains both v1 and v2, so by replacing Zj(H) by Zi(H), we can reduce to the i = j case.

Suppose that Zi(H) ∩ Zj(H) = ∅. Then as in Step 1, there is a basic pair (Fi, wi) (resp. (Fj , wj))
with corresponding set partition Qi � Pi (resp. Qj � Pj) with a tight common upper bound
R ≤ P`. Then wi ∈ Z`(Fi) and wj ∈ Z`(Fj). So Zi(H), Zj(H) ⊂ Z`(H). By replacing Zi, Zj by Z`,
we can reduce to the i = j case.

So we deduce to the case of k = 1. In this case v1 ∈ Zi(H) implies v′ ∈ Zi(H ′) ⊂ Z(H ′), since Zi
is extremal. �

An immediate simple consequence is:

Corollary 6.11. Let {P1, P2, · · · , Pk} be a set of incomplete set partitions of order n such that Pi 6≤ Pj

for any i 6= j. Let (Gi, vi) be the basic pair associated to Pi and let Zi be the atomic extremal assignment
generated by (Gi, vi). If Pi and Pj are strongly transversal for any i 6= j, then Z :=

⋃k
i=1 Zi is extremal.

Proof. If Qi � Pi and Qj � Pj are incompatible, then by assumption there is no tight common
upper bound. If Qi ≤ Qj , then their tight common upper bound is Qj . �

Example 6.12. Let P1 = {{1, 2}, {3, 4}, {5, 6, 7, 8}} correspond to a basic pair (G1, v1) and P2 =

{{1, 2, 3, 4}, {5, 6}, {7, 8}} correspond to (G2, v2). Let Zi be an atomic extremal assignment asso-
ciated to (Gi, vi). Then there is a tight upper bound P3 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}. We can
degenerate the vertex in P2 with labels {5, 6, 7, 8} into two vertices labelled {5, 6} and {7, 8} to
obtain a new graph H , with one of two central vertices assigned. However, we can degenerate
the vertex in P1 with labels {1, 2, 3, 4} into two vertices labelled {1, 2} and {3, 4} to obtain H with
only the other central vertex assigned. Thus, in the union of these extremal assignments both of
these adjacent vertices are assigned. Then we can contract these vertices to obtain a star graph H ′

with central vertex w and corresponding partition P3. If the union is extremal, w ∈ Z1 ∪ Z2(H
′).

But w 6∈ Z1(H
′) and w 6∈ Z2(H

′), so Z1
⋃
Z2 is not an extremal assignment.

Due to Theorem 6.10, we can approach Question 1.1 for extremal assignments algorithmically.

Algorithm 6.13 (Existence/construction of the smallest extremal assignment). LetG1, G2, · · · , Gk ∈
S(n) and v1 ∈ V (G1), v2 ∈ V (G2), · · · , vk ∈ V (Gk). We want to find the smallest extremal assign-
ment Z such that vi ∈ Z(Gi), if there is one.

(1) Contract each tail of Gi adjacent to vi to a single vertex and make a basic pair (Gi, vi). Let
Pi be the corresponding set partition.
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(2) For the family F := {P1, P2, · · · , Pk}, take Qi � Pi and Qj � Pj and compute the tight
upper bound R, if it exists. Add R to F .

(3) Repeat step (2) until all tight upper bounds are in F .
(4) If F contains the complete set partition {{1}, {2}, · · · , {n}}, such Z does not exist.
(5) If F does not contain the complete set partition, then eliminate non-maximal elements in
F .

(6) Let ZP be the atomic extremal assignment associated to P . Then Z =
⋃
P∈F ZP is the

smallest extremal assignment.

The algorithm is implemented as a program in Sage. It can be found on the website of the first
author:

http://www.hanbommoon.net/publications/extremal

7. SMOOTH EXTREMAL ASSIGNMENTS

In this section, we investigate a special class of extremal assignments that provides smooth
contractions of M0,n.

7.1. Definition and basic properties.

Definition 7.1. An extremal assignment Z is called smooth if for any G ∈ S(n) and v ∈ Z(G), there
is G′ ∈ S2(n) and v′ ∈ Z(G′) such that G G′, v  v′.

A smooth extremal assignment is completely determined by its restriction to S2(n).

Lemma 7.2. Let Z1, Z2 be two smooth extremal assignments such that Z1(G) = Z2(G) for all G ∈ S2(n).
Then Z1 = Z2.

Proof. If v ∈ Z1(H) for some H ∈ S(n), then there is G ∈ S2(n), w ∈ Z1(G) such that H  G

and v  w. Then w ∈ Z2(G), and from the second axiom of extremal assignments, v ∈ Z2(H).
Therefore Z1 ⊂ Z2. By symmetry, Z2 ⊂ Z1. �

An important family of smooth extremal assignments is given by weight assignments.

Lemma 7.3. Let ZA be a weight assignment (Section 4.2) associated to weight data A. Then ZA is smooth.

Proof. Let G ∈ S(n) and v ∈ ZA(G). Then by Definition 4.4, there is a tail T ⊂ G such that
v ∈ V (T ). Note that any v′ ∈ V (T ) is assigned too. Let G′ ∈ S2(n) be a contraction of G obtained
by contracting T to a single vertex w and contracting T c to another vertex w′. By the second axiom
of extremal assignments, w ∈ ZA(G′). Therefore ZA is smooth. �

However, there are smooth extremal assignments that are not weight assignments.

Example 7.4. Suppose that n = 6. We assign two vertices of graphs in S2(6), whose label sets
are {1, 2, 3} and {2, 5, 6}. Then Z = ZP1 ∪ ZP2 is the union of two atomic extremal assignments
generated by two partitions P1 := {{1}, {2}, {3}, {4, 5, 6}} and P2 := {{2}, {5}, {6}, {1, 3, 4}}. It is
straightforward to see that P1 and P2 are strongly transversal, so by Corollary 6.11, Z is indeed

http://www.hanbommoon.net/publications/extremal
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an extremal assignment. If Z = ZA for some weight data A = (a1, a2, · · · , a6), then we have two
inequalities:

a1 + a2 + a3 ≤ 1, a2 + a5 + a6 ≤ 1.

We have
1

2
(a1 + a3) ≤

1

2
(1− a2),

1

2
(a5 + a6) ≤

1

2
(1− a2).

