
MORI’S PROGRAM FOR M0,7 WITH SYMMETRIC DIVISORS

HAN-BOM MOON

Abstract. We complete Mori’s program with symmetric divisors for the mod-

uli space of stable seven-pointed rational curves. We describe all birational

models in terms of explicit blow-ups and blow-downs. We also give a moduli
theoretic description of the first flip, which has not appeared in the literature.

1. introduction

The aim of this paper is running Mori’s program for M0,7, the moduli space
of stable seven-pointed rational curves, with symmetric divisors. Mori’s program,
a minimal model program for a given moduli space M , consists of the following: 1)
Compute the cone of effective divisors Eff(M) for M and the chamber structure on
it, the so called stable base locus decomposition. 2) For an effective divisor D with
finitely generated section ring, we may compute a projective model

M(D) := Proj
⊕
m≥0

H0(M,O(mD))

with a rational contraction M 99K M(D). Because any rational contraction is
obtained in this way ([29]), by running Mori’s program we are able to classify all
birational models of M which are simpler than M . Furthermore, since M is a
moduli space, we may expect that some of M(D) also have certain good moduli
theoretic interpretations.

Since Hassett and Hyeon initiated the study of birational geometry of moduli
spaces of stable curves from the viewpoint of Mori’s program in [24, 26, 27], there
has been a great amount of success and progress in this direction. Although the
initial motivation, finding the (final log) canonical models of moduli spaces of stable
curves Mg succeeded only for a few small genera [24, 30, 10, 12], people have

constructed many modular birational models of Mg and the models have been
studied in a theoretical framework of Mori’s program. Also the same framework
has been applied to many other moduli spaces, for instance Hilbert schemes of
points ([3]) and the moduli space of stable maps ([8, 7, 9]).

We are interested in running Mori’s program for M0,n, the moduli space of stable

n-pointed rational curves. Since dim N1(M0,n)Q grows exponentially, it is almost
impossible to determine all birational models even for very small n. But if we
restrict ourselves to the space N1(M0,n)Sn

Q of Sn-invariant divisors (or symmetric

divisors), then the dimension grows linearly. Thus we may try to classify all bira-
tional models appearing in Mori’s program at least for small n.

2010 Mathematics Subject Classification. Primary 14H10, Secondary 14E30.
Key words and phrases. moduli of curves, minimal model program, Mori dream space.

1



2 HAN-BOM MOON

The first non-trivial case is n = 6 and it was investigated in [43]. In this case,
there are two divisorial contractions and no flips. These two contractions are classi-
cally well-known varieties, the Segre cubic and Igusa quartic. The next case n = 7,
which we study in this paper, is interesting because there are two flips of M0,7. It
seems that in the literature, there has been no description of these spaces.

1.1. The first main result - Mori’s program. In the first half of this pa-
per, we classify all projective models appearing in Mori’s program. In this case
dim N1(M0,7)S7

Q = 2 and Eff(M0,7)S7 is generated by two boundary divisors B2 and
B3. To describe the result in an efficient way, we use the interval notation for divisor
classes. For two divisor classes D1 and D2, [D1, D2) is the set of all divisor classes
aD1 + bD2 where a ≥ 0 and b > 0. Similarly, we can define (D1, D2), (D1, D2], and
[D1, D2] as well. All divisor classes below are defined in Section 2. We describe the
flipping locus B3

2 and B2
2 later in this section.

Theorem 1.1. Let D be a symmetric effective divisor of M0,7. Then:

(1) If D ∈ (ψ −KM0,7
,KM0,7

+ 1
3ψ), M0,7(D) ∼= M0,7.

(2) If D ∈ [KM0,7
+ 1

3ψ,B3), M0,7(D) ∼= M0,A, the moduli space of weighted

pointed stable curves with weight A =
(
1
3 , · · · ,

1
3

)
.

(3) If D = ψ−KM0,7
, M0,7(D) is isomorphic to the Veronese quotient V 3

A where

A =
(
4
7 , · · · ,

4
7

)
.

(4) If D ∈ (ψ − 3KM0,7
, ψ −KM0,7

), M0,7(D) ∼= M
3

0,7, which is a flip of M0,7

over V 3
A. The flipping locus is B3

2 .

(5) If D = ψ − 3KM0,7
, M0,7(D) is a small contraction of M

3

0,7.

(6) If D ∈ (ψ − 5KM0,7
, ψ − 3KM0,7

), M0,7(D) ∼= M
2

0,7, which is a flip of M
3

0,7

over M0,7(ψ − 3KM0,7
). The flipping locus is the proper transform of B2

2 .

(7) If D ∈ (B2, ψ− 5KM0,7
], M0,7(D) ∼= M

1

0,7, which is a divisorial contraction

of M
2

0,7. The contracted divisor is the proper transform of B2.

(8) If D = B2 or B3, M0,7(D) is a point.

Some of these results are already well-known. The birational models in Items (1)
through (3) are models appearing in [25, 16] and they have certain moduli theoretic
meaning. Also Mori’s program for M0,n for a subcone generated by KM0,n

and

B =
∑
Bi has been intensively studied in [48, 11, 33, 1] for arbitrary n. For n = 7,

this subcone covers Items (1) and (2). Thus the new result is the opposite direction,
Items (3) through (7).

Along this direction, the chain of birational maps M0,7 99K M
3

0,7 99K M
2

0,7 → M
1

0,7

shows interesting toroidal birational modifications. On M0,7, B2 is a simple normal
crossing divisor and at most three irreducible components meet together. Let Bi2
be the union of nonempty intersections of i irreducible components of B2. For

M0,7 99K M
3

0,7, B3
2 is the flipping locus and on M

3

0,7 no three irreducible components

of B2 intersect. For M
3

0,7 99K M
2

0,7, the flipping locus is the proper transform

of B2
2 and on M

2

0,7, the irreducible components of B2 are disjoint. Finally, on

M
2

0,7 → M
1

0,7, the modified locus is the proper transform of B1
2 = B2, the disjoint

union of irreducible components and it is a divisorial contraction.
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Very recently, Castravet and Tevelev proved in [6] that M0,n is not a Mori dream
space if n ≥ 134. This result was improved to n ≥ 13 by Gonzalez and Karu
([18]). However, since the effective cone of M0,n/Sn is simplicial and generated by

boundary divisors Bi for 2 ≤ i ≤ bn2 c, it is believed that M0,n/Sn is a Mori dream

space. Because Mori’s program of M0,n with symmetric divisors can be identified

with that of M0,n/Sn ([43, Lemma 6.1]), we obtain the following result.

Corollary 1.2. The S7-quotient M0,7/S7 is a Mori dream space.

In general, we expect that the symmetric cone Eff(M0,n)∩N1(M0,n)Sn

Q is in the
Mori dream region, so while running Mori’s program with symmetric divisors, there
is no fundamental technical obstruction. In particular, we expect that the answer
for the following question, due to Hu and Keel, is affirmative.

Question 1.3 ([29, Implication 3.3]). For each 2 ≤ k ≤ bn2 c, is there a rational

contraction M0,n 99K M(k) which contracts all boundary divisors except Bk?

For n ≥ 7, the only previously known such model was M(2), which is (P1)n//SL2

([33]). The space M
1

0,7 provides M(3) when n = 7.

1.2. The second main result - Modular interpretation. So far, all modular
birational models of Mg,n have been constructed in two ways. One way is taking
GIT quotients of certain parameter spaces of pointed curves embedded in a projec-
tive space by using Chow varieties or Hilbert schemes, and another way is taking
an open proper substack of the stack of all pointed curves. Those two approaches
are completely different, but the outcome is essentially moduli spaces of (pointed)

curves with worse singularities. For instance, the moduli spaceMps

g of pseudostable
curves ([47]) can be obtained by allowing cuspidal singularities instead of elliptic
tails. By replacing a certain type of subcurves by a cetain type of Gorenstein sin-
gularities, we may obtain many other birational models. See [2] for a systematic
approach for curves without marked points. Hassett’s moduli spaces of weighted
stable curves Mg,A are also moduli spaces of semi log canonical pairs (See Section
4.1.), so they are moduli spaces of pointed curves with certain types of singularities
of pairs as well.

Recently, in [49], Smyth gave a partial classification of possible modular bira-
tional models of Mg,n, which are moduli spaces of curves with certain singularity
types. When g = 0, his result gives a complete classification. One interesting fact
is that all of his birational models are contractions of M0,n, because there is no
positive dimensional moduli of singularities of arithmetic genus zero. Therefore if
one wants to impose a moduli theoretic interpretation of a flip of M0,n, then it must
not be a moduli space of ‘pointed curves’, in the sense that pairs of an abstract
curve and a collection of dimension 0 subvarieties.

In the second half of this paper, we give a moduli theoretic meaning to the first

flip M
3

0,7. The main observation is that both M0,7 and V 3
A are constructed as GIT

quotients (Remark 4.4) and there is a commutative diagram in Figure 1.
The variety I is the incidence variety in M0,0(P3, 3) × (P3)7, where M0,0(P3, 3)

is the moduli space of stable maps ([39]). All vertical maps are SL4-GIT quotients
with certain linearizations (thus they are not regular maps.). So we may guess that
there is a parameter space X in the node � such that

(1) There is a functorial morphism X → M0,0(P3, 3)× (P3)7;
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M0,7(P3, 3)

))
//SL4

��

oo // �

vv
//SL4

��

I ⊂ M0,0(P3, 3)× (P3)7

//SL4

��

M0,7

((

oo // M
3

0,7

ww
V 3
A

Figure 1. SL4-quotients of incidence varieties

(2) There is an ‘incidence variety’ J ⊂ X with SL4-action;

(3) With an appropriate linearization, J//SL4
∼= M

3

0,7.

Let U0,n(Pr, d) be the moduli stack of unramified stable maps, introduced in

[35]. And let U0,n(Pr, d) be the coarse moduli space. By analyzing the difference

between U0,0(P3, 3) and M0,0(P3, 3) carefully, we will show that U0,0(P3, 3)× (P3)7

has the role of X.
Unfortunately, there are just a few known geometric properties of U0,0(P3, 3).

For instance, it is not irreducible, and the connectivity and projectivity of the coarse
moduli space are unknown. Therefore the standard GIT approach is unavailable.
Instead of that, we introduce a ‘stable locus’ Js of J and show that Js/SL4 is

a projective variety which is isomorphic to M
3

0,7. We will denote Js/SL4 by a

‘formal GIT quotient’ J//SL4 because if we know the projectivity of U0,0(P3, 3),
then Js/SL4 is indeed isomorphic to J//SL4 with a standard choice of linearization.

Theorem 1.4. (Theorem 6.8) The formal GIT quotient J//SL4 is isomorphic to

M
3

0,7.

By using this result, we are able to describe a modular description of M
3

0,7. As
we mentioned before, it is not a space of pointed curves anymore. It is a parameter
space of data (C, (x1, x2, · · · , x7), C ′) where (C, x1, x2, · · · , x7) is an element of V 3

A,
which is an arithmetic genus zero pointed curve with a certain stability condition
([16, Theorem 5.1]), and C ′ is a ghost curve, which is a curve on a non-rigid
compactified tangent space P(TxC ⊕ C) for a non-Gorenstein singularity x ∈ C.
For the precise definition, see Sections 5 and 6.

