
MORI’S PROGRAM FOR M0,6 WITH SYMMETRIC DIVISORS

HAN-BOM MOON

ABSTRACT. We complete Mori’s program with symmetric divisors for the moduli space of stable
six-pointed rational curves. As an application, we give an alternative proof of the complete Mori’s
program of the moduli space of genus two stable curves, which was first done by Hassett.

1. INTRODUCTION

Since Hassett and Hyeon initiated the study of birational geometry of moduli spaces in the
viewpoint of Mori’s program in [Has05, HH09, HH13], there have been a tremendous amount of
results in this direction. Mori’s program for a moduli space M consists of: 1) Compute the cone
of effective divisors of M . 2) For an effective Q-divisor D, find the birational model

M(D) := Proj
⊕
m≥0

H0(M,O(mD)).

3) Finally, study the moduli theoretic meaning of M(D) and its relation with M .

In this paper, we complete Mori’s program with symmetric divisors for the moduli space M0,6

of stable six-pointed rational curves. On the effective cone of M0,n, only the subcone generated
by KM0,n

and ψi-classes has been studied intensively in [Sim08, AS12, FS11, KM11, Moo13]. One
obstacle of the completion of Mori’s full program for M0,n is that the cone of effective divisors is
huge and unknown. As an initial step, we will focus on symmetric divisors, i.e., divisors which
are invariant under the natural Sn-action on M0,n.

To state our result neatly, we use the interval notation from [Che08]. For two divisors D1 and
D2, (D1, D2) is the set of divisors aD1 + bD2 such that a, b > 0 and [D1, D2] is the set of divisors
aD1 + bD2 with a, b ≥ 0. We can define [D1, D2) and (D1, D2] in a similar way. For the description
of relevant divisor classes, see Definition 2.1.

Theorem 1.1 (Theorem 5.2). Let D be a symmetric effective divisor on M0,6. Then:

(1) If D ∈ (−KM0,6
,KM0,6

+ 1
3ψ), M0,6(D) ∼= M0,6.

(2) If D ∈ [KM0,6
+ 1

3ψ,B3), M0,6(D) ∼= (P1)6//LSL2 with the symmetric linearization L.
(3) If D ∈ (B2,−KM0,6

], M0,6(D) is the Veronese quotient V 2
A with symmetric weight data A =

(1
2 , · · · ,

1
2).

(4) Both M0,6(B2) and M0,6(B3) are a point.
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It is interesting that both (P1)6//LSL2 and V 2
A are classically known varieties. (P1)6//LSL2 is

isomorphic to the Segre cubic S3 (Remark 5.5) and V 2
A is isomorphic to the Igusa quartic I4 (Re-

mark 4.2) or Castelnuovo-Richmond quartic. Also I4 is isomorphic to the Satake compactifica-
tion A2(2) of the moduli space of principally polarized abelian surfaces with level two structures
([Igu64]). Moreover, these two varieties are known to be projectively dual to each other ([DO88,
Remark I.3]).

All birational models appear here are classically known varieties with or without their modular
interpretations. For example, see [Dol12, Section 9.4] and references therein. So this article is an
interpretation of the relation between classically known varieties using a modern viewpoint of
Mori’s program. Also Items (1) and (2), which are in the direction toward the canonical divisor,
are proved in [Sim08, FS11, AS12, KM11, Moo13].

The author wants to point out a simple but important observation. As we can see in the defi-
nition of V 2

A in Section 3, the birational model I4 is not a moduli space of abstract pointed curves,
but that of (equivalent classes of) configurations of points. In general to find birational models of
M0,n in the direction towards the anti-canonical divisor, it is insufficient to study moduli spaces of
rational curves with worse singularities. The reason is that all moduli spaces of pointed rational
curves (with worse singularities) are contractions of M0,n ([Smy13]), as opposed to the case of the
moduli stack Mg. In the viewpoint of symmetric Mori’s program, M0,6 we discuss here is very
simple in the sense that there is no flip. Thus we can explain everything by using well-known con-
tractions. But for n ≥ 7, there must be several flips even for symmetric divisors. So to understand
Mori’s program for M0,n for larger n, we need to ‘find’ completely new modular interpretations of
birational models.

As a quick application of our results, we give a complete description of Mori’s program forM2.
All smooth genus two curves are hyperelliptic, thus the coarse moduli space M2 of the moduli
space of genus two stable curves is isomorphic to M0,6/S6 ([AL02, Corollary 2.5]). Therefore we
can directly translate symmetric Mori’s program, as Mori’s program for M2 and that forM2. The
investigation of Mori’s program forM2 was done by Hassett in [Has05], as an initial step of the
Hassett-Keel program. It has been one of the most influential projects on the birational geometry
of moduli spaces in the last several years. As a consequence of Theorem 1.1, we give a different
proof of Hassett’s theorem ([Has05, Theorem 4.10]) forM2.