The left hand side is an average of two weights, so we know that at least one of a1 and a3 (resp. a5
and a6) must be less than the right hand side. Suppose that a1, a5 ≤ 1

2(1− a2). Then

a1 + a5 ≤ 1− a2 ⇒ a1 + a2 + a5 ≤ 1.

This implies that the vertex with label set {1, 2, 5}must be assigned too.

Lemma 7.2 tells us that smooth extremal assignments can be described by simpler combinatorial
data. Note that any graph G ∈ S2(n) is a star and any vertex v ∈ V (G) can be a central vertex. If
we take the set of labels adjacent to v, the collection of these sets determines the smooth extremal
assignment.

Definition 7.5. A collection C of subsets of [n] is called a contraction indicator if it satisfies

(1) For any B ∈ C, 2 ≤ |B| ≤ n− 2;
(2) If B ∈ C and B′ ⊂ B with |B′| ≥ 2, then B′ ∈ C;
(3) For B1, B2 ∈ C, B1 ∪B2 6= [n].

The following lemma is straightforward.

Lemma 7.6. Let Z be an extremal assignment. For G ∈ S2(n) such that Z(G) 6= ∅, let BG be the set of all
labels adjacent to the assigned vertex. Let C = {BG | G ∈ S2(n)}. Then C is a contraction indicator.

The converse is also true.

Proposition 7.7. Let C be a contraction indicator. Define an assignment Z for S(n) as

(3) Z(G) = {v ∈ V (G) | ∃ H ∈ S2(n), w ∈ V (H),∃ `(w) ∈ C, G H, v  w}.

Then Z is a smooth extremal assignment.

Proof. Let CM := {B1, B2, · · · , Bk} be the set of maximal elements in C. Let Pi = {{j}}j∈Bi ∪ {Bc
i }

be the set partition consisting of singleton sets {j} if j ∈ Bi and Bc
i . Finally, let Zi be the atomic

extremal assignment corresponding to Pi.

First of all, we claim that Z =
⋃k
i=1 Zi. For any v ∈ Z(G), from the definition of Z, there is

Q ∈ P(n) such that v ∈ ZQ(G). From the maximality, we can find Pi such that Q � Pi. Therefore
v ∈ Zi(G). This implies Z(G) ⊂

⋃k
i=1 Zi(G). By definition of Z again, the opposite inclusion is

straightforward to check.

Now we will show that P1, P2, · · · , Pk are pairwise strongly transversal. Let Qi � Pi, Qj � Pj

and Qi and Qj be incompatible. Since Pi has only one non-singleton set Bc
i , Qi has only one non-

singleton set Ci ⊃ Bc
i too from Definition 6.3. Similarly, Pj has Bc

j and Qj has Cj ⊃ Bc
j . Because

Cci , C
c
j ∈ C, we have Cci ∪Ccj 6= [n]. Thus Ci ∩Cj 6= ∅. If Ci ⊂ Cj , then Qi ≤ Qj . Therefore Ci 6⊂ Cj

and Cj 6⊂ Ci. Therefore Qi and Qj do not have a tight common refinement.
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By Corollary 6.11, the union Z is extremal. �

Smooth assignments are special among extremal assignments because of the following result.

Theorem 7.8. The birational model M0,n(Z) is smooth if and only if Z is equivalent to a smooth extremal
assignment.

Proof. Suppose thatZ is smooth. Any (C, x1, · · · , xn) ∈ M0,n(Z) is obtained from (Cs, xs1, · · · , ysn) ∈
M0,n by contracting some (not necessarily irreducible) tails. In particular, C is a nodal curve and
xi’s are not necessarily distinct smooth points on C. Since the stack of nodal curves with smooth
marked points is smooth, M0,n(Z) is smooth.

Conversely, suppose that M0,n(Z) is a smooth algebraic space. Let Zd ⊂ Z be an assignment
(so-called smooth part of Z) where v ∈ Zd(G) if and only if there is H ∈ S2(n) and w ∈ Z(H) such
that G  H and v  w. We claim that Zd is a smooth extremal assignment. For G ∈ S2(n),
Z(G) = Zd(G). So by Lemma 7.6, Zd on S2(n) defines a contraction indicator. By Proposition 7.7,
it is uniquely extended to a smooth extremal assignment Zd.

The contraction map πZ : M0,n → M0,n(Z) factors through M0,n → M0,n(Zd) → M0,n(Z).
If M0,n(Z) 6= M0,n(Zd), then M0,n(Z) is a small contraction of M0,n(Zd), because it contracts an
internal component with at least 4 special points, so the codimension of the exceptional set in
M0,n(Zd) is at least 2. Note that M0,n(Zd) is a smooth space by the first part of the proof. A small
contraction of a smooth space is singular. Therefore M0,n(Zd) = M0,n(Z). Thus Zd is equivalent to
Z by Proposition 3.17. �

Because of Lemma 7.2, a smooth extremal assignment can be described by simpler combina-
torial data. There is a correspondence between the set of smooth extremal assignments of order
n and a set of well-studied combinatorial objects in hypergraph theory. We refer to [Ber89] for
notations on hypergraphs.

Definition 7.9. A simple intersecting family of order n, rank ≤ n − 2, antirank ≥ 2 is a hypergraph
H = (V (H), E(H)) whose vertex set is V (H) = [n] and whose edge set is E(H) = {Ai}, and that
satisfies:

(1) For any Ai ∈ E(H), 2 ≤ |Ai| ≤ n− 2;
(2) H is simple (i.e., Ai ⊂ Aj ⇒ i = j);
(3) Ai ∩Aj 6= ∅ for any Ai, Aj ∈ E(H).

Theorem 7.10. There is a bijection between the set of smooth extremal assignments of order n and the set
of simple intersecting families of order n, rank ≤ n− 2., antirank ≥ 2.

Proof. For a smooth extremal assignment Z, we can construct a contraction indicator CZ . Let CMZ =

{B ∈ CZ | B ⊂ B′ ⇒ B = B′}, that is, the set of maximal elements. Then let EZ = {Bc | B ∈ CMZ }.
Then it is straightforward to check that EZ is a simple intersecting family. It is straightforward to
check that this construction is reversible. �
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7.2. Projectivity of contractions. Although M0,n(Z) is a smooth divisorial contraction of a smooth
projective variety M0,n when Z is smooth, in general it is not a projective variety. In particular, it
does not appear in Mori’s program (or the log minimal model program) for M0,n. In this section,
we show the projectivity of some M0,n(Z).