The same type of flip appears for Mori’s program for all n ≥ 7 (Remark 6.10).
Thus we believe that to run Mori’s program for M0,n, it is inevitable to understand

the geometry of U0,n(Pd, d). We will study geometric properties of this relatively
new moduli space in forthcoming papers.

1.3. Structure of the paper. In Section 2 we recall the definitions of several
divisor classes and curve classes on M0,n with their numerical properties. In Section

3, we compute the stable base locus for every symmetric effective divisor on M0,7. In
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Section 4 we prove Theorem 1.1. Section 5 reviews the moduli space of unramified
stable maps and its geometric properties. Finally in Section 6, we prove Theorem
1.4.

We will work over the complex numbers C.

2. Divisors and curves on M0,n

In this section, we review general facts about divisors and curves on M0,n. All
material in this section is well-known but we collect the statements we will use for
the readers convenience.

2.1. Divisors on M0,n. The moduli space M0,n inherits a natural Sn action per-

muting the marked points. A divisor D on M0,n is called symmetric if it is

invariant under the Sn action. The Neron-Severi vector space N1(M0,n)Q has di-

mension 2n−1 −
(
n
2

)
− 1 so the space of divisors on M0,n is quite huge. But the

Sn-invariant part N1(M0,n)Sn

Q
∼= N1(M0,n/Sn)Q of N1(M0,n)Q is bn/2c − 1 dimen-

sional ([32, Theorem 1.3]) so at least for small n, computations on the space are
doable.

The following is a list of tautological divisors on M0,n.

Definition 2.1. (1) For I ⊂ [n] = {1, 2, · · · , n} with 2 ≤ |I| ≤ n − 2, let
BI be the closure of the locus of pointed curves (C, x1, · · · , xn) with two
irreducible components C1 and C2 such that C1 (resp. C2) contains xi
for i ∈ I (resp. i ∈ Ic). BI is called a boundary divisor. By definition,
BI = BIc . For 2 ≤ i ≤ n − 2, let Bi = ∪|I|=iBI . Then Bi is a symmetric

divisor and Bi = Bn−i. Finally, let B =
∑bn/2c
i=2 Bi.

(2) Fix 1 ≤ i ≤ n. Let Li be the line bundle on M0,n such that over (C, x1, · · · , xn) ∈
M0,n, the fiber is ΩC,xi

, the cotangent space of C at xi. Let ψi = c1(Li),
the i-th psi class. If we denote ψ =

∑n
i=1 ψi, then ψ is a symmetric divisor.

(3) Let KM0,n
be the canonical divisor of M0,n. Obviously it is symmetric.

The symmetric effective cone Eff(M0,n)Sn ∼= Eff(M0,n/Sn), which is Eff(M0,n)∩
N1(M0,n)Sn

Q , is generated by symmetric boundary divisors ([32, Theorem 1.3]).
Therefore we can write KM0,n

and ψ as nonnegative linear combinations of bound-

ary divisors.

Lemma 2.2. [46, Proposition 2], [41, Lemma 2.9] On N1(M0,n)Q, the following
relations hold.

(1) KM0,n
=

bn/2c∑
i=2

(
i(n− i)
n− 1

− 2

)
Bi.

(2) ψ = KM0,n
+ 2B.

2.2. Curves on M0,n. Let I1 t I2 t I3 t I4 = [n] be a partition. Let FI1,I2,I3,I4 be
the F-curve class corresponding to the partition ([32, Section 4]).

Lemma 2.3. [32] Let F = FI1,I2,I3,I4 be an F-curve and let BJ be a boundary
divisor.

(1) F ·BJ =


1, J = Ii ∪ Ij for some i 6= j,

−1, J = Ii for some i,

0, otherwise.
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(2) F · ψi =

{
1, Ij = {i} for some j,

0, otherwise.

If we consider symmetric divisors only, then the intersection numbers do not
depend on a specific partition but depend only on the size of the partition. A curve
class Fa1,a2,a3,a4 is one of any F-curve classes FI1,I2,I3,I4 with ai = |Ii|.

To compute the stable base locus in Section 3, we need to use other curve classes
Cj (see [32, Lemma 4.8]). Fix a j-pointed P1 and let x be an additional moving
point on P1. By gluing a fixed (n−j+1)-pointed P1 whose last marked point is y to
the (j + 1)-pointed P1 along x and y and stabilizing it, we obtain a one parameter
family of n-pointed stable curves over P1, i.e., a curve Cj ∼= P1 on M0,n.

Lemma 2.4. [32, Lemma 4.8]

Cj ·Bi =


j, i = j − 1,

−(j − 2), i = j,

0, otherwise.

Remark 2.5. We are able to generalize the idea of this construction. For example,
by 1) gluing two 3-pointed P1 to (n−2)-pointed P1, 2) varying one of two attached
points, and 3) stabilizing it, we get a one parameter family of n-pointed stable
curves over P1. Let A ⊂ M0,7 be such a curve class.

2.3. Numerical results on M0,7. For the convenience of readers, we state a spe-

cial case of M0,7 below. All results are combinations of the Lemmas in previous
sections.

Corollary 2.6. The symmetric Neron-Severi space N1(M0,7)S7

Q has dimension two.

The symmetric effective cone Eff(M0,7)S7 is generated by B2 and B3. Moreover,

(1) KM0,7
= − 1

3B2,

(2) ψ = 5
3B2 + 2B3,

(3) B2 = −3KM0,7
,

(4) B3 = 5
2KM0,7

+ 1
2ψ.

We can summarize Corollary 2.6 with Figure 2.

KM0,7

ψ

B3

B2

Figure 2. Neron-Severi space of M0,7

Corollary 2.7. On M0,7, the intersection of symmetric divisors and curve classes
are given by Table 1.



MORI’S PROGRAM FOR M0,7 WITH SYMMETRIC DIVISORS 7

ψ KM0,7
B2 B3

F1,1,1,4 3 -1 3 -1
F1,1,2,3 2 0 0 1
F1,2,2,2 1 1 -3 3
C4 4 0 0 2
C5 5 1 -3 5
C6 10 -2 6 0
A 3 1 -3 4

Table 1. Intersection numbers on M0,7

3. Stable base locus decomposition

For an effective divisor D, the stable base locus B(D) is defined as

B(D) =
⋂
m≥0

Bs(mD),

where Bs(D) is the set-theoretical base locus of D. As a first step toward Mori’s
program, we will compute stable base locus decompositions of M0,7, which is a first
approximation of the chamber decompositions for different birational models.

Definition 3.1. Let Bi2 be the union of intersections of i distinct irreducible com-
ponents of B2.

Since B is a simple normal crossing divisor, Bi2 is a union of smooth varieties of
codimension i. Moreover, the singular locus of Bi2 is exactly Bi+1

2 . On M0,7, B4
2

is an emptyset, B3
2 is the union of all F-curves of type F1,2,2,2. Each irreducible

component of B2
2 is isomorphic to M0,5. Finally, B1

2 = B2.

Proposition 3.2. Let D be a symmetric effective divisor on M0,7. Then:

(1) If D ∈ [ψ −KM0,7
,KM0,7

+ 1
3ψ], D is semi-ample.

(2) If D ∈ (KM0,7
+ 1

3ψ,B3], B(D) = B3.

(3) If D ∈ [ψ − 3KM0,7
, ψ −KM0,7

), B(D) = B3
2 .

(4) If D ∈ [ψ − 5KM0,7
, ψ − 3KM0,7

), B(D) = B2
2 .

(5) If D ∈ [B2, ψ − 5KM0,7
), B(D) = B2.

Proof. By [32, Theorem 1.2] and Corollary 2.7, the nef cone of M0,7 is generated
by ψ−KM0,7

and KM0,7
+ 1

3ψ. Moreover, KM0,7
+ 1

3ψ is the pull-back of an ample

divisor on M0,A where A = ( 1
3 ,

1
3 , · · · ,

1
3 ) (See the proof of Theorem 3.1 of [41]. In

particular, the right hand side of [41, Equation (7)] is zero.). The opposite extremal
ray ψ −KM0,7

is also semi-ample. Indeed, by comparing the intersection numbers,

it is straightforward that ψ−KM0,7
is proportional to the pull-back of the canonical

polarization on the Veronese quotient V 3
A where A = ( 3

7 , · · · ,
3
7 ) ([17, Theorem 2.1]).

Therefore the two endpoints of this interval, and hence all divisors in the interval,
are semi-ample divisors.

If D ∈ (KM0,7
+ 1

3ψ,B3], then B(D) ⊂ B3 since KM0,7
+ 1

3ψ is semi-ample and

D is an effective linear combination of KM0,7
+ 1

3ψ and B3. By Corollary 2.7,
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F1,1,1,4 · D < 0 so F1,1,1,4 ⊂ B(D). Since F1,1,1,4 covers an open dense subset of
B3, B(D) = B3.

If D ∈ [B2, ψ −KM0,7
), then B(D) ⊂ B2 by a similar reason. By Corollary 2.7,

F1,2,2,2 ·D < 0 if D ∈ [B2, ψ−KM0,7
), thus F1,2,2,2 ⊂ B(D). If D ∈ [B2, ψ−3KM0,7

),

A ·D < 0 and A covers a dense open subset of B2
2 . Thus B2

2 ⊂ B(D). Finally, if
D ∈ [B2, ψ − 5KM0,7

), C5 · D < 0. Since C5 covers an open dense subset of B2,

B2 ⊂ B(D). In particular, we obtain Item (5).
Now it suffices to show that B(D) ⊂ B3

2 if D ∈ [ψ − 3KM0,7
, ψ − KM0,7

) and

B(D) ⊂ B2
2 if [ψ − 5KM0,7

, ψ − 3KM0,7
). Let BI be an irreducible component

of B2 and BJ be an irreducible component of B3 such that BI ∩ BJ 6= ∅. For
E = 5B2 + 3B3 = 3

2 (ψ − 5KM0,7
), by using Keel’s relations ([31, 550p]) and a

computer algebra system, we can find a divisor E′ ∈ |E| such that E′ is a non-
negative integral linear combination of boundary divisors such that the coefficients
of BI and BJ are zero. For example, if I = {1, 2} and J = {3, 4, 5},

E ≡ 12B{1,4} + 9
(
B{2,5} +B{2,6} +B{5,6}

)
+6
(
B{1,3} +B{1,7} +B{2,3} +B{2,7} +B{3,4} +B{3,7} +B{4,7}

)
+3
(
B{1,5} +B{1,6} +B{3,5} +B{3,6} +B{4,5} +B{4,6} +B{5,7} +B{6,7}

)
+15B{2,5,6} + 12

(
B{1,4,7} +B{1,3,4}

)
+6
(
B{1,3,7} +B{1,4,5} +B{1,4,6} +B{2,3,5} +B{2,3,6}

+B{2,3,7} +B{2,5,7} +B{2,6,7} +B{3,4,7}
)

+3
(
B{1,5,6} +B{3,5,6} +B{4,5,6} +B{5,6,7}

)
.