Theorem 1.2 (Theorem 6.3). Let D be an effective divisor onM2. Then:

(1) If D ∈ (λ, δ0 + 12δ1),M2(D) ∼= M2.
(2) If D ∈ [δ0 + 12δ1, δ1),M2(D) ∼= P6//SL2.
(3) If D ∈ (δ0, λ], M2(D) is the Satake compactification ASat

2 of the moduli space A2 of principally
polarized abelian surfaces.

(4) BothM2(δ0) andM2(δ1) are a point.

We can summarize Mori’s program for M0,6 and M2 with Figure 1. The diagonal maps are
divisorial contractions (contracted divisors are indicated on arrows) and vertical maps are S6-
quotients.
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M0,6

B2

xx

��

B3

''

I4 = A2(2) = V 2
A

��

(P1)6//LSL2 = S3

��

M2

∆0

xx

∆1

''

ASat
2 P6//SL2

FIGURE 1. Mori’s program for M0,6 andM2

After the author finished the preparation of this manuscript, he noticed that Lange and Ortega
recently ran the log minimal model program for a compactification S

+
2 of the moduli space S+

2

of even spin curves of genus 2 in [LO13]. On the level of coarse moduli spaces, there is an M2-
morphism π : M0,6 → S+

2 . This map π is a quotient map for the G-action where G is a subgroup
of S6 of order 72 (For more details, see [LO13, Section 7]). Thus one can regard the main result of
this paper as a theorem parallel to [LO13, Theorem 2] on a finite cover.

This paper is organized as follows. In Section 2, we review basic facts about divisor and curve
classes on M0,n. Section 3 is for the background about Veronese quotients. We will study the
geometry of a particular Veronese quotient V 2

A with symmetric weight data A in Section 4. By
using them, we prove Theorem 1.1 in Section 5. Section 6 contains a proof of Theorem 1.2.

We will work over an algebraically closed field of characteristic 0.

2. DIVISORS AND CURVES ON M0,n

We begin by reviewing general facts about divisors and curves on M0,n. The moduli space M0,n

of stable n-pointed rational curves is a smooth projective variety of dimension n−3 with a natural
Sn-action permuting marked points. A divisor D on M0,n is called symmetric if it is invariant
under the Sn-action. The Neron-Severi vector space N1(M0,n) has dimension 2n−1 −

(
n
2

)
− 1, but

its Sn-invariant part N1(M0,n)Sn ∼= N1(M0,n/Sn) is (bn/2c − 1)-dimensional ([KM13, Theorem
1.3]). The following is a list of natural symmetric divisors on M0,n.

Definition 2.1. (1) For i = 2, 3, · · · , n − 2, let Bi be the closure of the locus of curves C with
two irreducible components C1 and C2 such that C1 (resp. C2) contains i (resp. n − i)
marked points. Bi is called a symmetric boundary divisor. By definition, Bi = Bn−i. Let
B =

∑bn/2c
i=2 Bi be the total boundary divisor.

(2) Fix 1 ≤ i ≤ n. Let Li be a line bundle on M0,n such that over (C, x1, · · · , xn) ∈ M0,n, the
fiber is ΩC,xi , the cotangent space of C at xi. Let ψi = c1(Li). If we denote ψ =

∑n
i=1 ψi,

then ψ is an Sn-invariant divisor.
(3) Let KM0,n

be the canonical divisor of M0,n.
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The symmetric effective cone Eff(M0,n)Sn ∼= Eff(M0,n/Sn) is generated by symmetric boundary
divisors ([KM13, Theorem 1.3]). Thus we can write down KM0,n

and ψ as nonnegative linear
combinations of boundary divisors.

Lemma 2.2. [Pan97, Proposition 2], [Moo13, Lemma 2.9] In N1(M0,n), the following relations hold.

(1) KM0,n
=

bn/2c∑
i=2

(
i(n− i)
n− 1

− 2

)
Bi.

(2) ψ = KM0,n
+ 2B.

Now we move to curve classes on M0,n. Let S1 t S2 t S3 t S4 = {1, 2, · · · , n} be a partition. Let
F (S1, S2, S3, S4) be an F-curve class corresponding to the partition ([KM13, Section 4]).

Lemma 2.3. [KM13, Corollary 4.4] Let F = F (S1, S2, S3, S4) be an F-curve and let aj = |Sj |. Then

F ·
∑

riBi = −ra1 − ra2 − ra3 − ra4 + ra1+a2 + ra1+a3 + ra1+a4

if we define r1 = 0 and ra+b = rn−a−b.

We need to know another curve class Cj (see [KM13, Lemma 4.8]). Fix a j-pointed P1. And let x
be a moving point on P1. By gluing a fixed (n− j + 1)-pointed P1 whose last marked point is y to
the j-pointed P1 along x and y and stabilizing it, we obtain an one parameter family of n-pointed
stable curves over P1, i.e., a curve Cj

∼= P1 on M0,n.