Lemma 7.11. Let Z1, Z2 be two smooth extremal assignments such that Z1 ⊂ Z2. Let Ci be the corre-
sponding contraction indicator for Zi. Suppose that either one of the following two conditions holds.

(1) C2 = C1 ∪ {B′ | B′ ⊂ B, |B′| ≥ 2} where |B| = 3;
(2) C2 \ C1 = {B} with |B| ≥ 4.

Then the reduction map πZ1,Z2 : M0,n(Z1)→ M0,n(Z2) is a smooth blow-down.

Proof. We denote the image πZi(DB) by DB if the image is a divisor. For the first case, consider
DB ⊂ M0,n(Z1). Then DB

∼= M0,4(Z
B
1 ) × M0,n−2(Z

Bc

1 ) ∼= P1 × M0,n−2(Z
Bc

1 ), and πZ1,Z2(DB) ∼=
M0,n−2(Z

Bc

1 ) (Remark 3.11). We compute the restriction of the normal bundle along the fiber
P1 containing x ∈ DB . To calculate it, it suffices to pick a general point X = (C = C1 ∪
C2, x1, x2, · · · , xn) where C1 ∈ M0,4(Z

B
1 ) and C2 ∈ M0,n−2. In this case, the normal bundle to

DB is isomorphic to that in M0,n. Thus the restriction is O(−1). Therefore, by the Fujiki-Nakano
criterion ([FN72]), it is a blow-down with 1-dimensional exceptional fibers, in the category of
Moishezon manifolds, or equivalently, that of algebraic spaces.

In the second case, the exceptional setDB ⊂ M0,n(Z1) is isomorphic to M0,|B|+1(Z
B
1 )×M0,n−|B|+1(Z

Bc

1 ).
The extremal assignment ZB1 is on the label set B ∪ {p}. Note that every subset C ⊂ B ∪ {p} such
that |C| = |B| − 1 and p /∈ C is assigned. Therefore ZB1 = ZA with A = (( 1

|B|−1)|B|, 1), where the

last weight is for p. Then M0,|B|+1(Z
B
1 ) ∼= M0,A

∼= P|B|−2 ([Has03, Section 6.1]). If we take a general
point X = (C = C1 ∪ C2, x1, x2, · · · , xn) ∈ DB such that C2 ∈ M0,n−|B|+1, then locally the normal
bundle to DB is isomorphic to the normal bundle to DB in M0,A′ , where A′ = (( 1

|B|−1)|B|, 1n−|B|).

In this case, the restriction of the normal bundle to a fiber P|B|−2 is O(−1). Therefore this is a
smooth blow-down, too. �

Proposition 7.12. Let Z,Z ′ be two smooth extremal assignments such that Z ( Z ′. Then the reduction
map πZ,Z′ : M0,n(Z)→ M0,n(Z ′) is decomposed into a sequence of blow-downs.

Proof. We will construct a sequence of contraction indicators C0, C1, · · · , Cm such that

(1) Ci ⊂ Ci+1,
(2) C0 corresponds to Z and Cm corresponds to Z ′,
(3) Ci and Ci+1 satisfy one of two conditions in Lemma 7.11.

For any B ∈ C0, there is B′ ∈ Cm such that B ⊂ B′. Suppose that B ( B′. Take a minimal
D ⊂ B′ such that D is not in C0 and |D| ≥ 3. If |D| = 3, then set C1 := C0 ∪ {D′ | D′ ⊂ D, |D′| ≥ 2}.
If |D| ≥ 4, set C1 := C0 ∪ {D}. We can repeat this procedure until we reach Cm.

This implies that there is a sequence of smooth extremal assignments Z = Z0 ⊂ Z1 ⊂ · · · ⊂
Zm = Z ′ such that

M0,n(Z) = M0,n(Z0)→ M0,n(Z1)→ · · · → M0,n(Zm) = M0,n(Z ′)

is a sequence of smooth blow-downs. �
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Corollary 7.13. Let Z be a smooth extremal assignment and let A be weight data such that Z ⊂ ZA. Then
M0,n(Z) is a smooth projective variety.

Proof. By Proposition 7.12, we can find a sequence of smooth extremal assignments Z = Z0 ⊂
Z1 ⊂ · · · ⊂ Zm = ZA such that

π : M0,n(Z) = M0,n(Z0)→ M0,n(Z1)→ · · · → M0,n(Zm) = M0,n(ZA)

is a sequence of smooth blow-ups. Since M0,n(ZA) = M0,A is a projective variety and a blow-up of
a projective variety is also projective, we obtain the result. �

Example 7.14. There is a smooth extremal assignment Z without any larger weight assignment.
Let {{1, 3, 4, 5}, {2, 4, 5, 6}, {1, 5, 6, 7}, {2, 3, 5, 7}} be the set of maximal elements in the contraction
indicator for Z. If there is a weight A = (a1, a2, · · · , a7) such that Z ⊂ ZA, we have

a1 + a3 + a4 + a5 ≤ 1, a2 + a4 + a5 + a6 ≤ 1, a1 + a5 + a6 + a7 ≤ 1, a2 + a3 + a5 + a7 ≤ 1.

By adding all of them, we have

2(
7∑
i=1

ai) + 2a5 ≤ 4.

But since
∑7

i=1 ai > 2, we have a5 < 0, which is impossible.

In Section 11, we present some non-projective examples.

We leave three sufficient conditions for the existence of a larger weight assignment, which guar-
antees the projectivity of the birational model.

Proposition 7.15. Let Z be a smooth extremal assignment and let C = {Bi}1≤i≤k be the corresponding
contraction indicator. Z has a larger weight assignment ZA under any of following conditions:

(1) There is a label j ∈ [n] such that j /∈
⋃k
i=1Bi.

(2) There is only one Bi containing j.
(3) |Bi| < n/2 for all i.