Similarly, if I = {1, 2} and J = {1, 2, 3},

E ≡ 12B{1,4} + 9
(
B{2,6} +B{2,7} +B{6,7}

)
+6
(
B{1,3} +B{1,5} +B{2,3} +B{2,5} +B{3,4} +B{3,5} +B{4,5}

)
+3
(
B{1,6} +B{1,7} +B{3,6} +B{3,7} +B{4,6} +B{4,7} +B{5,6} +B{5,7}

)
+15B{2,6,7} + 12

(
B{1,3,4} +B{1,4,5}

)
+6
(
B{1,3,5} +B{1,4,6} +B{1,4,7} +B{2,3,5} +B{2,3,6}

+B{2,3,7} +B{2,5,6} +B{2,5,7} +B{3,4,5}
)

+3
(
B{1,6,7} +B{3,6,7} +B{4,6,7} +B{5,6,7}

)
.

These two cases cover all possibilities that BI ∩BJ 6= ∅ up to the S7-action. Thus
the support of E′ does not contain a general point of BI and a general point of
BI ∩BJ . Therefore B(E) must be contained in B2

2 . Since ψ−KM0,7
is semi-ample,

for all divisors D ∈ [ψ − 5KM0,7
, ψ −KM0,7

), B(D) ⊂ B2
2 and Item (4) is shown.

Finally, let BI , BK be two irreducible components of B2 whose intersection is
nonempty. For F = 4B2 + 3B3 = 3

2 (ψ − 3KM0,7
), by using a similar idea, we can

find a divisor F ′ ∈ |F | such that F ′ is a non-negative integral linear combination
of boundary divisors such that the coefficients of BI and BK are zero. Indeed, if
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I = {1, 2} and K = {3, 4},

F ≡ 12B{1,3} + 9
(
B{2,4} +B{2,6} +B{4,6}

)
+6
(
B{1,5} +B{1,7} +B{3,5} +B{3,7}

)
+3
(
B{2,5} +B{2,7} +B{4,5} +B{4,7} +B{5,6} +B{5,7} +B{6,7}

)
+18B{2,4,6} + 15

(
B{1,3,5} +B{1,3,7}

)
+6
(
B{1,5,7} +B{2,4,5} +B{2,4,7} +B{2,5,6} +B{2,6,7} +B{3,5,7} +B{4,5,6} +B{4,6,7}

)
+3
(
B{1,2,3} +B{1,3,4} +B{1,3,6}

)
.

Thus a general point of B2
2 is not contained in B(F ), too. The only remaining locus

in B2 is B3
2 . Hence B(F ) ⊂ B3

2 and the same holds for all D ∈ [ψ − 3KM0,7
, ψ −

KM0,7
). �

We summarize the above result as Figure 3.

KM0,7B2

ψ

B3

KM0,7
+ 1

3ψ

B3

B2

∅

B2
2

B3
2

ψ −KM0,7

ψ − 3KM0,7

ψ − 5KM0,7

Figure 3. Stable base locus decomposition of M0,7

4. Mori’s program for M0,7

In this section, we present the first main theorem (Theorem 1.1) of this paper.
Before proving it, we describe some moduli spaces appearing in the theorem.

4.1. Moduli of weighted pointed stable curves. The moduli space M0,A of
weighted pointed stable curves, in Item (2), is constructed in [25]. For a collection
of positive rational numbers (so called weight data) A = (a1, a2, · · · , an) with 0 <
ai ≤ 1 and

∑
ai > 2, there is a fine moduli space of pointed curves (C, x1, · · · , xn)

such that

• C is a reduced, connected projective curve with pa(C) = 0;
• (C,

∑
aixi) is a semi-log canonical pair;

• ωC +
∑
aixi is ample.

In contrast to M0,n, for a subset I ⊂ [n], if
∑
i∈I ai ≤ 1 then {xi}i∈I may collide

at a smooth point of C. But because of the last condition, each tail of C has
sufficiently many marked points in the sense that their weight sum is greater than
one. Also note that M0,n = M0,(1,1,··· ,1).
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The moduli space M0,A is smooth and birational to M0,n. Furthermore, there

is a reduction map ρA : M0,n → M0,A for any weight data, which is a divisorial
contraction. The map ρA sends a pointed curve (C, x1, x2, · · · , xn) to a new curve
(C, x̄1, x̄2, · · · , x̄n) which is obtained by contracting all tails with weight sums ≤ 1
to the attaching point.

Example 4.1. For the case of n = 7 and A =
(
1
3 , · · · ,

1
3

)
, ρA is the contraction of

B3. A general point (C1 ∪ C2, x1, x2, . . . , x7) has a tail with three marked points.
Then the sum is precisely one, so the tail is contracted to a point. Note that it
forgets the cross ratio of three marked points and a nodal point. Thus the image of
B3 is a codimension two subvariety of M0,A. Figure 4 shows the contraction. The
number on a marked point is the multiplicity.

⇒

3

Figure 4. The reduction map ρA : M0,7 → M0,A where A =
(
1
3 , · · · ,

1
3

)
4.2. Veronese quotients. The Veronese quotients V dA in Item (3) and their geo-
metric properties have been studied in [15, 16, 17]. Originally, they were constructed
as GIT quotients of an incidence variety coming from the Chow varieties of curves
and points in Pd.

Let Chow1,d(Pd) be the irreducible component of the Chow variety which parametrizes
rational normal curves and their degenerations. Consider the incidence variety

I := {(C, x1, · · · , xn) ∈ Chow1,d(Pd)× (Pd)n | xi ∈ C}.

There is a natural SLd+1-action on I and Chow1,d(Pd) × (Pd)n. Also there is a
canonical polarization OChow(1) on Chow1,d(Pd). For a sequence of nonnegative
rational numbers (γ, a1, a2, · · · , an), define a Q-polarization on I which is the pull-
back of

LA := OChow(γ)⊗O(a1)⊗ · · · ⊗ O(an)

on Chow1,d(Pd)× (Pd)n. We will normalize the linearization by imposing a numeri-
cal condition (d−1)γ+

∑
ai = d+1. Thus γ is determined by A := (a1, a2, · · · , an)

and d. If 0 < ai < 1 and 2 <
∑
ai ≤ d+1 (hence 0 ≤ γ < 1), then the semistable lo-

cus Iss is nonempty ([16, Proposition 2.10]), so we obtain a nonempty GIT quotient
V dA := I//LA

SLd+1.

Remark 4.2. A simple observation on the semistability is that every stable curve is
non-degenerate. A non-degenerate degree d curve in Pd has several nice geometric
properties: 1) Every connected subcurve of degree e spans Pe ⊂ Pd, and 2) all
singularities are analytically locally the union of coordinate axes in some Ck ([16,
Corollary 2.4]).

For simplicity, consider general polarizations such that Iss = Is. These quotients
have modular interpretations, as moduli spaces of stable polarized pointed curves.
For a precise definition and proof, consult [16, Section 5.1].
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For any weight data A and d > 0, there is a reduction map φ : M0,n → V dA ([16,
Theorem 1.1]), which preserves M0,n. For each (possibly reducible) connected tail

C ′ of (C, x1, x2, · · · , xn) ∈ M0,n, we may define a numerical value

σ(C ′) := min

{
max

{⌈∑
xi∈C′ ai − 1

1− γ

⌉
, 0

}
, d

}
.

Because the dual graph of C is a tree, we can define σ(C ′) for every irreducible
component C ′, by setting σ(C ′) := σ(C ′′ ∪ C ′) − σ(C ′′) for any tail C ′′ such that
C ′′∪C ′ is connected. The reduction map φ sends (C, x1, x2, · · · , xn) to a new curve
(C, x̄1, · · · , x̄n) which is obtained by contracting all irreducible components C ′ with
σ(C ′) = 0.

Example 4.3. The n = 7, d = 3 and A =
(
4
7 , · · · ,

4
7

)
(hence γ = 0) case. Then

there are only two types of curves in M0,7 with contractions.

(1) A chain of curves C = C1∪C2∪C3 such that C1 has two marked points, C2

has a marked point, and (possibly reducible) C3 has four marked points.
Then C2 is contracted to a point.

(2) A comb of rational curves with three tails C1, C2, C3 with two marked points
respectively, and a spine C4 with a marked point. C4 is contracted to a
triplenodal singularity with a marked point on it.

Note that for the first case, the contracted component has only three special points.
Thus near the point, M0,7 and V 3

A are locally isomorphic. But in the second case,
the spine has four special points so it has a one-dimensional moduli. Thus the map
φ contracts the loci of such curves, which are F-curves of type F1,2,2,2. So φ is a
small contraction.

⇒

⇒

Figure 5. The reduction map φ : M0,7 → V 3
A where A =

(
4
7 , · · · ,

4
7

)
Remark 4.4. An important observation for Example 4.3 is that we may replace
the Chow variety by moduli space of stable maps M0,0(P3, 3). There is a cycle map

f : M0,0(Pd, d)→ Chow1,d(Pd).

When d ≤ 3, if we take the locus M0,0(Pd, d)nd parametrizing stable maps with
non-degenerate images and if Chow1,d(Pd)nd is the image of it, then the restricted
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cycle map is isomorphism because there is no degree 0 component with positive
dimensional moduli. Therefore

M0,0(P3, 3)nd × (P3)n → Chow1,3(P3)nd × (P3)n

is an isomorphism and Is is a subset of Chow1,3(P3)nd × (P3)n. Therefore we may

replace the Chow variety by M0,0(P3, 3).

Furthermore, M0,n
∼= M0,n(Pd, d)//SLd+1 for an appropriate linearization ([16,

Proposition 4.6]). And the morphism M0,7 → V 3
A is obtained by taking the quotient

of the map of
M0,7(P3, 3)→ M0,0(P3, 3)× (P3)7.

The other birational models M
i

0,7 with i = 1, 2, 3 are new spaces which don’t
appear in the literature. We will describe them concretely using explicit blow-ups
and downs.

4.3. Outline of the proof. The proof of Theorem 1.1 involves explicit but long
computations of several birational modifications. So we outline the proof here and
prove it in the following sections.

Outline of the proof of Theorem 1.1. Since the symmetric nef cone is generated by
ψ−KM0,7

and KM0,7
+ 1

3ψ, D in Item (1) is an ample divisor. Thus M0,7(D) ∼= M0,7.

Item (2) is established in [41, Theorem 3.1]. If D = KM0,7
+ 1

3ψ, M0,7(D) ∼= M0,A.

Because for D in the range of Item (2) the stable base locus B(D) is B3, after
removing B3, we obtain Item (2) in general.

Consider the reduction map φ : M0,7 → V 3
A in Item (3). By applying [17,

Theorem 3.1], we can compute the pull-back DA of the canonical polarization on
V 3
A. With the notation in [17], Item (3) is the case that γ = 0, A =

(
4
7 ,

4
7 , · · · ,

4
7

)
.

So it is straightforward to check that F1,2,2,2 ·DA = 0. Since dim N1(M0,7)S7

Q = 2,
this implies that DA is proportional to ψ − KM0,7

by Corollary 2.7. Therefore

M0,7(ψ −KM0,7
) ∼= M0,7(DA) ∼= V 3

A.