Lemma 2.4. [KM13, Lemma 4.8]

Cj ·Bi =


j, i = j − 1,

−(j − 2), i = j,

0, otherwise.

For the convenience of readers, we leave a special case of M0,6 below. The proof is an easy
combination of above results.

Corollary 2.5. The S6-invariant Neron-Severi space N1(M0,6)S6 has dimension two. The symmetric ef-
fective cone Eff(M0,6)S6 is generated by B2 and B3. Moreover,

(1) KM0,6
= −2

5B2 − 1
5B3,

(2) ψ = 8
5B2 + 9

5B3,
(3) B2 = −9

2KM0,6
− 1

2ψ,
(4) B3 = 4KM0,6

+ ψ.

Figure 2 shows several rays in N1(M0,6)S6 generated by special divisors.

On M0,6, there are only two types of F-curves, whose partition is of the form 1 + 1 + 1 + 3 or
1 + 1 + 2 + 2. We will denote the corresponding F-curves by F1,1,1,3 and F1,1,2,2 respectively.

Corollary 2.6. On M0,6, the intersection of symmetric divisors and curve classes are given by the following
table.
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ψ KM0,6
B2 B3

F1,1,1,3 3 -1 3 -1
F1,1,2,2 2 0 -1 2
C4 4 0 -2 4

Note that on M0,6, C3 = F1,1,1,3.

3. VERONESE QUOTIENTS AND THEIR GEOMETRIC PROPERTIES

In this section, we give a review about (a special case) of Veronese quotients introduced in
[Gia13]. See [GJM13, GJMS13] for a generalization. The following description is different from
the original one in [Gia13] (However, see [Gia13, Remark 2.4]). We will use a construction via
moduli spaces of stable maps, which is useful for our purpose, in particular for the description of
the morphism ϕA : M0,n → V d

A .

3.1. Veronese quotients. Let M0,n(Pd, d) be Kontsevich’s moduli space of stable maps ([FP97]). It
parametrizes maps f : (C, x1, · · · , xn) → Pd from an arithmetic genus 0 curve C with n-marked
points to Pd such that f∗[C] = d[L], where L is a line in Pd, with the following stability conditions.
Such a map f is called stable if

• C has at worst nodal singularities,
• xi are distinct smooth points on C,
• ωC +

∑
xi is f -ample.

There are n evaluation maps ei : M0,n(Pd, d) → Pd. By taking the product of these maps, we
have a map

e : M0,n(Pd, d)→ (Pd)n.

Let Ud,n be the image of e. Note that SLd+1 acts on both M0,n(Pd, d) and (Pd)n via SLd+1 →
Aut(Pd) and e is SLd+1-equivariant. Thus Ud,n is an SLd+1-invariant subvariety of (Pd)n.

For a choice of positive rational numbers A = (a1, · · · , an), we can construct a Q-linearization
LA := O(a1)⊗O(a2)⊗· · ·⊗O(an). Since the stability does not change if we replace A by its scalar
multiple, we will normalize it as

∑
i ai = d + 1. For (Pd)n, the (semi)stability can be computed

explicitly.

KM0,6

ψ

B3

B2

FIGURE 2. The Neron-Severi space of M0,6
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Theorem 3.1. [Dol03, Theorem 11.1] Let A = (a1, · · · , an) be a normalized linearization. A configura-
tion (x1, · · · , xn) ∈ (Pd)n is (semi)stable if and only if for any proper linear subspace W ⊂ Pd,∑

xj∈W
aj (≤) < dimW + 1.

In particular, to guarantee the nonemptiness of (semi)stable locus, we need a necessary condi-
tion ai (≤) < 1 for all i. Thus the hypersimplex

∆(d+ 1, n) = {(a1, · · · , an) ∈ Qn | 0 ≤ ai ≤ 1,
n∑

i=1

ai = d+ 1}

can be regarded as the space of effective linearizations.

Definition 3.2. Let A = (a1, · · · , an) ∈ ∆(d + 1, n) such that n ≥ d + 3. The Veronese quotient is
the GIT quotient

V d
A := Ud,n//LASLd+1.

Remark 3.3. (1) It is called Veronese quotient because for a general configuration (x1, · · · , xn)

with n ≥ d + 3, if there exists a rational normal curve C (a Veronese embedding of P1) in
Pd such that xi ∈ C for all i, then such C is unique.

(2) This is a special case γ = 0 of general Veronese quotients described in [GJM13, GJMS13].
(3) Up to projective equivalence, there is a unique rational normal curve in Pd. Thus after

taking the quotient, we can regard it as a moduli space of configurations of points on an
abstract rational curve and their degenerations. So V d

A is birational to M0,n.

Example 3.4. If d = 1, then U1,n = (P1)n and the GIT quotient (P1)n//LASL2 itself is birational to
M0,n. In this case, the existence of a birational morphism ρ : M0,n → (P1)n//LASL2 is proved in
[Kap93].