Proof. For each case, we construct weight data A = (a1, a2, · · · , an) with the property
∑

k∈Bi
ak ≤

1. For case (1), assume that j = 1. Then A = (1,
(

1
n−2

)n−2
) works. For (2), assume that j = 1 and

1 ∈ B1. Let ` := |B1|. Set

ai =


1− (`− 1)ε, i = 1

ε, i ∈ B1 − {1}
1
n−` + ε, i /∈ B1

for 0 < ε� 1. Finally, for (3), A = (
(
2
n + ε

)n
) works. �

8. TORIC BIRATIONAL MODELS AND GRAPH ASSOCIAHEDRA

In [LM00], Losev and Manin introduced a modular birational model M
LM
0,n of M0,n, which is a

smooth projective toric variety whose corresponding polytope is the (n−3)-dimensional permuto-
hedron. This space is called the Losev-Manin space and it parametrizes n-pointed chains of rational
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curves. Later Hassett described it as M0,A withA = (
(

1
n−2

)n−2
, 1, 1) ([Has03]). In particular, there

is a reduction map M
LM
0,n → Pn−3 if we interpret Pn−3 as M

0,(( 1
n−2)

n−1
,1)

([Has03, Section 6.1, 6.4]).

The Losev-Manin space was generalized as toric varieties associated to graph assciahedra. Re-
call that for any rational n-dimensional polytope P , one can associate a complete toric variety
X(P ) ([Ful93]). In particular, for any connected graph G with n − 2 vertices, one can associate a
toric variety X(PG) as the following.

Definition 8.1. Let G be a connected graph. A tube of G is a subset B ⊂ V (G) which generates a
connected subgraph of G. A tube B is trivial if |B| = 1.

Note that an edge of G is a nontrivial tube.

LetG be a connected graph such that V (G) = [n]. Then we can associate an (n−1)-dimensional
polytope PG, a so-called graph associahedron. We start with an (n− 1)-dimensional simplex PG(0)

with n facets indexed by [n]. We can identify higher codimensional faces with subsets of [n]. Let
Ti be the set of tubes in G of size n − i. Let PG(1) be the polytope obtained by truncating faces in
Tn−1 (vertices). Then PG(i) is obtained by truncating faces of PG(i−1) in Tn−i. Let PG = PG(n−2)

(See [dRJR16, Construction 1]).

In particular, if G = Kn−2, X(PG) = M
LM
0,n ([Has03, Section 6.4]).

In [dRJR16, Theorem 1], it was shown that X(PG) ∼= M0,A if and only if G is an iterated cone
over a discrete set. In this section, we show the following quick application of the theory of smooth
extremal assignments.

Definition 8.2. A connected graph G is co-transitive if for any edge e and a vertex v, there is an
edge f that connects v and one end point of e.

Lemma 8.3 is due to Andreas Blass and Daniel Soltész.

Lemma 8.3. A connected graph G is co-transitive if and only if it is a complete multipartite graph.

Proof. If G is co-transitive, then non-adjacency is transitive: If v and w are not adjacent and w and
x are not adjacent, then v and x are not adjacent. Thus the complement graph of G is a disjoint
union of cliques. Therefore G is complete multipartite. The converse is easy to check. �

Lemma 8.4. Let G be a co-transitive graph. Then for any subset B′ of a non-tube, B is also a non-tube.

Proof. If B′ is a tube, then by using co-transitivity, we can enlarge B′ to a tube B. �

Theorem 8.5. For any connected graphG of (n−2) vertices,X(PG) ∼= M0,n(Z) for some smooth extremal
assignment Z if and only if G is a complete multipartite graph.

Proof. Note that PG is obtained from an (n − 3)-dimensional simplex by truncating faces in an
increasing order of dimension. Dually, X(PG) is obtained by taking successive blow-ups of torus
invariant subvarieties of Pn−3 in an increasing order of dimension.

Let T be the set of tubes in G. Let

C := {B ∪ {n− 1} ⊂ [n− 1] | B /∈ T, |B| ≥ 2}
⋃
{B′ ⊂ [n− 2] | |B′| ≥ 2} ⊂ [n].
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This set C indexes the set of contracted divisors.

We claim that C is a contraction indicator (Definition 7.5) if and only if G is co-transitive. If this
is true, then X(PG) is a smooth blow-up of Pn−3 = M0,((1/(n−2))n−1.1) and it can be interpreted as
M0,n(Z), as in Proposition 7.12.

Items (1) and (3) of Definition 7.5 are clear from the definition, since n /∈ B for all B ∈ C. So it
suffices to check item (2).

Suppose that G is co-transitive. Assume that B ∈ C and B′ ⊂ B and |B′| ≥ 2. If B′ ⊂ [n − 2],
then by definition,B′ ∈ C. If n−1 ∈ B′, thenB′′ := B′\{n−1} is a subset of a non-tubeB\{n−1}.
Therefore B′′ is also a non-tube by Lemma 8.4 and B′ ∈ C.

Conversely, suppose that C is a contraction indicator. Let e = {i, j} be an edge of G and let
k be a vertex not on e. If there is no edge connecting e and k, then {i, j, k} is not a tube. Then
{i, j, k, n− 1} ∈ C. Since C is a contraction indicator, {i, j, n− 1} ∈ C. So {i, j} is not a tube, which
is a contradiction.Therefore G is co-transitive. �

For any connected graphG of order n−2, the corresponding toric varietyX(PG) is smooth, and
it is a divisorial contraction ofX(PKn−2) = M

LM
0,n . However, only very few of them have a moduli

theoretic interpretation. This is further evidence that the current moduli-theoretic description of
birational models is insufficient to understand birational geometric behavior of M0,n.

9. Sn-INVARIANT EXTREMAL ASSIGNMENTS

There is a natural Sn-action on M0,n, permuting n labels. Let M̃0,n be the quotient space M0,n/Sn.
This space has a natural moduli-theoretic interpretation as a moduli space of stable rational curves
with unordered marked points, and the birational geometric properties are relatively simple com-
pared to that of M0,n. For instance, the Picard number ρ(M̃0,n) is bn/2c − 1, and the effective cone
is simplicial. It is expected that M̃0,n is a Mori dream space, in contrast to M0,n, which is not a Mori
dream space for large n ([CT15]).

The Sn-action naturally induces Sn-actions on the set of stable n-labeled trees S(n), the set of
set partitions P(n), and the set of all (extremal) assignments of order n. Let Z be an Sn-invariant
extremal assignment. Then the contraction map πZ : M0,n → M0,n(Z) is Sn-equivariant. Therefore
we have a quotient map π̄Z : M̃0,n → M0,n(Z)/Sn. Thus Sn-invariant extremal assignments give
contractions of M̃0,n. In this section, we study Sn-invariant extremal assignments.