Items (4), (5), (6), and (7) are obtained by careful computations of flips and
contractions. We give a proof of Item (4) in Proposition 4.6. Items (5) and (6)
are proved in Lemma 4.12 and Proposition 4.8 respectively. We prove Item (7) in
Proposition 4.15.

Since B2 and B3 are rigid, Item (8) follows immediately. �

Remark 4.5. The direction toward the canonical divisor have been well understood
for all n and all (possibly non-symmetric) weight data. For every n and A =
(a1, a2, · · · , an),

M0,n(KM0,n
+
∑

aiψi) ∼= M0,A.

For a proof, see [41]. Also for a generalization to Mg,n with g > 0, consult [42].

4.4. First flip. In this section, we describe the first flip M0,7 99K M
3

0,7 in terms of
blow-ups and downs.

Proposition 4.6. Let M̃3
0,7 be the blow-up of M0,7 along B3

2 . A connected compo-

nent of the exceptional locus is isomorphic to P1 × P2. Let M
3

0,7 be the blow-down

of these exceptional loci to the opposite direction. Then M
3

0,7 is smooth and it is

the D-flip of φ : M0,7 → V 3
A for D ∈ (ψ− 3KM0,7

, ψ−KM0,7
) and M0,7(D) ∼= M

3

0,7.
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Proof. On M0,7, B3
2 is the disjoint union of 105 F-curves of type F1,2,2,2. Take a

component F of B3
2 , which is an F-curve BI ∩BJ ∩BK where |I| = |J | = |K| = 2.

The normal bundle N := NF/M0,7
is isomorphic to O(BI) ⊕ O(BJ) ⊕ O(BK)|F .

By [32, Lemma 4.5], N ∼= O(−ψp)⊕O(−ψq)⊕O(−ψr) where p, q, r are attaching
points of three tails. Since F · ψx = 1 for any attaching point x, N ∼= OP1(−1)3.

Let π3 : M̃3
0,7 → M0,7 be the blow-up. The blown-up space M̃3

0,7 is a smooth vari-

ety. Also a connected component E of the exceptional locus is P(N) ∼= P(OP1(−1)3) ∼=
P1 × P2 and the normal bundle NE/M̃3

0,7
is isomorphic to OP1×P2(−1,−1). Thus

for a point y ∈ P2, the restricted normal bundle to a fiber P1 × {y} is OP1(−1).

Therefore there exists a smooth contraction M
3

0,7, which contracts the P1-fibration

structure of the exceptional divisor. Let π′3 : M̃3
0,7 → M

3

0,7 be the contraction. Since
the positive dimensional fiber of π′3 is contracted by φ◦π3, there is a birational map

φ′3 : M
3

0,7 → V 3
A such that φ ◦ π3 = φ′3 ◦ π′3 by the rigidity lemma ([38, Proposition

II.5.3]).

M̃3
0,7

π3

}}

π′
3

!!

M0,7

φ
!!

M
3

0,7

φ′
3}}

V 3
A

We claim that φ′3 : M
3

0,7 → V 3
A is a D-flip for D ∈ (ψ− 3KM0,7

, ψ−KM0,7
). The

exceptional set of φ is exactly B3
2 = ∪F1,2,2,2. From Corollary 2.7, −D ·F1,2,2,2 > 0.

Thus −D is φ-ample. Note that a connected component of the positive dimensional

exceptional locus of φ′3 is isomorphic to P2. Let L̃ be a line class of type (0, 1) in the

exceptional divisor E ∼= P1×P2 on M̃3
0,7. And let L := π′3(L̃) which is a line on the

exceptional locus of φ′3. Note that on φ′3-exceptional P2, BI |P2 , BJ |P2 , BK |P2 are
line classes. So B2 ·L = 3. On the other hand, B3 intersects E three times and each
irreducible component of the intersection is isomorphic to {∗}×P2 ⊂ P1×P2 ∼= E,

the divisor B3 on M
3

0,7 vanishes along P2 with multiplicity three. Hence B3 ·L = −3.
Now from ψ − KM0,7

= 2B2 + 2B3, for D ∈ (B2, ψ − KM0,7
), D · L > 0 so D is

φ′3-ample.
Furthermore, we can see that for D ∈ (ψ − 3KM0,7

, ψ −KM0,7
), D is ample on

M
3

0,7. If a curve class C is in the image of exceptional P2, then we already proved
that C · D ≥ 0. If C is not contained in the exceptional locus, from Proposition
3.2, mD is movable for m � 0 on the outside of B3

2 thus C · D ≥ 0 if D ∈
[ψ−3KM0,7

, ψ−KM0,7
]. Therefore the nef cone of M

3

0,7/S7 is generated by ψ−KM0,7

and ψ − 3KM0,7
. Since the ample cone is the interior of the nef cone, the desired

result follows. �

Remark 4.7. After the first flip, the proper transform of B2
2 becomes a disjoint

union of its irreducible components. Each irreducible component is isomorphic to
P1 × P1.
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4.5. Second flip. The description of the second flip is more complicated. It is a
composition of two smooth blow-ups, a smooth blow-down and a singular blow-
down. In this section, we will describe the second flip. Since the flipping locus is
the disjoint union of irreducible components of the proper transform of B2

2 , it is
enough to focus on the modification on an irreducible component. We will give an
outline of the description first, and after that we give justifications of statements as
a collection of lemmas. Figure 6 shows the decomposition of the flip. By abusing

notation, we say B2
2 for the proper transform of B2

2 on M
3

0,7.

X0

P1

P1

M0 = M
3

0,7

X1

M1

P1

Y12

Y11

M2

X2

Y22

Y21

Y21 ∩B2

Y22 ∩B2

F3

F3

X3 = P3

Y31 = F3

Y32 = F3

M3
Y31 ∩B2

Y32 ∩B2

X4

M4 = M
2

0,7

Y41

Y42

Y41 ∩B2

Y42 ∩B2

Figure 6. Decomposition of the second flip M
3

0,7 99K M
2

0,7

On M
3

0,7, let X0 be an irreducible component of B2
2 . Then X0 is isomorphic to

P1 × P1 and its normal bundle N
X0/M

3
0,7

is isomorphic to O(−2,−1) ⊕ O(−1,−2)
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(Lemma 4.9). Note that on M
3

0,7, since we have blown-up B3
2 , X0 is the intersection

of exactly two irreducible components of B2 and no other irreducible component of
B2 intersectsX0. From the computation of the normal bundle, the direct summands
O(−2,−1) and O(−1,−2) correspond to the normal bundle to two irreducible com-
ponents of B2 containing X0.

Take the blow-up M1 of M0 := M
3

0,7 along X0. Then the exceptional divisor
X1 is isomorphic to P(O(−2,−1) ⊕ O(−1,−2)). It has two sections Y11 and Y12,
which are intersections with the proper transform of irreducible components of B2.
The normal bundle NY11/M1

is isomorphic to O(−2,−1)⊕O(1,−1) and NY12/M1
∼=

O(−1,−2)⊕O(−1, 1) (Lemma 4.10).
Let M2 be the blow-up of M1 along Y11 t Y12. Let Y21 (resp. Y22) be the

exceptional divisor over Y11 (resp. Y12). Finally, let X2 be the proper transform of
X1. Since X2 is a blow-up of two Cartier divisors Y11, Y12 ⊂ X1, X2 is isomorphic to
X1. On the other hand, Y21 ∼= P(O(−2,−1)⊕O(1,−1)) and Y22 ∼= P(O(−1,−2)⊕
O(−1, 1)).

If we fix the first coordinate on Y11, then the restriction of NY11/M1
is O(−1)⊕

O(−1). So its projectivization is P1 × P1. This implies that Y21 has another P1
fibration structure which does not come from Y21 → Y11. Moreover, if we restrict
OY21(Y21) to a fiber, it is isomorphic to OP1(−1). Therefore we can blow-down this
P1 fibration and the result is smooth. Y22 can be contracted in the same way. (But
note that the direction of fibrations are different.) Let M3 be the blow-down of Y21
and Y22, and let Y31 (resp. Y32, X3) be the image of Y21 (resp. Y22, X2). Then
Y31, Y32 are isomorphic to F3 and X3 is isomorphic to P3 and NX3/M3

∼= O(−3)
(Lemma 4.11).

Finally, X3 can be contracted to a point X4 in the category of algebraic spaces
([4, Corollary 6.10]). Let M4 be the contraction. X4 is a singular point of M4. The
image Y41 (resp. Y42) of Y31 ∼= F3 (resp. Y32) is the contraction of a (−3) section,
hence it is covered by a single family of rational curves passing through the singular

point. Let M
2

0,7 := M4.

We claim that M
2

0,7 is the second flip. The argument is standard. There is a small

contraction φ2 : M
3

0,7 → M0,7(ψ − 3KM0,7
) (Lemma 4.12). For two modifications

π2 : M2 → M
3

0,7 and π′2 : M
3

0,7 → M
2

0,7, by rigidity lemma, there is a morphism

φ′2 : M
2

0,7 → M0,7(ψ − 3KM0,7
) such that φ2 ◦ π2 = φ′2 ◦ π′2. We prove that for

D ∈ (ψ − 5KM0,7
, ψ − 3KM0,7

), D is ample on M
2

0,7 (Lemma 4.13). Note that this

implies the projectivity of M
2

0,7. In summary, we obtain the following result.

Proposition 4.8. The modification M
2

0,7 is the D-flip of M
3

0,7 for D ∈ (ψ −
5KM0,7

, ψ −KM0,7
).

We now state and prove the lemmas mentioned in the outline.

Lemma 4.9. (1) On M
3

0,7, X0
∼= P1 × P1.

(2) The normal bundle N
X0/M

3
0,7

is isomorphic to O(−2,−1)⊕O(−1,−2).

Proof. Take an irreducible component of B2
2 on M0,7, which is isomorphic to M0,5.

Let p, q be two attaching points. One can also regard M0,5 as a universal family over

M0,4
∼= P1 which is also isomorphic to the blow-up of P1 × P1 along three diagonal
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points. Its four sections correspond to 4 marked points for M0,5. Then there are four
sections (say i, j, k and p) such that three of them are proper transforms of trivial
sections and one of them is the proper transform of the diagonal section. We may
assume that p is the diagonal section. The normal bundle NM0,5/M0,7

∼= O(−ψp)⊕
O(−ψq). By intersection number computation, one can show that NM0,5/M0,7

∼=
π∗(O(−2,−1) ⊕ O(−1,−2)) ⊗ O(Ei + Ej + Ek) where π : M0,5 → P1 × P1 is
the blow-up along three intersection points of the diagonal section and Ei, Ej , Ek
are three exceptional divisors. On M0,7, these three exceptional curves are three
components of B3

2 .

On M
3

0,7, X0 is the blow-up of M0,5 along three divisors and contraction along
the different direction. Thus X0 is the contraction of three exceptional lines Ei,
Ej , and Ek and it is isomorphic to P1 × P1. This proves (1).