When n is even and LA is a symmetric linearization, (P1)n//SL2 has
(
n
2

)
singular points. When

n = 6, the map ρ contracts an irreducible component of a boundary divisor B3 to a singular point.
In particular, F1,1,1,3 is contracted. Thus the semi-ample divisor ρ∗L for an ample divisor L on
(P1)6//LASL2 is a scalar multiple of KM0,6

+ 1
3ψ (see Corollary 2.6).

Example 3.5. For the purpose of this paper, the most important example is V 2
A, where n = 6 and

A = (1
2 , · · · ,

1
2). In this case there are many strictly semistable points on V 2

A. We will study its
(semi)stability in Section 4 in detail.

3.2. Morphisms from M0,n and canonical polarizations. One interesting common property of
Veronese quotients is that they admit birational morphisms from M0,n. This section is an outline
of a proof in [GJM13]. You can find an original proof via Chow quotients in [Gia13, Section 3].

For (f : (C, x1, · · · , xn)→ Pd) ∈ M0,n(Pd, d), by forgetting the map f and stabilizing the domain,
we can obtain a stable rational curve (Cs, x1, · · · , xn) ∈ M0,n. Thus there is a forgetful morphism
F : M0,n(Pd, d)→ M0,n.

M0,n(Pd, d)
e
//

F
��

(Pd)n

M0,n
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For an effective linearizationLA on (Pd)n, there exists an effective linearizationL′A on M0,n(Pd, d)

such that

e−1(((Pd)n)s(LA)) ⊂ M0,n(Pd, d)s(L′A) ⊂ M0,n(Pd, d)ss(L′A) ⊂ e−1(((Pd)n)ss(LA))

where Xss(L) (resp. Xs(L)) is the semistable (resp. stable) part of X with respect to the lineariza-
tion L. In particular, we have a quotient morphism e : M0,n(Pd, d)//L′

A
SLd+1 → (Pd)n//LASLd+1.

Since F is SLd+1-invariant, there exists a quotient map F .

M0,n(Pd, d)//L′
A
SLd+1

e
//

F
��

(Pd)n//LASLd+1

M0,n

In [GJM13, Proposition 4.6], it is proved that for a general effective linearization (stability and
semistability on (Pd)n coincide for LA), F is an isomorphism. Thus we have a morphism

ϕA = ev ◦ F−1
: M0,n → (Pd)n//LASLd+1.

It is straightforward to check that the image of ϕA is V d
A .

For any effective linearization LA, if we perturb it slightly, we obtain an effective linearization
LAε such that the stability coincides with the semistability. From the general theory of the variation
of GIT, we have a morphism

M0,n(Pd, d)//L′
Aε
SLd+1 → (Pd)n//LAεSLd+1 → (Pd)n//LASLd+1.

We will denote it by e, too. Also ϕA is defined as e ◦ F−1.

Remark 3.6. This morphism ϕA can be described in the following slightly different way. Note that
for any effective linearization LA on (Pd)n, there is a commutative diagram

M0,n(Pd, d)s(L′Aε)
� � //

��

M0,n(Pd, d)ss(L′A)

��

((Pd)n)s(LAε)
� � // ((Pd)n)ss(LA)

where L′A, L′Aε are linearizations explained above. Finally, we have a quotient diagram

M0,n(Pd, d)//L′
Aε
SLd+1

//

��

M0,n(Pd, d)//L′
A
SLd+1

��

((Pd)n)//LAεSLd+1
// ((Pd)n)//LASLd+1

which is commutative.

This result gives us a practical way to describe the contraction mapϕA. Fix a curve (C, x1, · · · , xn) ∈
M0,n. First of all, find any stable map f : (C̃, x1, · · · , xn) → Pd up to projective transforma-
tion such that f ∈ M0,n(Pd, d)ss with respect to LA′ and F (f) = (C, x1, · · · , xn). (If there is
a strictly semistable point, then f and C̃ may not be unique.) Indeed, f can be determined
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by the degree of f on each irreducible component of C̃. Then we obtain a point configura-
tion x = (f(x1), · · · , f(xn)) ∈ (Pd)n. By the variation of GIT, there exists a unique closed or-
bit in ((Pd)n)ss with respect to LA which is contained in the closure of the orbit of x. This is
ϕA(C, x1, · · · , xn). For more details, see [GJM13, Section 3].

A GIT quotient V d
A has a canonical polarization LA from its definition. Since ϕA : M0,n → V d

A is
a regular morphism, we obtain a semi-ample line bundle DA := ϕ∗A(LA) on M0,n.

The numerical class of DA is computed in [GJMS13, Theorem 2.1] in a broader context (In our
situation, γ = 0 in the statement of the Theorem.). The following result is a special case we want
to use in this article.

Lemma 3.7. Suppose that n = 6 and A = (1
2 , · · · ,

1
2). Consider V 2

A and the pull-back DA = ϕ∗ALA of the
canonical polarization. Then F1,1,1,3 ·DA = 1

2 and F1,1,2,2 ·DA = 0.