In Section 6, we have seen that the structure of an extremal assignment can be described in
terms of set partitions or, equivalently, basic pairs. Let (G, v) be a basic pair and suppose that
v ∈ Z(G) for an Sn-invariant extremal assignment Z. Since Z is Sn-invariant, for any permutation
of n labels of G, the central vertex must be assigned too. Therefore the fact that a central vertex is
assigned or not depends on the topological type of the underlying graph, not a specific labeling.
Thus in the case of Sn-invariant assignments, a natural description is obtained in terms of integer
partitions. This is a crucial difference between ordinary extremal assignments and invariant ex-
tremal assignments, because there are nontrivial automorphisms for the underlying tree without
labeling.
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Let I(n) be the set of integer partitions of n. For p, q ∈ I(n), we say p ≤ q if q is a finer
partition than p. Then I(n) is a partially ordered set. The maximum element is the complete
partition {1, 1, · · · , 1}, and the minimum element is {n}. We can define refinements, corruptions,
and upper bounds of two integer partitions in a similar way.

Recall that P(n) is the set of set partitions of [n]. There is a natural forgetful map

f : P(n)→ I(n),

which maps P = {B1, B2, · · · , Bk} to the partition f(P ) = {|B1|, |B2|, · · · , |Bk|}. Then f is an
Sn-invariant order-preserving map.

The following lemma explains relations between set partitions and integer partitions. The proof
is straightforward.

Lemma 9.1. Let P,Q ∈ P(n).

(1) Suppose thatP 6= Q and p = f(P ), q = f(Q). Let p = {λ1, λ2, · · · , λs} and q = {µ1, µ2, · · · , µt}.
Then p and q have a tight upper bound only if there are i and J with |J | ≥ 2 such that λi =

∑
j∈J µj

or vice versa.
(2) If f(P ) ≤ f(Q), then there is σ ∈ Sn such that P ≤ σ ·Q.

As in the case of ordinary extremal assignments, one may try to define ‘atomic’ Sn-invariant
extremal assignments. However, in contrast to the case of ordinary extremal assignments, it is
not true that for any basic pair (G, v), there is an Sn-invariant extremal assignment Z such that
v ∈ Z(G).

Example 9.2. Let (G, v) a basic pair with corresponding set partition P = {{1, 2, 3}, {4}, {5}, {6}},
and let Z be an Sn-invariant extremal assignment so that v ∈ Z(G). We can permute the labels in
P to obtain another basic pair (H,w) with set partition P ′ = {{1}, {2}, {3}, {4, 5, 6}}. If v ∈ Z(G),
then w ∈ Z(H), by definition of an Sn-invariant extremal assignment. We can see that indeed
H = G and v and w are two vertices of G, so Z(G) = V (G). Thus this basic pair has no Sn-
invariant extremal assignment.

Let ZG be the atomic extremal assignment associated to (G, v). Then by Proposition 6.5, ZG =⋃
Q�P,|Q|≥3 ZQ, where P is the set partition corresponding to (G, v). It is clear that any Sn-invariant

extremal assignment contains
⋃
σ∈Sn

σ · ZG =
⋃
σ∈Sn

Zσ·G.

Definition 9.3. Let p = {λ1, λ2, · · · , λk} be an integer partition of n.

(1) A replacement of p is an integer partition of [n] which is obtained by performing the follow-
ing operation several times: Remove a subpartition {λi}i∈I ⊂ p and add another subparti-
tion {λj}j∈J ⊂ p for two index sets I, J such that

∑
i∈I λi =

∑
j∈J λj .

(2) An integer partition {λ1, λ2, · · · , λk} of n is special if for any replacement r of p, r ≤ p.
(3) For a familyF := {p1, p2, · · · , pm} of integer partitions of [n], a replacement inF is an integer

partition q` of [n] which is obtained by performing the following operation several times: q0
is any integer partition such that q0 ≤ ps for some s. qk+1 is obtained from qk by removing
a subpartition {λi}i∈I ⊂ ps and adding another subpartition {µj}j∈J ⊂ pt for two index
sets I, J such that

∑
i∈I λi =

∑
j∈J µj .
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(4) A family F is called a special family if for any replacement r in F , r ≤ pj for some pj ∈ F .

Thus a singleton famliy F = {p} is special if and only if p is special.

Example 9.4. (1) Let p1 = {4, 3, 2, 1}. Since 4 + 1 = 3 + 2, r1 = {4, 4, 1, 1} and r2 = {3, 3, 2, 2}
are replacements of p1. Since r2 6≤ p1, p1 is not special.

(2) Let p2 = {6, 6, 1, 1}. Clearly the only replacement of p2 is itself, so p2 is special.
(3) LetF = {p1, p2, p3}where p1 = {3, 3, 3, 3, 2}, p2 = {3, 3, 2, 2, 2, 2}, and p3 = {2, 2, 2, 2, 2, 2, 2}.

It is easy to check that for any replacement r in F , r ≤ p1, p2, or p3, so F is a special family.
(4) Let F = {p1, p2} where p1 = {5, 5, 2, 2} and p2 = {4, 4, 3, 3}. There is a replacement in F ,

r = {5, 4, 3, 2}, such that r 6≤ p1, r 6≤ p2. Therefore F is not a special family.

Theorem 9.5. Let (G1, v1), (G2, v2), · · · , (Gk, vk) be basic pairs and let p1, p2, · · · , pk be the correspond-
ing integer partitions. Let Zpi :=

⋃
σ∈Sn

σ ·ZGi where ZGi is the atomic extremal assignment associated to
(G, v). Then Z :=

⋃k
i=1 Zpi is an Sn-invariant extremal assignment if and only if F := {p1, p2, · · · , pk}

is a special family.

Proof. By the construction, Z is Sn-invariant. Thus it suffices to check the extremality. Let Pi be
the set partition corresponding to (Gi, vi).