We denote the proper transform of X0 in M̃3
0,7 by X̃. Let π1 : X̃ → M0,5,

π2 : X̃ → X0 be two contractions. (Since B3
2 ⊂ X0 is a divisor, π1 is an iso-

morphism.) Then by the blow-up formula of normal bundles [13, App. B.6.10.],
NX̃/M̃3

0,7

∼= π∗1NM0,5/M0,7
⊗O(−Ei − Ej − Ek) ∼= π∗1π

∗(O(−2,−1)⊕O(−1,−2)) =

π∗2(O(−2,−1)⊕O(−1,−2)). Since the opposite blow-up center is transversal to X,
N
X/M

3
0,7

∼= O(−2,−1)⊕O(−1,−2). �

Lemma 4.10. The normal bundle NY11/M1
is isomorphic to O(−2,−1)⊕O(1,−1).

Similarly, NY12/M1
∼= O(−1,−2)⊕O(−1, 1).

Proof. For a section Y11 = P(O(−2,−1)) ⊂ P(O(−2,−1) ⊕ O(−1,−2)) = X1, the
normal bundle NX1/M1

|Y11
∼= O(−2,−1) and NY11/X1

∼= O(−1,−2)⊗O(−2,−1)∗ ∼=
O(1,−1). From the normal bundle sequence

0→ NY11/X1
→ NY11/M1

→ NX1/M1
|Y11
→ 0,

NY11/M1
is an extension ofNX1/M1

|Y11
byNY11/X1

. But Ext1(O(−2,−1),O(1,−1)) ∼=
H1(O(3, 0)) = 0. Therefore NY11/M1

∼= O(−2,−1)⊕O(1,−1). The computation of
NY12/M1

is similar. �

Lemma 4.11. (1) Y31 ∼= Y32 ∼= F3.
(2) X3

∼= P3.
(3) NX3/M3

∼= O(−3).

Proof. Since the restriction of NY21/M2
to P1×{∗} ⊂ Y11 is isomorphic to O(−2)⊕

O(1), the restriction of Y21 onto the inverse image of P1×{∗} is P(O(−2)⊕O(1)) ∼=
F3. Hence Y31 is also isomorphic to the Hirzebruch surface F3. This proves (1).

The divisor X2 is isomorphic to P(O(−2,−1)⊕O(−1,−2)). Note that two con-
tracted loci Y21∩X2 (resp. Y22∩X2) has normal bundle O(−1,−2)⊗O(−2,−1)∗ ∼=
O(1,−1) (resp. O(−1, 1)). This is isomorphic to the blow-up of P3 along two lines
L1 and L2 in general position. Indeed, if we consider the universal (or total) space
of all lines intersecting L1 and L2, then naturally it is identified with BlL1∪L2P3.
Thus this blown-up space has a P1-fibration structure over (both of) exceptional
divisor isomorphic to P1 × P1. The normal bundles to these two exceptional divi-
sors are O(1,−1) and O(−1, 1) respectively. Thus X2

∼= BlL1∪L2
P3 and we have

X3
∼= P3.

For a diagonal embedding P1 ↪→ P1 × P1 = X0, if we restrict to P(O(−2,−1)⊕
O(−1,−2)) → X0, we obtain a trivial bundle P(O(−3) ⊕ O(−3)) → P1. Take
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a general constant section s ↪→ P(O(−3) ⊕ O(−3)). Then the restricted normal
bundle NX1/M1

|s is isomorphic to OP1(−3). We may choose s which does not
intersect Yij during modifications. Thus NX1/M1

|s = NX3/M3
|s and s is a line in

X3
∼= P3. Hence NX3/M3

∼= O(−3). �

Lemma 4.12. For D = ψ − 3KM0,7
, there is a small contraction φ2 : M

3

0,7 →
M0,7(D) which contracts a connected component of B2

2 to a point.

Proof. Since X0 is isomorphic to P1×P1, it is covered by two rational curve classes
`1 = P1×{x} and `2 = {y}×P1. For a general x, `1 does not intersect the flipping

locus of M0,7 99K M
3

0,7. Moreover, this is a curve class A in Remark 2.5. So by
Corollary 2.7, `1 · D = 0. By the same reason, `2 · D = 0. Since `1, `2 generates
the cone of curves of P1 × P1, D is numerically trivial on B2

2 . Because the only
numerically trivial divisor on B2

2 is a trivial divisor, D does not have any base
points on B2

2 . By Proposition 3.2, on the outside of B2
2 , there is no base point of

mD for m� 0, too. Thus D is a semi-ample divisor on M
3

0,7. So there is a regular

morphism φ2 : M
3

0,7 → M
3

0,7(D) ∼= M0,7(D), which contracts B2
2 , a codimension

two subvariety to a point. �

Lemma 4.13. For D ∈ (ψ − 5KM0,7
, ψ − 3KM0,7

), D is ample on M
2

0,7.

Proof. Because it is a contraction of M3, which is a projective variety, M
2

0,7 satisfies
the assumption of [11, Lemma 4.12]. Thus we can apply Kleiman’s criterion and
we will show that for D ∈ [ψ − 5KM0,7

, ψ − 3KM0,7
], D is nef.

Since mD for m � 0 is base-point-free for all M0,7 − B2
2
∼= M

2

0,7 − Y41 ∪ Y42, it
is enough to check that for all curve classes on Y41 ∪Y42, the intersection with D is
nonnegative. The curve cone of Y41 is generated by a single rational curve `, which
is the image of a fiber f in F3. So it suffices to compute D · `. The computation of
the intersection number of the curve class in Y42 is identical.

It is easy to see that B2 · ` = 1 from the description of M4. To compute
B3 · `, we need to keep track of the proper transform of B3. Note that there are
seven irreducible components (say B31, · · · , B37) of B3 intersecting X0. If we write
Pic(X0) = 〈h1, h2〉 where h1 (resp. h2) is the curve class of P1×{∗} (resp. {∗}×P1),
three of them (B31, B32, B33) are h1, the other three of them (B34, B35, B36) are
h2, and the other (B37) is h1 + h2 class, which is the diagonal set-theoretically. By
keeping track of the proper trans- forms, one can check that on M3, Y31 ⊂ B3i

for i = 1, 2, 3, 7, Y31 ∩ B3j = P1 = f for j = 4, 5, 6. Also X3 ∩ Y3k is a plane for
k = 1, 2, · · · , 6, but X3∩Y37 is a quadric containing two skew lines Y31∩X3, Y32∩X3.

Analytic locally near X4, M4 is isomorphic to a cone over a degree 3 Veronese
embedding of P3 in P19, Y41 is a cone over a twisted cubic curve, and M3 is the
blow-up of the conical point. If we take the pull-back of a hyperplane class H ⊂ P20
containing X4 for π : M3 →M4, π∗H = H̃+X3 where H̃ is the proper transform of

H. Note that H̃∩X3 ⊂ X3
∼= P3 is a cubic surface. Therefore π∗π∗B3i = B3i+

1
3X3
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for i = 1, · · · 6, π∗π∗B37 = B37 + 2
3X3. Now

B3 · ` = π∗B3 · f =

7∑
i=1

B3i · f + 6 · 1

3
X3 · f +

2

3
X3 · f

= (B31 +B32 +B33 +B37) · f +
8

3
.

For a 1-dimensional fiber f ′ of Y21 → Y11, f ′ maps to f by Y21 → Y31. By the
projection formula for ρ : M2 →M3,

B3i · f = ρ∗B3i · f ′ = B̃3i · f ′ + Y21 · f ′ = Y21 · f ′ = −1

if we denote the proper transform of B3i by B̃3i. Therefore

B3 · ` = −4 +
8

3
= −4

3
.

For D = ψ− aKM0,7
, D ≡ 5+a

3 B2 + 2B3 by Corollary 2.6. So D · ` = a−3
3 and it

is nonnegative if a ≥ 3. �

4.6. Divisorial contraction. The last birational model M
1

0,7 is a divisorial con-
traction.

Lemma 4.14. Let D = ψ − 5KM0,7
. Then D is a semi-ample divisor on M

2

0,7.

Proof. By Proposition 3.2, the stable base locus is contained in the union of the
proper transform of B2 and ∪Y4i. By the proof of Lemma 4.13, D is ample on ∪Y4i.
So it suffices to show that D is semi-ample on the proper transform of B2.

Since D is in the closure of the ample cone of M
2

0,7, D is nef. In particular, if BI

is an irreducible (equivalently on M
2

0,7, connected) component of B2, D|BI
is nef.

But on M0,7, BI ∼= M0,6 so it is a Mori dream space ([29, Corollary 2.16], or [5,

Theorem 1.4]). Since the proper transform of BI on M
2

0,7 is a flip of BI , it is a Mori
dream space, too. Thus for m � 0, mD|BI

is base-point-free. Thus B(D) = ∅ on

M
2

0,7 and it is semi-ample. �

Let M
1

0,7 = M0,7(ψ − 5KM0,7
) = M

2

0,7(ψ − 5KM0,7
). Since B2 is covered by a

curve class C5 such that C5 ·D = 0, M
1

0,7 is a divisorial contraction of M
2

0,7.

Proposition 4.15. For D ∈ (B2, ψ − 5KM0,7
], M0,7(D) ∼= M

1

0,7.

Proof. Note that for D ∈ (B2, ψ−5KM0,7
], D ≡ (ψ−5KM0,7

)+cB2 for some c ≥ 0.

Because B2 is an exceptional divisor for φ1 : M
2

0,7 → M
1

0,7, M0,7(D) ∼= M
2

0,7(D) ∼=
M

2

0,7(ψ − 5KM0,7
) ∼= M

1

0,7. �

5. KKO compactification

In this section, we review of KKO compactification of moduli of curves of genus
g in a smooth projective variety X, which will be used to describe a modular

interpretation of M
3

0,7 in the next section. For the details of its construction, consult
the original paper of Kim, Kresch, and Oh ([35]).
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5.1. FM degeneration space. Fix a nonsingular projective variety X. Let X[n]
be the Fulton-MacPherson space of n distinct ordered points in X. It is a compact-
ification of the moduli space of n ordered distinct points on X, which is obviously
Xn \∆. See [14] for the construction and its geometric properties. X[n] has a uni-
versal family π : X[n]+ → X[n] and n disjoint universal sections σi : X[n]→ X[n]+

for 1 ≤ i ≤ n.
For a point p ∈ X[n], the fiber π−1(p) is a possibly reducible variety, whose

irreducible components are smooth and equidimensional. As an abstract variety,
π−1(p) can be constructed in the following manner. Set X0 := X. Take a point

x0 ∈ X and blow-up X0 along x0. Let X̃0 := Blx0
X0 and E1 be the exceptional

divisor, which is naturally isomorphic to P(Tx0X0). Now consider the compactified
tangent space PT := P(Tx0X0⊕C), which has a subvariety P(Tx0X0) ∼= PT−Tx0X0.

Glue X̃0 and PT along P(Tx0
X0) and let X1 be the result.

We are able to continue this construction, by taking a nonsingular point x1 ∈ X1

and construct X2 in a same way. If we repeat this procedure several times, we
inductively obtain Xk, which is a reducible variety. π−1(p) is isomorphic to Xk for
some k ≥ 0 and some x0, x1, · · · , xk−1. Note that there is a natural projection
Xk → X. It can be extended to a canonical morphism πX : X[n]+ → X.

Remark 5.1. (1) The singular locus of Xk is isomorphic to a union of disjoint
Pr−1’s.