4. AN EXPLICIT COMPUTATION OF THE VERONESE QUOTIENT V 2
A

When n = 6, with respect to the symmetric linearization LA, U2,6 has strictly semistable points.
Thus to describe V 2

A = U2,6//LASL3 concretely, we need to analyze the stability of (P2)6 in detail.
In this section, by computing the (semi)stable locus, we describe the morphism ϕA : M0,6 → V 2

A

explicitly. From this section, we will use symmetric linearizations only. Note that there exists a
unique symmetric linearization on (Pr)d up to normalization. So we will not indicate the lineariza-
tion for GIT quotients.

4.1. An explicit computation of stability on (P2)6//SL3. Due to Theorem 3.1, for a strictly semistable
configuration on (P2)6 there are two possibilities:

• on a point, there are exactly two marked points;
• on a line, there are four points.

Thus we can make a list of strictly semistable configurations. See Table 1. For each stratum,
there is a figure for a typical element in the stratum. The three lines in the figure are standard
coordinate lines of P2 and the symbol � means a point with multiplicity two. In the next three
rows, we describe the stabilizer in SL3 of the configuration, the dimension and the orbit closure
in the semistable locus for each stratum.

Since the set of geometric points in a GIT quotient bijectively corresponds to the set of closed
orbits in the semistable locus, the set of geometric points in V 2

A is in bijection with the orbits in
I tVII t U s

2,6.

4.2. A description of ϕA. Now we can explicitly describe the morphism ϕA : M0,6 → V 2
A by

following the recipe in Remark 3.6. For any (C, x1, · · · , x6) ∈ M0,6 − (B2 ∪ B3), there is a degree
2 map f : C → P2 whose image is a nonsingular conic. Note that all nonsingular conics are
projectively equivalent, hence ϕA(C, x1, · · · , x6) is the image (up to projective equivalence) of six
points in a conic.

For (C, x1, · · · , x6) ∈ B3 − B3 ∩ B2, if we define a map f : C → P2 such that deg f = 1 on
each irreducible component of C and the image is a union of two distinct lines, f is stable with
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stratum I II III IV

stabilizer (C∗)2 C∗ 1 1
dimension 6 7 8 8

orbit closure closed ∈ I ∈ I, II ∈ I, II

stratum V VI VII VIII

stabilizer 1 1 C∗ 1
dimension 9 9 8 9

orbit closure ∈ I, II ∈ I, II closed ∈ VII

stratum IX X XI

stabilizer 1 1 1
dimension 10 9 10

orbit closure ∈ VII ∈ VII ∈ VII

TABLE 1. Strictly semistable configurations

respect to LA′ . So the image of each irreducible component is a line. Therefore ϕA(C, x1, · · · , x6) is
a configuration of distinct points in the union of two lines such that 1) on each line there are three
distinct points, and 2) at the intersection of the two lines there is no marked point.

An interesting contraction happens to B2. Let (C = C1 ∪ C2, x1, · · · , x6) be a general point on
B2. Without loss of generality, suppose that x1, · · · , x4 are on C1. By the stability computation
in Theorem 3.1, the images of them cannot be the same. Thus deg f |C1 is one or two. If it is one,
deg f |C2 = 1 so the image is a configuration of two lines such that on one line there are four distinct
points and on the other line there are two distinct points. Also there is no marked point on the
intersection of two lines. Thus it is an element of the stratum XI. If deg f |C1 = 2, then the image is a
conic with five points (one of them has multiplicity two). So the image is a configuration of type IX.
In both cases, the image has its orbit closure in the stratum VII. Note that (C, x1, · · · , x6) depends
on the cross ratios of the five points, x1, · · · , x4 and the singular points. But in the stratum VII, it
depends only on the cross ratio of the four points x1, · · · , x4. Therefore the image has dimension
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one and the contracted curve is exactly C4. Since the cross ratio of four points is parameterized by
P1, an irreducible component of B2 maps to P1 by ϕA.

We can observe the contraction of F1,1,2,2 in a similar way. Let (C = C1 ∪C2 ∪C3, x1, · · · , x6) be
a general element of F1,1,2,2 where C1 and C2 are two tails. If a tail (say C1) has degree 2, then the
four marked points on the outside of C1 are mapped to a point. Thus for a semistable map, the
degree of a tail with 2 marked points is one or zero. So (deg f |C1 , deg f |C2) can be (1, 1), (1, 0), (0, 1),
or (0, 0). In each case, it is straightforward to check that the image configuration is of type IV, VI,
VI, and III respectively. Therefore in any of these cases, the orbit closure contains the stratum I.
Since a configuration in I does not have non-trivial moduli, F1,1,2,2 is contracted.

Proposition 4.1. The contraction map ϕA : M0,6 → V 2
A is an isomorphism outside of B2. The image of B2

is the union of 15 projective lines L1, · · · , L15. Each Li intersects the other Lj at three points, and at each
intersection point there are three Li’s which pass through it. Finally, V 2

A is singular along ∪Li.