Suppose that F is a special family. Let Q1 � σi · Pi and Q2 � σj · Pj . And let pi = f(Pi) =

{λ1, λ2, · · · , λs} and pj = f(Pj) = {µ1, µ2, · · · , µt}. Suppose that Q1, Q2 have a tight upper bound
R and r := f(R). Let q1 := f(Q1) = {ν1, ν2, · · · , νu} and q2 := {ξ1, ξ2, · · · , ξv}. By (1) of Lemma
9.1, there are several pairs (i, J) with |J | ≥ 2 such that νi =

∑
j∈J ξj (or vice versa). Since q2 ≤ pj ,

νi =
∑

j∈J ξj =
∑

k∈K µk for some K. Thus r is a replacement of q1 in F . Since F is a special
family, r ≤ pk for some k. By (2) of Lemma 9.1, there is τ ∈ Sn such that R ≤ τ · Pk. By Theorem
6.10, Z is extremal.

Conversely, assume that Z is extremal. We claim that for any replacement r in F and a corre-
sponding basic pair (H,w), w ∈ Z(H). By induction, it is sufficient to show for a replacement r
which is obtained by one operation. Let q ≤ pi = {λ1, λ2, · · · , λs} and r be obtained by replacing
{λi}i∈I ⊂ pi and adding {µj}j∈J ⊂ pj . Consider the following list of degenerations/contractions
(Figure 9).

(1) Start with (G0, v0), which corresponds to q. v0 ∈ Z(G0). Degenerate v0 to two vertices
v1, v

′
1 and obtain G1. v1, v′1 ∈ Z(G1). Here v1 has tails indexed by I .

(2) Contract v1 and the tails connected to v1 to a vertex v2 and obtain (G2, v
′
2). v′2 ∈ Z(G2).

(3) Degenerate v2 and get G3 where v3 has tails indexed by J . v′3 ∈ Z(G3).
(4) Contract v′3 and its tails to a vertex and obtain (G4, v4). Since it corresponds to a partition

s ≤ pj , v4 ∈ Z(G4).
(5) On G3, v3 ∈ Z(G3) from (4).
(6) By contracting v3, v′3 to v5, we obtain G5. v5 ∈ Z(G5). G5 corresponds to the replacement r.

Therefore if r is a replacement, then the corresponding central vertex is assigned. By Proposition
6.9, for R with f(R) = r, there must be ZP ⊂ Z so that R ≤ P . Then f(P ) ≤ pk for some k and
r = f(R) ≤ f(P ) ≤ pk. Therefore F is special. �

The following simple special case of Theorem 9.5 is already useful.
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FIGURE 9. A sequence of contractions and degenerations

Corollary 9.6. Let (G, v) be a basic pair. Let Z :=
⋃
σ∈Sn

σ · ZG as above and let p be the corresponding
integer partition for (G, v). Then Z is an extremal assignment if and only if p is special.

Example 9.7. Let (G, v) be a basic pair with corresponding integer partition p = {4, 4, 3, 3}, and
let Z :=

⋃
σ∈Sn

σ · ZG. Clearly p is special, so Z is an extremal assignment.

Due to Theorem 9.5, we can translate Question 1.1 for Sn-invariant extremal assignments in
terms of integer partitions.

Algorithm 9.8 (Existence/construction of the smallest extremal assignment). LetG1, G2, · · · , Gk ∈
S(n) and v1 ∈ V (G1), v2 ∈ V (G2), · · · , vk ∈ V (Gk). We want to find the smallest Sn-invariant
extremal assignment Z such that vi ∈ Z(Gi), if there is one.

(1) Contract each tail of Gi adjacent to vi to a single vertex and make a basic pair (Gi, vi). Let
pi be the corresponding integer partition.

(2) For the family F := {p1, p2, · · · , pk}, add all replacements of pi in F and enlarge F .
(3) If F contains the complete partition {1, 1, · · · , 1}, then such Z does not exist.
(4) If F does not contain the complete partition, then eliminate non-maximal elements in F .
(5) Z =

⋃
p∈F Zp is the smallest Sn-invariant extremal assignment.

The algorithm is implemented as a program in Sage. It can be found on the website of the first
author:

http://www.hanbommoon.net/publications/extremal

Although there are many new types of Sn-invariant extremal assignments, all Sn-invariant
smooth assignments are already known.

Proposition 9.9. Every Sn-invariant smooth extremal assignment is a weight assignment ZA for some
Sn-invariant weight A.

Proof. Let Z be an Sn-invariant smooth extremal assignment, and let m be the largest number of
labels on any assigned vertex. For any graph in S2(n), only the vertex with fewer labels can be
assigned, otherwise we could permute the labels to show that the other vertex is assigned as well.
So we have n > 2m. We can simply assign A = (( 1

m)n). We have
∑
ai = n

m > 2m
m = 2. So A gives

a valid weight assignment. �

http://www.hanbommoon.net/publications/extremal
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10. GEOGRAPHY OF CONTRACTIONS OF M̃0,n

Currently the two most generalized constructions of modular compactifications of M0,n are
given by 1) extremal assignments and 2) Veronese quotients. They provide two large families of
birational contractions of M0,n, large portions of which overlap. Since these two constructions
are very general, one may wonder if these two families are sufficient to describe all birational
contractions of M0,n. More precisely, we may ask the following question:

Question 10.1. Let X be a projective birational contraction of M0,n. Are there finitely many con-
tractions M0,n → Yi such that

(1) Each Yi is either (the normalization of) M0,n(Z) or V d
γ,~c;

(2) X is (the normalization of) the image of the product map

M0,n →
k∏
i=1

Yi?

Remark 10.2. In projective birational geometry in the sense of Mori’s program, if X is a normal
projective variety and Y is a projective birational contraction of X , then Y is also a normal variety.
Indeed, Y = Proj

⊕
m≥0 H0(X,mD) for some big semi-ample divisor D, and the section ring

is integrally closed. We do not know if M0,n(Z) and V d
γ,~c are normal or not. Thus in Question

10.1, we must use normalizations of modular contractions. On the other hand, in both cases, the
contraction map from M0,n has a connected fiber, so the normalization M0,n(Z)ν (resp. (V d

γ,~c)
ν) is

homeomorphic to M0,n(Z) (resp. V d
γ,~c).

From this point, for notational simplicity, every modular compactification will be replaced by
its normalization.

Remark 10.3. As we have seen in Section 8, extremal assignments are not sufficient to construct
all projective birational contractions of M0,n.