(2) Naturally the dual graph of Xk is a tree with a root. The proper transform
of X0 corresponds to the root. A non-root component is called a screen.
The level of an irreducible component of Xk is defined by the number of
edges from the root to the vertex representing the component.

(3) If an irreducible component Y of Xk does not contain any xi, then Y ∼= Pr.
Y is called an end component.

(4) If an irreducible component Z of Xk is not the root component and it
contains only two singular loci, then Z ∼= BlpPr, which is a ruled variety.
Z is called a ruled component.

X0
∼= Bl2X

Bl1Pr

Pr Bl2Pr

PrPr

Figure 7. An example of FM degeneration space

Definition 5.2. [35, Definition 2.1.1] A pair (πW/B : W → B, πW/X : W → X) is
called a Fulton-MacPherson degeneration space of X over a scheme B (or an FM
degeneration space of X over B) if:
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• W is an algebraic space;
• Étale locally it is a pull-back of the universal family π : X[n]+ → X[n].

That is, there is an étale surjective morphism B′ → B from a scheme B′,
n > 0 and a Cartesian diagram

W |B′ //

��

X[n]+

��
B′ // X[n]

where the pull-back of πW/X to W |B′ is equal to W |B′ → X[n]+ → X.

Let W be an FM space over C. An automorphism of W/X is an automorphism
ϕ : W →W fixing the root component, or equivalently, πW/X ◦ϕ = πW/X . If W �
X, Aut(W/X) is always positive dimensional. More precisely, for an end component
Y of W , the automorphism fixing all W except Y is isomorphic to Cr o C∗, the
group of homotheties. Also for a ruled component Z of W , the automorphism
fixing W except Z is isomorphic to C∗. The other irreducible components do not
contribute to a non-trivial automorphism of W/X.

We state a useful lemma to show several geometric properties of KKO compact-
ifications.

Lemma 5.3. For m > n, there is a commutative diagram

X[m]+ //

��

X[n]+

��
X[m] // X[n].

The two vertical maps are universal families, and the horizontal maps are obtained
by forgetting m− n marked points and stabilizing.

Proof. By induction, it suffices to show for m = n+ 1 case. Note that X[n+ 1] is
obtained by taking a blow-up of X[n]+ along the image of n sections ([14, 195p]).
On the other hand, X[n]+ is constructed by taking iterated blow-ups of X[n]×X.
Hence we have a commutative diagram

X[n+ 1]+ //

��

X[n]+

��
X[n+ 1]×X

��

X[n]×X

��
X[n+ 1]

??

// X[n].

�

5.2. Stable unramified maps.

Definition 5.4. [35, Definition 3.1.1] A collection of data

((C, x1, x2, · · · , xn), πW/X : W → X, f : C →W )
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is called an n-pointed stable unramified map of type (g, β) to an FM degener-
ation space W of X if:

(1) (C, x1, x2, · · · , xn) is an n-pointed prestable curve with arithmetic genus g;
(2) πW/X : W → X is an FM degeneration space of X over C;
(3) (πW/X ◦ f)∗[C] = β ∈ A1(X);

(4) f−1(W sm) = Csm, where Y sm is the smooth locus of Y .
(5) f |Csm is unramified everywhere;
(6) f(xi) for 1 ≤ i ≤ n are distinct;
(7) At each nodal point p ∈ C, there are coordinates

Ôp ∼= C[[x, y]]/(x, y) and Ôf(p) ∼= C[[z1, · · · , zr+1]]/(z1z2)

such that f̂∗ : C[[z1, · · · , zr+1]]/(z1z2)→ C[[x, y]]/(xy) maps z1 to xm and
z2 to ym for some m ∈ N.

(8) There are finitely many automorphisms σ : C → C such that σ(xi) = xi
for 1 ≤ i ≤ n and f ◦ σ = ϕ ◦ f for some ϕ ∈ Aut(W/X).

We can define the level of an irreducible component C ′ of C by the level of the
component of W containing f(C ′). A component C ′ with a positive level is called
a ghost component.

Remark 5.5. The last condition about the finiteness of automorphisms can be
described by conditions on end components and ruled components in the following
way. A map f : C →W has a finite automorphism group if and only if:

• For each end component Y of W , the number of marked points on Y is at
least two or there is an irreducible component D of C such that f(D) ⊂ Y
and deg f(D) ≥ 2;
• For each ruled component Z of W , there is at least one marked point on Z

or there is an irreducible component D ⊂ C such that f(D) is not contained
in a ruling.

Definition 5.6. [35, Definition 3.2.1] A collection of data

((π : C → B, σ1, · · · , σn), (πW/B : W → B, πW/X : W → X), f : C →W )

is called a B-family of n-pointed stable unramified maps of type (g, β) to FM
degeneration spaces of X, if:

(1) (π : C → B, σ1, σ2, · · · , σn) is a family of n-pointed genus g prestable curves
over B;

(2) (πW/B : W → B, πW/X : W → X) is an FM degeneration space of X over
B;

(3) Over each geometric point of B, the data restricted to the fiber is a stable
unramified map of type (g, β) to an FM degeneration space of X;

(4) For every geometric point b ∈ B, if p ∈ Cb is a nodal point, then there

are two identifications 1) Ôf(p) ∼= ÔπW/B(p)[[z1, z2, · · · , zr+1]]/(z1z2− t) for

some t ∈ ÔπW/B(p) and 2) Ôp ∼= Ôπ(p)[[x, y]]/(xy − t′) for some t′ ∈ Ôπ(p)
such that f̂∗(z1) = α1x

m, f̂∗(z2) = α2y
m for some m ∈ N, α1, α2 ∈ Ô∗p,

and α1α2 ∈ Ôπ(p).

Let Ug,n(X,β) be the fibered category of n-pointed unramified stable maps to
FM degeneration spaces of X of type (g, β).
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Theorem 5.7. [35, Corollary 3.3.3] The fibered category Ug,n(X,β) is a proper
Deligne-Mumford stack of finite type.

As in the title of this section, we will call Ug,n(X,β) as the KKO compactifi-
cation of moduli space of embedded curves. By the Keel-Mori theorem, we have a
coarse moduli space Ug,n(X,β) in the category of algebraic spaces.

5.3. Some geometric properties. In this section, we explain several geomet-
ric/functorial properties of Ug,n(X,β).

As in the case of moduli space of ordinary stable maps, there are several functorial
maps. Let Mg,n(X,β) be the moduli stack of stable maps ([39]).

Proposition 5.8. There is a functorial morphism

S : Ug,n(X,β)→Mg,n(X,β).

Proof. Let

((π : C → B, σ1, · · · , σn), (πW/B : W → B, πW/X : W → X), f : C →W )

be a B-family of n-pointed stable unramified maps of type (g, β) to FM degeneration
spaces of X. Then we have ((π : C → B, σ1, · · · , σn), πW/X ◦ f : C → X), which is
a flat family of maps from n-pointed curves to X. By running relative MMP with
respect to ωC/B +

∑
σi, we can stabilize πW/X ◦ f and obtain

((π̄ : C → B, σ̄1, · · · , σ̄n), f̄ : C → X).

These two steps are both functorial, we can obtain the desired morphism S. �

Proposition 5.9. There are functorial morphisms

evi : Ug,n(X,β)→ X

for 1 ≤ i ≤ n.

Proof. Indeed evi = ei ◦ S : Ug,n(X,β) → Mg,n(X,β) → X where ei is the i-th
evaluation map for the ordinary moduli space of stable maps. �

Proposition 5.10. For any T ⊂ [n], there is a functorial morphism

F : Ug,n(X,β)→ Ug,T (X,β)

obtained by forgetting all marked points with indices in [n]− T and stabilizing.

Proof. It suffices to show the existence of F : Ug,n(X,β) → Ug,n−1(X,β) which
forgets the last marked point. For a family

((π : C → B, σ1, · · · , σn), (πW/B : W → B, πW/X : W → X), f : C →W )

of n-pointed stable unramified maps over B, if we forget the last section σn, then
the remaining collection of data

(5.1) ((π : C → B, σ1, · · · , σn−1), (πW/B : W → B, πW/X : W → X), f : C →W )

is also a family of (n− 1)-pointed unramified stable maps unless

(1) For a fiber of b ∈ B, there is an end component Y of Wb such that for every
component Di of Cb mapping to Y , Di is a rational curve mapping to a line
injectively, and there are exactly two marked points σn(b) and σk(b) lying
on ∪Di or;
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(2) For a fiber of b ∈ B, there is a ruled component Z of Wb such that for every
component Dj of Cb mapping to Z, the image of Dj is a ruling and only
σn(b) lies on ∪Dj . Note that Dj is a rational curve, because it is a ramified
cover of P1 which has exactly two branch points.

Note that only one of these two cases may happen on a fiber.
We can stabilize the family (5.1) in the following way. Suppose that étale locally,

the target space πW/B : W → B comes from the Cartesian diagram

W |B′ //

��

X[m]+

��
B′ // X[m]

for some m > 0 and an étale map B′ → B. We will modify the family locally,
so for simplicity, we may assume that there is a unique connected closed subset
U ⊂ T such that for b ∈ U , the fiber has an end component Y of Wb with property
(1). Also, we may assume that there is a unique connected closed subset V ⊂ T
such that for b ∈ V , there is a rule component Z of Wb with property (2). Over U
(resp. V ), the non-stable end components (resp. ruled components) form a family
of irreducible components of W |U (resp. W |V ).

Let τ1, τ2, · · · , τm : B′ →W |B be the pull-back of universal sections σ1, σ2, · · · , σm :
X[m] → X[m]+. Let I ⊂ [m] be the index set of sections such that i ∈ I if and
only if τi is on the non-stable end component. Pick any j ∈ I and let J := I −{j}.
Now we have a forgetting map X[m] → X[m − |J |] forgetting all sections in J .
There is also a contraction map X[m]+ → X[m− |J |]+ on the universal family by
Lemma 5.3. Take the pull-back of the universal family X[m−|J |]+ → X[m−|J |] by
B′ → X[m]→ X[m−|J |]. Then we have a family W ′|B′ → B′ of FM degeneration
spaces and there is a morphism W |B′ →W ′|B′ .

C|B′
f //

))

��

W |B′

��

//

##

X[m]+

&&

��

W ′|B′

��

// X[m− |J |]+

��

B′ // X[m]

&&
B′ // X[m− |J |]

Now there are several irreducible components of Cb for b ∈ V , which are all tails,
such that f : C|B′ →W |B′ →W ′|B′ is not finite. By using the standard stabilizing
of the domain curve (running the relative MMP over W |B′ for (C|B′ , ωC/B′ +

∑
σi)),

we can contract these irreducible components.
After performing this procedure finitely many times, we can remove all non-

stable end components and get a new family of maps C|B′ →W ′|B′ . Note that this
procedure does not depend on the choice of m, B′ → X[m] and J ⊂ [m]. We may
replace C|B′ by C|B′ and W |B′ by W ′|B′ for a notational convenience.
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The contraction of a non-stable ruled component in (2) is similar. Take K ⊂ [m]
such that i ∈ K if and only if τi is on the non-stable ruled component. Take the
forgetting map X[m]→ X[m−|K|]. By taking the pull-back of the universal family
X[m − |K|]+ → X[m − |K|], we have a family W ′′|B′ → B′, and a B′-morphism
W |B′ → W ′′|B′ . By contracting all non-finite components using standard relative
MMP technique, we obtain a family of finite maps C|B′ →W ′′|B′ over B′.