Proof. The first statement is already discussed above. Note that there are 15 irreducible compo-
nents ofB2. Each of them is contracted to a line, so the image is a union of 15 lines L1, · · · , L15. An
irreducible component of B2 intersects with the other irreducible components of B2 along three
projective lines. They are F-curves F1,1,2,2 and so are contracted. Note that F1,1,2,2 has a point
which is an intersection of three irreducible components of B2. Therefore for each intersection
point there are three Li’s passing through it.

Now it is enough to prove the last statement about the singularity. For a general curve C4 inB2,
an irreducible component D of B2 containing C4 is isomorphic to M0,5. Let p be the moving point
on P1 which is used to define C4 (see Section 2). Let qp : M0,5 → P2 be the Kapranov morphism
for the marked point p ([Kap93, Section 4.2]). Then qp(C4) is a conic in P2. Therefore by [KM13,
Lemma 4.5],

ND/M0,6
|C4
∼= q∗pOP2(−1)|C4

∼= OP2(−1)|qp(C4)
∼= OP1(−2).

Thus locally ϕA is not isomorphic to a smooth blow-down and the image is singular along Li. �

Remark 4.2. In the literature, V 2
A has had several alternative descriptions. First of all, note that

V 2
A ⊂ (P2)6//SL3 is the closure of the locus of configurations of six points on smooth conics.

In [DO88, p.17, Example 3] (also see [Dol03, Example 11.7]), it was proved that (P2)6//SL3 is a
double cover of P4 which is ramified over a quartic hypersurface so called the Igusa quartic (or
Castelnuovo-Richmond quartic) I4. It is defined by

6∑
i=1

Xi = 0,

(
6∑

i=1

X2
i

)2

− 4

(
6∑

i=1

X4
i

)
= 0

in P5. I4 is exactly the locus of configurations on conics, thus V 2
A is isomorphic to I4. On the other

hand, I4 is the Satake compactification A2(2) of the moduli space A2(2) of principally polarized
abelian surfaces with level two structure ([Igu64]). To the author’s knowledge, there have been no
explicit constructions of a regular map from M0,6 to A2(2).

Remark 4.3. From Proposition 4.1, V 2
A is regular in codimension one. Since we can regard it as a

complete intersection in P5, it is Cohen-Macaulay, in particular, it has S2-property. Thus by Serre’s
criterion, V 2

A is normal.
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5. PROOF OF THE MAIN THEOREM

In this section, we run Mori’s program for M0,6 with symmetric divisors.

5.1. Stable base locus decomposition. For an effective divisor D, the stable base locus B(D) is
defined as

B(D) =
⋂
m≥0

Bs(mD),

where Bs(D) is the set-theoretical base locus of D. As a first step toward Mori’s program, we will
compute the stable base locus decomposition of M0,6, which dictates the difference of birational
models of M0,6.

Proposition 5.1. Let D be a symmetric effective divisor on M0,6. Then:

(1) If D ∈ [−KM0,6
,KM0,6

+ 1
3ψ], D is semi-ample.

(2) If D ∈ (KM0,6
+ 1

3ψ,B3], B(D) = B3.
(3) If D ∈ [B2,−KM0,6

), B(D) = B2.

Proof. For n = 6, it is well-known that a divisor D on M0,6 is nef if and only if D · F ≥ 0 for all
F-curves ([KM13, Theorem 1.2]). From Corollary 2.6, it is straightforward to check that Nef(M0,6)

is generated by −KM0,6
and KM0,6

+ 1
3ψ. Thus for item (1), it is sufficient to show that −KM0,6

and
KM0,6

+ 1
3ψ are semi-ample. It is a direct consequence of the fact that M0,6 is a Mori dream space

([Cas09]), but in this case furthermore we can write these divisors as pull-backs of ample divisors.
KM0,6

+ 1
3ψ is a scalar multiple of the pull-back of an ample line bundle on (P1)6//SL2 by Example

3.4. From Lemma 3.7, −KM0,6
is a scalar multiple of a semi-ample divisor DA. So both of them are

semi-ample.

If D ∈ (KM0,6
+ 1

3ψ,B3], since KM0,6
+ 1

3ψ is semi-ample, B(D) ⊂ B3. On the other hand, by
Corollary 2.6, F1,1,1,3 ·D < 0 thus F1,1,1,3 ⊂ B(D). But F1,1,1,3 covers an open dense subset of B3.
So B(D) = B3.

Finally, if D ∈ [B2,−KM0,6
), B(D) ⊂ B2 because −KM0,6

is semi-ample. The negative intersec-
tion C4 ·D < 0 implies C4 ⊂ B(D). Since C4 covers an open dense subset of B2, B(D) = B2. �

We can summarize the above result by Figure 3.