We will see that the answer to Question 10.1 is negative even we restrict ourselves to Sn-
invariant contractions, or equivalently, contractions of M̃0,n. In this section, we compute all faces
of the nef cone of M̃0,n for small n and try to find the corresponding contractions.

For n = 4, 5, the Picard number ρ(M̃0,n) is one. Thus there is no nontrivial contraction.

Example 10.4 (n = 6). In this case, the Picard number ρ(M̃0,6) = dim N1(M̃0,6) = 2. F3,1,1,1 and
F2,2,1,1 generate two extremal rays of NE1(M̃0,6). Dually, Nef(M̃0,6) is generated by D2 + 3D3

and 2D2 + D3. The S6-quotient M̃0,6 is isomorphic to M2 and its rational contractions has been
completely described by Hassett in [Has05]. Before taking S6-quotient, for M0,6, the birational
model corresponding to D2 + 3D3 is (P1)6//SL2, which is classically known as the Segre cubic.
The model corresponding to 2D2 + D3 is V 2

0,(3/7)7 , which is the Igusa quartic ([Moo15]). Both
birational models do not come from extremal assignments. Indeed, any S6-invariant extremal
assignment is equivalent to the empty assignment.

Example 10.5 (n = 7). In this case, ρ(M̃0,7) is two. There are three types of F-curves, F4,1,1,1, F3,2,1,1,
and F2,2,2,1. F4,1,1,1 and F2,2,2,1 generate two extremal rays of NE1(M̃0,7). Nef(M̃0,7) is generated by
D2+3D3 andD2+D3. The model corresponding toD2+3D3 is M0,(1/3)7 . The model corresponding
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to D2 + D3 is M0,7(Z) where Z is the S7-invariant extremal assignment contracting the spine of
F2,2,2,1. So all contractions of M̃0,7 are obtained from extremal assignments.

Example 10.6 (n = 8). The nef cone is a 3-dimensional cone generated by 4 extremal rays 6D2 +

11D3+8D4, 3D2+2D3+4D4,D2+3D3+6D4, and 2D2+6D3+5D4 (Figure 10). There are 8 proper
faces of the nef cone. The corresponding birational contractions are listed in Table 2. Therefore for
n ≤ 8, the answer to Question 10.1 is affirmative for Sn-invariant contractions.

D2 D3

D4

1
2

3
4

5 6 7
8

FIGURE 10. Nef cone and effective cone of M̃0,8

face contracted F-curves birational model

1 F5,1,1,1 M0,((1/3)8)/S8

2 F4,2,1,1, F5,1,1,1 (P1)8//SL2/S8 = P8//SL2

3 F4,2,1,1 Image of M̃0,8 in ((P1)8//SL2 × V 3
0,(1/2)8)/S8

4 F2,2,2,2, F3,2,2,1, F4,2,1,1 V 3
0,(1/2)8/S8

5 F2,2,2,2 M0,8(Z)/S8 where Z is generated by {2, 2, 2, 2}
6 F3,3,1,1, F2,2,2,2 V 2

0,(3/8)8/S8

7 F3,3,1,1 M0,8(Z)/S8 where Z is generated by {3, 3, 1, 1}
8 F5,1,1,1, F3,3,1,1 V 2

1/3,(1/3)8/S8

TABLE 2. List of contractions of M̃0,8

Example 10.7 (n = 9). The nef cone is a 3-dimensional cone generated by 4 extremal rays 3D2 +

3D3 + 4D4, D2 +D3 + 2D4, D2 + 3D3 + 6D4, and D2 + 3D3 + 2D4 (Figure 11). There are 8 faces of
the nef cone. The corresponding birational contractions are listed in Table 3.

Note that three faces are obtained from neither extremal assignments nor Veronese quotients.
By using results in Section 9, it is straightforward to see that there is no Sn-invariant extremal
assignment which contracts the given F-curves only. On the other hand, Veronese quotients may
provide contractions which are not from extremal assignments. This occurs if there are strictly
semistable points, or equivalently, if the quantity cT−1

1−γ has an integer value for some T (Remark
4.7). If it is an integer i and |T | = k, then

(d− 1)γ + nc = d+ 1,
kc− 1

1− γ
= i
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where ~c = (c, c, · · · , c). We can find all possible solutions for γ and c if we fix d, k, and i. Fur-
thermore, if d > 2n − 3, then any parametrized curve has nodal singularities without marked
points only ([GJM13, Corollary 2.7]). Therefore the possible models are Hassett’s moduli spaces
of weighted stable curves. Thus it suffices to check finitely many d, k, and i. For each solution, by
using [GJMS13, Theorem 2.1], one can compute the set of contracted F-curves.

Therefore we can conclude that the answer to Question 10.1 is negative for n ≥ 9 in general.

D2 D3

D4

1

234
5
6 7 8

FIGURE 11. Nef cone and effective cone of M̃0,9

face contracted F-curves birational model

1 F6,1,1,1 M0,((1/3)9)/S9

2 F6,1,1,1, F5,2,1,1 M0,((1/4)9)/S9 = (P1)9//SL2/S9 = P9//SL2

3 F5,2,1,1 not obtained from assignments or GIT
4 F5,2,1,1, F4,2,2,1 not obtained from assignments or GIT
5 F4,2,2,1 not obtained from assignments or GIT
6 F4,2,2,1, F3,2,2,2 M0,9(Z)/S9 where Z is generated by {2, 2, 2, 2, 1}
7 F3,2,2,2 M0,9(Z)/S9 where Z is generated by {3, 2, 2, 2}
8 F3,2,2,2, F6,1,1,1, F4,3,1,1, F3,3,2,1 V 2

0,(1/3)9/S9

TABLE 3. List of contractions of M̃0,9

Example 10.8 (n = 10). In this case, the Picard number is 4. The f -vector of a slice of the nef cone
is (1, 7, 13, 8, 1) (Figure 12). In particular, the nef cone has 7 extremal rays. Table 4 gives us the list
of contracted curves and the corresponding birational models for all extremal rays.

Example 10.9 (n = 11). Again, the Picard number is 4 and the f -vector of a slice of the nef cone
is (1, 10, 16, 8, 1) (Figure 12). So the nef cone has 10 extremal rays. Table 5 is the list of contracted
curves and the corresponding birational models for all extremal rays.