We claim that the result is a family of unramified stable maps. Except (7) on
Definition 5.4, all other conditions are simple observations of contracting proce-
dures. If we contract a non-stable end component Y of the target, because we
contract all irreducible components on the domain whose image lie on Y , there is
no relevant singular points on the domain anymore. Furthermore, if we contract a
non-stable ruled component Z of the target, then an irreducible component Ci of
the domain maps to Z has only two ramification points at two singular points of
the domain on Ci. Moreover, since Ci ∼= P1, the ramification indices at two singular
points are equal. Thus after the contraction of the component, the stabilized map
has the property (7). �

Proposition 5.11. Let X be a smooth projective variety. Then there is a morphism

T : Ug,n(X,β)→
⊔

β′∈A1(P(TX),Z)

Mg,n(P(TX), β′)

where P(TX) be the projectivized tangent bundle of X.

Proof. This is a direct consequence of [35, Lemma 3.2.4]. For a family

((π : C → B, σ1, · · · , σn), (πW/B : W → B, πW/X : W → X), f : C →W ),

we have a family of maps f̃ : C → P(TX), which is a unique extension of the
projectivized tangent map P(Tf) : Csm → P(TX). By stabilizing the domain as
usual, we obtain a family of stable maps f̄ : C → P(TX). �

Remark 5.12. For a ghost component C ′ of the domain C, the map P(Tf) : C ′ →
P(TX) can be described in the following way. Each screen (after blowing down all
higher level screens) is identified with P(TxX ⊕ C) for some x ∈ X. For a smooth
point p ∈ C ′, P(Tf)(p) = TpC

′ ∩ P(TxX), where P(TxX) ⊂ P(TxX ⊕ C) is the
‘hyperplane at infinity’. Therefore it is a projection of the tangent variety of C ′. If
C ′ is a rational normal curve of degree d in Pr with r ≥ d, then degP(Tf)(C ′) =
2d− 2 ([22, 245p.]).

Example 5.13. If X = Pd, then the Chow ring of P(TPd) is

A∗(P(TPr),Z) ∼= Z[H, ζ]/

〈
Hd+1,

d∑
i=0

(
d+ 1

i

)
Hiζd−i

〉
where H is the pull-back of hyperplane class h in Pd and ζ = c1(OP(TPd)(1)).

We claim that for the connected component of U0,n(Pd, d) containing smooth
rational normal curves in Pd, β′ in Proposition 5.11 is dHd−1ζd−1 + (d + 2)(d −
1)Hdζd−2 if d ≥ 2. First of all, degHdζd−1 = 1. From the combination of these
two relations, we can deduce Hd−1ζd + (d+ 1)Hdζd−1 = 0 so degHd−1ζd = −(d+
1). Since Hd−1ζd−1 and Hdζd−2 form a basis of A1(P(TPd),Z), β′ is a linear
combination of them. For a stable unramified map f : C → Pd where f(C) is
a smooth rational curve of degree d in Pd, T (f)(C) = P(TC) ⊂ P(TPd), thus
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the restriction of the tautological subbundle to T (f)(C) is TC ∼= OP1(2). Hence
T (f)(C) · ζ = −2. On the other hand, from the projection formula T (f)(C) ·H =
f(C) · h = d. Therefore from a simple calculation, we obtain β′ = dHd−1ζd−1 +
(d+ 2)(d− 1)Hdζd−2.

From now, in this paper we denote aHd−1ζd−1 + bHdζd−2 by (a,b)-class.

5.4. Deformation theory. The dimensions of the deformation and obstruction
spaces of Ug,n(X,β) can by computed indirectly by using Olsson’s deformation
theory of log schemes ([45]). For a family

((π : C → B, σ1, · · · , σn), (πW/B : W → B, πW/X : W → X), f : C →W )

of n-pointed stable unramified maps over B, we can introduce natural log structures
MC/B on C, MW/B on W , and NC/B and NW/B on B such that (C,MC/B) →
(B,NC/B) and (W,MW/B)→ (B,NW/B) are log smooth morphisms. We obtain a
canonical log structure N on B by taking monoid push-out NC/B⊕N ′ NW/B where
N ′ is the submonoid of NC/B ⊕NW/B generated by (m · log t′, log t) for each nodal
point of C (for the definition of m, t, t′, see Definition 5.6.).

We have a stack B of n-pointed prestable curves, FM degeneration spaces with n
distinct smooth points, fine log schemes, and pairs of morphisms of log structures

((C → B, (σ1, · · · , σn)), (W → B, (τ1, · · · , τn)), (B,N), NC/B → N,NW/B → N).

The relative tangent/obstruction spaces for Ug,n(X,β) → B are described by co-
homology groups. Suppose that B = Spec R for a Noetherian C-algebra R and

R̃ is a square-zero extension of R by I. Let B̃ = Spec R̃. Also suppose that

C̃ (resp. W̃ ) is an extension of C (resp. W ) over B̃. Let Ñ be the extension

of N over B̃ with two extensions N C̃/B̃ → Ñ and NW̃/B̃ → Ñ . Then the ob-
struction for a compatible extension of a stable unramified map is an element of

H1(C, f∗T †W (−
∑
σi) ⊗ I) and if the obstruction vanishes, the compatible exten-

sions are identified with H0(C, f∗T †W (−
∑
σi) ⊗ I) ([35, Proposition 5.1.1]). Here

T †W means the log tangent sheaf.
On the other hand, there is a log version of moduli space of stable log maps

U logg,n(X,β), constructed in [34]. There is a commutative diagram

U logg,n(X,β)

φ

�� ##
Ug,n(X,β) // B

where φ is a virtual normalization map ([40]). φ is finite and degree one.
Let B† be the log scheme (B,N). Let C† be the minimal log curve induced

by NC/B → N ([34, 3.5]) and let W † be the semi-stable log scheme induced by
NW/B → N ([34, 4.3]). Let AutI(C† ×B† W †) be the set of automorphisms of the

trivial extensions of C† ×B† W † over Spec (R̃, Ñ), whose restriction to B† is the
identity. And let DefI(C†×B†W †) be the set of isomorphism classes of I-extensions
of log schemes over B†.There is an R-module exact sequence

0→ AutI(C†×B†W †)→ RelDef(f) = H0(C, f∗TW †/B†(−
∑

σi)⊗OB
I)→ Def(f)

→ DefI(C†×B†W †)→ RelOb(f) = H1(C, f∗TW †/B†(−
∑

σi)⊗OB
I)→ Obs(f)→ 0
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([34, Section 7.1]).

Now consider B = Spec C case. If H1(C, f∗T †W (−
∑
σi)) = 0, then φ is a local

isomorphism, thus RelOb(f) = 0 as well. Also Obs(f) = 0 hence both U logg,n(X,β)

and Ug,n(X,β) are smooth. Thus we have:

Lemma 5.14. Let ((C, x1, x2, · · · , xn), πW/X : W → X, f : C → W ) be a stable

unramified map over Spec C. If H1(C, f∗T †W (−
∑
σi)) = 0, then Ug,n(X,β) is

smooth at this point.

6. M
3

0,7 as a parameter space

In this section, we discuss a moduli theoretic interpretation of M
3

0,7, the first flip

of M0,7.
In a recent result [49], Smyth described a systematic classification of modular

compactifications Mg,n(Z) of Mg,n, which can be described in term of certain
combinatorial data Z. They are moduli spaces of pointed curves with (possibly)
worse singularities. In the case of g = 0, he obtained a complete classification of
such compactifications ([49, Theorem 1.21]). When g = 0, all such compactifica-
tions are obtained by contracting some irreducible components of parameterized
curves and obtaining new arithmetic genus 0 singularities there. Because a singu-
larity of arithmetic genus 0 does not have a positive dimensional moduli, all such
compactifications are (usually small) contractions of M0,n. Therefore if we want

to describe a moduli theoretic meaning of a flip of M0,n, then it must not be a
moduli of pointed curves with a certain singularity type. In other words, it is not
a substack of the stack of all pointed curves ([49, Appendix B]).

From the description of M
3

0,7, we have several clues on the possible moduli the-
oretic meaning of it.

(1) The reduction map φ : M0,7 → V 3
A contracts F-curves of type F1,2,2,2.

The image of a contracted F-curve corresponds to a pointed rational curve
(C, x1, x2, · · · , x7) which has three irreducible components and they meet
at a triple nodal singularity. φ forgets the cross-ratio of four special points
on the spine of F1,2,2,2.

(2) A connected component of the exceptional fiber of the contraction φ′3 :

M
3

0,7 → V 3
A is isomorphic to P2.

Note that the image of F1,2,2,2 is exactly the locus of non-nodal (non-Gorenstein

as well) curves on V 3
A (See Example 4.3.). From (2), we may guess that M

3

0,7 is a

moduli space of pointed curves parameterized by V 3
A, with some additional structure

on non-Gorenstein singularities.

Question 6.1. What kind of infinitesimal structure can we give on non-Gorenstein
singularities?

Note that V 3
A is defined as a GIT quotient of an incidence variety in the product

M0,0(P3, 3) × (P3)7. At least as parameter spaces in a weak sense, we are able to

construct many new birational models of M0,7 by using incidence varieties. For
example, if we introduce additional factors such as Gr(1, 3)7 which has the infor-
mation about a tangent direction at each point, and take the GIT quotient (with
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an appropriate linearization) of the incidence variety in

M0,0(P3, 3)× (P3)7 ×Gr(1, 3)7,

then we may have a resolution of V 3
A. Also we may replace a factor by another

modular variety. For instance it would be interesting if we consider the Fulton-
MacPherson space P3[7] instead of (P3)7. But in our situation, we need to find a
parameter space which does fit into the picture of Mori’s program for M0,7. Thus
a refined question is the following:

Question 6.2. Which of them does fit into the diagram φ′3 : M
3

0,7 → V 3
A?

To answer this question, we will use KKO compactification we have discussed in
Section 5.

Let U0,n(Pd, d) be the KKO compactification of the space of n-pointed rational

normal curves in Pd and let U0,n(Pd, d) be its coarse moduli space. Similarly, let

M0,n(Pd, d) be the moduli stack of ordinary stable maps and M0,n(Pd, d) be its
coarse moduli space. We have the following commutative diagram:

U0,7(P3, 3)
F ′
//

S

��

U0,0(P3, 3)× (P3)7

S′

��
M0,7(P3, 3)

F // M0,0(P3, 3)× (P3)7

.

The vertical map S is the stabilization map S in Proposition 5.8, and S′ = S × id.
F is the product of a forgetful map and evaluation maps for the moduli space of
stable maps, and F ′ = F ×

∏
evi is that of KKO compactifications (Proposition

5.10 and Proposition 5.9).
Let I ⊂ M0,0(P3, 3) × (P3)7 be the incidence variety parameterizing (f : C →

P3, x1, · · · , x7) such that xi ∈ imf for all i. It is straightforward to check that
I = im φ. From the description of V 3

A in Section 4.2, V 3
A
∼= I//LSL4 with a

suitable linearization L which is a restriction of a linearized ample line bundle on
M0,0(P3, 3) × (P3)7. Note that with respect to L, the stability coincides with the
semi-stability. Let Is be the stable locus.