KM0,6
−KM0,6

ψ

B3

B2

KM0,6
+ 1

3ψ

B3

B2

∅

FIGURE 3. Stable base locus decomposition of M0,6
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5.2. Mori’s program for M0,6. Now we can perform Mori’s program of M0,6 for all symmetric
divisors.

Theorem 5.2. Let D be a symmetric effective divisor on M0,6. Then:

(1) If D ∈ (−KM0,6
,KM0,6

+ 1
3ψ), then M0,6(D) ∼= M0,6.

(2) If D ∈ [KM0,6
+ 1

3ψ,B3), then M0,6(D) ∼= (P1)6//SL2.
(3) If D ∈ (B2,−KM0,6

], then M0,6(D) is V 2
A where A = (1

2 , · · · ,
1
2).

(4) Both M0,6(B2) and M0,6(B3) are a point.

Proof. If D ∈ (−KM0,6
,KM0,6

+ 1
3ψ) it is ample by Proposition 5.1. Thus M0,6(D) ∼= M0,6.

IfD ∈ [KM0,6
+ 1

3ψ,B3), thenD = KM0,6
+ 1

3ψ+aB3 for some a > 0. By taking a sufficiently large
multiple, we may assume that D is a linear combination of integral divisors. Note that KM0,6

+ 1
3ψ

is ρ∗L for ρ : M0,6 → (P1)6//SL2 of an ample line bundle L (Example 3.4), andB3 is the exceptional
locus of ρ. Thus by [Deb01, Lemma 7.11],

H0(M0,6,O(mD)) = H0(M0,6,O(m(KM0,6
+

1

3
ψ + aB3)))

∼= H0((P1)6//SL2, L
m).

Therefore

M0,6(D) ∼= Proj
⊕
m≥0

H0(M0,6,O(mD)) ∼= Proj
⊕
m≥0

H0((P1)6//SL2, L
m) ∼= (P1)6//SL2.

Similarly, if D ∈ (B2,−KM0,6
], then D = −KM0,6

+ bB2 for some b > 0 and B2 is the exceptional
locus of ϕA : M0,6 → V 2

A. Also −KM0,6
is the pull-back of an ample line bundle M on V 2

A. By the
same argument,

M0,6(D) ∼= Proj
⊕
m≥0

H0(V 2
A,M

m),

which is the normalization of V 2
A. But V 2

A is normal by Remark 4.3 so it is isomorphic to its nor-
malization.

The last assertion is obvious since both B2, B3 are fixed divisors. �

Remark 5.3. Therefore in symmetric Mori’s program on M0,6, there is no flip. In Mori’s full pro-
gram on M0,6 there must be many flips because we can construct many modular small contractions
of M0,6 by using a general construction described in [GJM13].

On the other hand, for n ≥ 7, even for symmetric Mori’s program many flips should appear.

Remark 5.4. For divisors of the form KM0,n
+ αB with α ≤ 1, Mori’s program can be regarded as

an analogy with the Hassett-Keel program forMg. In this direction, Mori’s program is done by
many authors [Sim08, AS12, FS11, KM11] for all n. When n = 6 it covers a half of the symmetric
effective cone.

The subcone of the effective cone generated by KM0,n
and ψi-classes has been studied inten-

sively. There is a general picture for non-symmetric weight data and even for higher genera cases.
See [Moo11].
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Remark 5.5. It is well-known that (P1)6//SL2 is isomorphic to the Segre cubic S3, which is defined
by

6∑
i=1

Xi = 0,
6∑

i=1

X3
i = 0

in P5 ([Dol03, Example 11.6]). One fascinating fact is that the Segre cubic is projectively dual to
the Igusa quartic I4 ([DO88, Remark I.3]), as a hypersurface in P4. It would be interesting if this
projective dual map can be described concretely in terms of M0,6.

6. MORI’S PROGRAM FORM2

LetM2 be the moduli stack of genus two stable curves. Essentially all birational contractions
ofM2 were described in [Has05], even though Mori’s program was described for only one half of
the effective cone ofM2. Indeed, since all genus two smooth curves are hyperelliptic, the coarse
moduli space M2 is isomorphic to M0,6/S6 ([AL02, Corollary 2.5]). Thus Theorem 5.2 gives Mori’s
full program for M2. Also since Pic(M2)Q ∼= Pic(M2)Q, this result can be regarded as Mori’s
program ofM2.

First of all, we have natural isomorphisms

Pic(M2)Q ∼= Pic(M2)Q ∼= Pic(M0,6)S6
Q .

For the coarse moduli map q : M2 → M2, we have the first isomorphism q∗ : Pic(M2)Q →
Pic(M2)Q. This is an isomorphism only if we take Q-Picard groups. The second isomorphism
comes from π∗ : Pic(M2) → Pic(M0,6)S6 where π : M0,6 → M2 is the S6-quotient map. By fol-
lowing the notations in [Has05], we denote by δ0 (resp. δ1) the boundary divisor of irreducible
nodal curves (resp. that of a union of two elliptic curves respectively) onM2. Let ∆0,∆1 be the
corresponding boundary divisors on the coarse moduli space M2. Let λ be the Hodge class on M2

and also its pull-back onM2. The effective cone ofM2 (resp. M2) is generated by δ0 and δ1 (resp.
∆0 and ∆1). Since q :M2 → M2 is ramified along ∆1, q∗(∆0) = δ0, q∗(∆1) = 2δ1.