11. NON-PROJECTIVE EXAMPLES

A priori, for an extremal assignment Z, the birational contraction M0,n(Z) exists in the category
of algebraic spaces (Theorem 3.7). There are indeed many examples in which M0,n(Z) is not a
projective variety. In this section, we present several examples of non-projective birational models.

There is a smooth extremal assignment Z which provides a non-projective birational model.
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FIGURE 12. Slices of the nef cones of M̃0,10 and M̃0,11

contracted F-curves birational model

F4,2,2,2, F3,3,3,1, F3,3,2,2 not obtained from assignments or GIT
F7,1,1,1, F4,4,1,1, F3,3,3,1, F3,3,2,2 V 2

0,(3/10)10/S10

F5,3,1,1, F5,2,2,1, F4,2,2,2, F3,3,3,1 V 3
0,(2/5)10/S10

F7,1,1,1, F5,3,1,1, F3,3,3,1 V 3
1/3,(1/3)10/S10

F7,1,1,1, F6,2,1,1, F5,3,1,1, F5,2,2,1 (P1)10//SL2/S10 = P10//SL2

F6,2,1,1, F5,2,2,1, F4,4,1,1, F4,3,2,1, F4,2,2,2, F3,3,2,2 V 4
0,(1/2)10/S10

F7,1,1,1, F6,2,1,1, F4,4,1,1 V 2
1/2,(1/4)10/S10

TABLE 4. List of contractions of M̃0,10 corresponding to extremal rays

contracted F-curves birational model

F4,4,2,1, F4,3,2,2, F3,3,3,2 not obtained from assignments or GIT
F8,1,1,1, F5,4,1,1, F4,4,2,1, F3,3,3,2 V 2

0,(3/11)11/S11

F5,2,2,2, F4,3,2,2, F3,3,3,2 M0,11(Z)/S11 for Z generated by {3, 2, 2, 2} and {3, 3, 3, 2}
F6,3,1,1, F5,2,2,2, F4,3,3,1, F3,3,3,2 V 3

0,(4/11)11/S11

F8,1,1,1, F6,3,1,1, F4,3,3,1, F3,3,3,2 V 3
1/6,(1/3)11/S11

F6,2,2,1, F5,2,2,2, F4,4,2,1, F4,3,2,2 V 4
0,(5/11)11/S11

F7,2,1,1, F6,2,2,1, F4,4,2,1 not obtained from assignments or GIT
F8,1,1,1, F7,2,1,1, F5,4,1,1, F4,4,2,1 V 2

1/4,(1/4)11/S11

F6,3,1,1, F6,2,2,1, F5,2,2,2 not obtained from assignments or GIT
F8,1,1,1, F7,2,1,1, F6,3,1,1, F6,2,2,1 M0,((1/5)11)/S11 = (P1)11//SL2/S11 = P11//SL2

TABLE 5. List of contractions of M̃0,11 corresponding to extremal rays

Example 11.1 (Non-projective smooth assignment). Let Z be a smooth extremal assignment of
order 6 whose maximal elements in the contraction indicator are

{1, 2, 3, 4}, {1, 2, 5}, {3, 4, 5}, {2, 3, 6}, {1, 4, 6}.
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Then it is straightforward to check that the contracted F-curves by πZ : M0,6 → M0,6(Z) are

F{1},{2},{3},{4,5,6}, F{1},{2},{4},{3,5,6}, F{1},{2},{5},{3,4,6}, F{1},{3},{4},{2,5,6}, F{1},{4},{6},{2,3,5},

F{2},{3},{4},{1,5,6}, F{2},{3},{6},{1,4,5}, F{3},{4},{5},{1,2,6}, F{1},{2},{3,4},{5,6}, F{1},{3},{2,4},{5,6},

F{1},{4},{2,3},{5,6}, F{2},{3},{1,4},{5,6}, F{2},{4},{1,3},{5,6}, F{3},{4},{1,2},{5,6}.

Note that the curve cone NE1(M0,6) is generated by F-curves ([KM13, Theorem 1.2]). If M0,6(Z) is
projective, then there is N ∈ Nef(M0,6) such that for an F-curve F , N · F = 0 if and only if F is in
the above list. By using a computer program, it can be shown that there is no such divisor N .

Example 11.2. By a similar idea, one can check that the smooth extremal assignment Z in Example
7.14 gives a non-projective birational contraction M0,7(Z).

Example 11.3 (Non-projective Sn-invariant assignment). Let Z be an S12-invariant extremal as-
signment of order 12, which corresponds to integer partitions {7, 3, 1, 1} and {3, 3, 3, 3}. Then
the contracted F-curves are exactly F7,3,1,1 and F3,3,3,3. The Sn-invariant F-conjecture is true up
to n ≤ 24 ([Gib09, Theorem 6.1]), so NE1(M̃0,12) is generated by F-curves. By using a similar
computation with Example 11.1, we can check that M0,12(Z) is not projective.

Remark 11.4. However, by Proposition 9.9, every Sn-invariant smooth extremal assignment gives
a projective birational contraction.

We finish this section with a partial positive result showing that some birational models are
indeed varieties.

Proposition 11.5. Let Z be a smooth extremal assignment. Then M0,n(Z) is a proper variety.

Proof. Since we already know that M0,n(Z) is a smooth proper algebraic space, it suffices to show
that it is a scheme. Let X := (C, x1, x2, · · · , xn) ∈ M0,n(Z). Since Z is smooth, C is obtained from
(Cs, xs1, x

s
2, · · · , xsn) ∈ M0,n by contracting some (not necessarily irreducible) tails. Thus if we de-

fine weight data A such that the sum over each tail is at most one, then X ∈ M0,A. Furthermore,
since a deformation of X is obtained by perturbing marked points and resolving some singulari-
ties, any small deformation of X is also in M0,A. Therefore there is a Zariski open neighborhood
U of X in M0,n(Z), which is isomorphic to an open neighborhood of X in M0,A. Since M0,A is a
projective variety, U is a scheme. Therefore any point of M0,n(Z) has a Zariski open neighborhood
which is a scheme. This implies M0,n(Z) is a scheme. �

Remark 11.6. Therefore, by using extremal assignments, we obtain many examples of smooth
proper and non-projective varieties.

We expect that this is true for any extremal assignment Z.

Conjecture 11.7. For any extremal assignment Z, M0,n(Z) is a proper variety.
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