The following simple lemma tells the relation between S6-symmetric Mori’s program of M0,6

and Mori’s program of M2. For a projective variety X and a divisor D, let

R(X,D) :=
⊕
m≥0

H0(X,O(mD))

be the section ring of D.

Lemma 6.1. Let G be a finite group acting on a projective variety X . Let π : X → X/G be the quotient
map and D be a Q-Cartier divisor on X/G. Assume that R(X,π∗D) is finitely generated and Y :=

Proj R(X,π∗D). Then R(X/G,D) is finitely generated and Proj R(X/G,D) = Y/G.

Proof. We may assume that D is a Cartier divisor, because Proj R(X,D) does not change after
replacing D by kD. Note that H0(X/G,O(mD)) ∼= H0(X,π∗O(mD))G. Thus

R(X/G,D) =
⊕
m≥0

H0(X/G,O(mD)) ∼=
⊕
m≥0

H0(X,π∗O(mD))G = R(X,π∗D)G.
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Since G is a finite group and R(X,π∗D) is finitely generated, the G-invariant subring is finitely
generated, too. By the definition of projective quotient, Proj R(X/G,D) ∼= Proj R(X,π∗D)G =

Y/G. �

Theorem 6.2. Let D be an effective divisor on M2. Then:

(1) If D ∈ (λ,∆0 + 6∆1), M2(D) ∼= M2.
(2) If D ∈ [∆0 + 6∆1,∆1), M2(D) ∼= P6//SL2.
(3) If D ∈ (∆0, λ], M2(D) ∼= ASat

2 , the Satake compactification of A2.
(4) Both M2(∆0) and M2(∆1) are a point.

Proof. First of all, for the quotient map π : M0,6 → M2, set-theoretically π−1(∆0) = B2 and
π−1(∆1) = B3. Note that S6 acts freely on a general point of M0,6 − (B2 ∪ B3) and a general
point of B3, but there is an order two stabilizer for a general point of B2, which exchanges the two
marked points in the two-pointed irreducible component. Thus π∗(∆0) = 2B2 and π∗(∆1) = B3.

Since λ ≡ 1
10(∆0 + ∆1) ([HM98, Exercise 3.143]), π∗λ = 1

5B2 + 1
10B3 = −1

2KM0,6
. Also π∗(∆0 +

6∆1) = 2B2 + 6B3 = 15(KM0,6
+ 1

3ψ). Thus the decomposition of the effective cone of M2 in the
statement is exactly the image of the stable base locus decomposition of M0,6. So we obtain the
result from Theorem 5.2. For example, forD ∈ (λ,∆0+6∆1), M2(D) = M0,6(π∗D)/S6 = M0,6/S6 =

M2. For D ∈ [∆0 + 6∆1,∆1), M2(D) = M0,6(π∗D)/S6 = (P1)6//SL2/S6 = (P1)6/S6//SL2 =

P6//SL2 since the SL2-action and S6-action commute. Finally, we already know that M2(λ) = ASat
2

from the definition of λ. Now forD ∈ (∆0, λ], M2(D) ∼= M0,6(π∗D)/S6 is independent of the choice
of D. Therefore M2(D) ∼= ASat

2 . �

Finally, we can obtain an alternative proof of the main theorem of [Has05], as a restatement of
Theorem 6.2. Note that q∗(∆0 + 6∆1) = δ0 + 12δ1.

Theorem 6.3. Let D be an effective divisor onM2. Then:

(1) If D ∈ (λ, δ0 + 12δ1),M2(D) ∼= M2.
(2) If D ∈ [δ0 + 12δ1, δ1),M2(D) ∼= P6//SL2.
(3) If D ∈ (δ0, λ],M2(D) ∼= ASat

2 , the Satake compactification of A2.
(4) BothM2(δ0) andM2(δ1) are a point.

Remark 6.4. (1) The divisor classes of the form KM2
+ αδ are more familiar to people who

are interested in the Hassett-Keel program. In this setup, Theorem 6.3 can be translated
as follows: For 2 > α > 9/11, M2(α) := M2(KM2

+ αδ) ∼= M2. For 9/11 ≥ α > 7/10,

M2(α) ∼= P6//SL2. For α ≥ 2,M2(α) ∼= ASat
2 . Finally,M2(7/10) is a point. But it does not

cover the part [δ0, δ0 + δ1] of the effective cone .
(2) It is well-known that P6//SL2

∼= P(2, 4, 6, 10) ([Dol03, Section 10.2]).
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