Suppose that we have an incidence variety J ⊂ U0,0(P3, 3) × (P3)7. We would

like to show that J//SL4
∼= M

3

0,7 for an appropriate choice of a linearization. The
choice of the linearization is standard. For any G-equivariant projective morphism
between two quasi-projective varieties f : X → Y and a linearization L on Y such
that Y ss(L) = Y s(L), there is a linearization L′ on X such that

Xss(L′) = Xs(L′) = f−1(Y s(L))

([36, Section 3], [28, Theorem 3.11]). With respect to this linearization, there is a
quotient map S : J//L′SL4 → I//LSL4

∼= V 3
A. Thus if we carefully analyze the fiber

of S, then we may prove that J//L′SL4
∼= M

3

0,7.
But there are a few technical difficulties with this approach. Because the ge-

ometry of U0,n(Pr, d) is very complicated, there are few results on its geometric

properties. For instance, U0,n(Pr, d) is not irreducible in general, the connected-
ness is unknown, and we don’t know about the projectivity of its coarse moduli
space U0,n(Pr, d) even for n = 0 and r = d = 3. Furthermore, we don’t have a
nice modular description nor the deformation theory for the ‘main component’ of
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U0,n(Pr, d). So we are unable to apply the above standard approach. Thus here we
will use an ad-hoc approach.

Let M0,0(P3, 3)nd ⊂ M0,0(P3, 3) be the substack of stable maps with non-

degenerate image and let M0,0(P3, 3)nd ⊂ M0,0(P3, 3) be its coarse moduli space.

Since (f : C → P3) ∈M0,0(P3, 3)nd has no nontrivial automorphisms,M0,0(P3, 3)nd =

M0,0(P3, 3)nd is a smooth open subvariety of M0,0(P3, 3). Let U0,0(P3, 3)nd :=

S−1(M0,0(P3, 3)nd) for the stabilization map in Proposition 5.8 and let U0,0(P3, 3)nd

be its coarse moduli space.

Lemma 6.3. The open subset U0,0(P3, 3)nd ⊂ U0,0(P3, 3) is a smooth algebraic
space.

Proof. First of all, we will show that U0,0(P3, 3)nd is a smooth stack. Because every

object (f : C →W ) ∈ U0,0(P3, 3)nd is injective, it has no nontrivial automorphism.

Thus U0,0(P3, 3)nd = U0,0(P3, 3)nd and the latter one is also smooth as an algebraic
space.

Since M0,0(P3, 3) is a smooth Deligne-Mumford stack, it suffices to check that

the smoothness at a map (f : C → W ) ∈ U0,0(P3, 3)nd lying on the locus that

S : U0,0(P3, 3)nd →M0,0(P3, 3) is not an isomorphism. If the target space W is P3
then there is no ghost component and hence (f : C →W = P3) is already an object
in M0,0(P3, 3)nd. Since the image (π ◦ f)(C) is degenerate in P3, for any screen
(after blowing-down all higher level screens) Y ∼= P(TxP3 ⊕ C), f(C) ∩ P(TxP3) is
a union of reduced points. If there is an end component Y ∼= P(TxP3 ⊕ C) ⊂ W
of level one such that P(TxP3)∩ f(C) is a set of two reduced points, then all ghost
conics on Y are equivalent to each other and hence there is no non-trivial moduli
of them. Hence U0,0(P3, 3)nd is not locally isomorphic to M0,0(P3, 3)nd along the
locus which parametrizes a map (f : C →W ) where the domain has three tails C1,
C2, C3 and there is a ghost spine C4. There are three possibilities. See Figure 8.

(1) The spine C4 is a level one smooth cubic ghost component.
(2) C4 = C4,1 ∪C4,2 ∪C4,3 is a chain of rational curves. C4,1 has level one and

degree two, C4,3 has level one and degree one. Finally C4,2 has level two
and degree two.

(3) C4 = C4,1 ∪ · · · ∪C4,5 is a chain of rational curves. C4,1, C4,3, C4,5 are level
one linear ghost components and C4,2, C4,4 are level two degree two ghost
components on two different end components.

In each case, we are able to show the smoothness by computing the vanishing of
the relative obstruction space (See Section 5.4 and [34, Section 8]). Recall that the
relative obstruction is lying on

H1(C, f∗T †W )

where T †W is the logarithmic tangent space of W ([35, Proposition 5.1.1]). If we
decompose C into the union of irreducible components ∪Cj and if we denote f |Cj

by fj , then from the short exact sequence

0→ f∗T †W →
⊕
j

f∗j T
†
W →

⊕
{j 6=k}

f∗T †W |Cj∩Ck
→ 0

and the derived long exact sequence⊕
j

H0(Cj , f
∗
j T
†
W )→

⊕
{j 6=k}

f∗T †W |Cj∩Ck
→ H1(C, f∗T †W )→

⊕
j

H1(Cj , f
∗
j T
†
W ),
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C4,1

C4,3
C4,2

P3
C4,3

C4,1

C4,4

C4,2

C4,5

P3

Figure 8. Ghost spines of type (2) and (3)

it suffices to show 1)H1(Cj , f
∗
j T
†
W ) = 0 and 2) the surjectivity of

⊕
j H

0(Cj , f
∗
j T
†
W )→⊕

{j 6=k} f
∗T †W |Cj∩Ck

.

Each irreducible component Cj is lying on an irreducible component V of W . If
V is an end component (which is isomorphic to P3), then we have an Euler sequence

0→ OV → OV (1)3 ⊕OV → T †W |V → 0,

and its pull-back

(6.1) 0→ OCj
→ OCj

(d)3 ⊕OCj
→ f∗j T

†
W → 0,

where d = degCj . SinceH1(P1,OV (k)) = 0 for all k ≥ −1, we haveH1(Cj , f
∗
j T
†
W ) =

0. If V is a root component, then we have

(6.2) 0→ OV (−E)→ π∗OP3(1)(−E)4 → T †W |V → 0,

where E is the exceptional divisor on the root component. Note that for all f above,
E is irreducible. Since f(Cj) is a line that intersects E, H1(Cj , f

∗
j (π∗OP3(1)(−E))) =

H1(Cj ,O) = 0. Finally, if V is a screen which is not an end component, we have

(6.3) 0→ OV (−E)
ι→ π∗OP3(1)(−E)3 ⊕OV (−E)→ T †W |V → 0

where E is the union of exceptional divisors on V . In above cases, the component
f(Cj) on V is a conic intersecting an exceptional divisor or a line intersecting one
or two exceptional divisors. In any cases, H1(Cj , f

∗
j (π∗OP3(1)(−E))) = 0 thus

H1(Cj , f
∗
j (π∗OP3(1)(−E)3 ⊕ π∗OV (−E))) ∼= H1(Cj , f

∗
j (OV (−E))). Thus H1(ι) is

surjective and H1(Cj , f
∗
j (T †W |V )) = 0.

For the surjectivity of⊕
j

H0(Cj , f
∗
j T
†
W )→

⊕
{j 6=k}

f∗T †W |Cj∩Ck
,

we will show a slightly stronger statement: for any level ` component Cj with
` = 0, 2,

H0(Cj , f
∗
j T
†
W )→

⊕
{`(Ck)=1}

T †W |Cj∩Ck

is surjective. If we denote the intersection point Cj ∩ Ck with `(Ck) = 1 by xk,

then it suffices to show H1(Cj , f
∗
j (T †W (−

∑
xk))) = 0. For a level zero component,
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which has a unique xk, from (6.2) we have

0→ OCj
(−2)→ OCj

(−1)4 → f∗j T
†
W |Cj

(−xk)→ 0.

So H1(Cj , f
∗
j T
†
W |Cj (−xk)) = 0. For a level two component, which has two xk’s,

from (6.1) we have

0→ OCj (−2)→ O3
Cj
⊕OCj (−2)→ f∗j T

†
W (−

∑
xk)→ 0.

We get the vanishing of H1(Cj , f
∗
j T
†
W (−

∑
xk)) in a similar manner. �

Let Js := S′
−1

(Is) and J be the closure of Js in U0,0(P3, 3)× (P3)7. Then J is

the main component of the ‘incidence subspace’ in U0,0(P3, 3) × (P3)7. J and Js

are both SL4-invariant subspaces.

Lemma 6.4. (1) The algebraic space Js is a quasi-projective scheme.
(2) There is a linearization L′ on Js such that for every closed point x ∈ Js,

there is a section s ∈ H0(Js, Lm) such that s(x) 6= 0. In other words,
(Js)ss(L′) = Js.

Proof. By local computation, we can check that the tangent map in Proposition
5.11

T : U0,0(P3, 3)nd → M0,0(P(TP3), (3, 10))

is quasi-finite. Indeed, it may not be injective when f : C → W has a ghost
component of degree 3. Take a rational normal curve N in a non-rigid P3 =
{[x : y : z : w]} passing through three coordinate points on the infinite plane
{x = 0}. By using an automorphism of P3, we may assume that N passes through
p = [1 : 0 : 0 : 0]. Furthermore, if we fix the image of the tangent map at p, or
equivalently, the tangent direction at p, we have a 2-dimensional family of rational
normal curves. We can take an explicit 2-dimensional versal family, for instance,

fa,b(s : t) = [(t−3s)(t−s)(t−2s)s : t(at−s)(t−2s)s : t(t−s)(4t−s)(t−2s) : t(bt−2)(2t−s)s].

By using a computer algebra system, it is straightforward to check that P(Tfa,b)([1 :
0]) = [1 : −1 : 1] is independent from a and b, but for two (a, b) 6= (a′, b′), the
tangent vectors to P(Tfa,b)(P1) and P(Tfa′,b′)(P1) at [1 : −1 : 1] are different.
Thus T is analytic locally injective if f has an irreducible ghost component. The
remaining cases are easy to check.

Since the target of T is a scheme, U0,0(P3, 3)nd is a scheme by [37, Corollary

II.6.16]. Furthermore, U0,0(P3, 3) is proper and M0,0(P(TP3), (3, 10)) is separated.
Thus T is a proper morphism ([23, Corollary II.4.8]). Hence T (restricted to
U0,0(P3, 3)nd) is finite ([21, Theorem 8.11.1]). Thus T is projective ([19, Corol-

lary 6.1.11]) hence U0,0(P3, 3)nd is quasi-projective.

Note that Js ⊂ U0,0(P3, 3)nd × (P3)7. Since Js is a locally closed subspace of a
quasi-projective scheme, it is quasi-projective, too. This proves (1).

Note that we have a commutative diagram

Js //

��

M0,0(P(TP3), (3, 10))× (P3)7

F

��
Is // M0,0(P3, 3)× (P3)7.
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Since F is a projective morphism, by [28, Theorem 3.11], there is a lineariza-
tion L′ on X := M0,0(P(TP3), (3, 10)) × (P3)7 such that Xss(L′) = Xs(L′) =

F−1((M0,0(P3, 3)×(P3)7)s(L)). Since Is is in the stable locus of M0,0(P3, 3)×(P3)7,
Js maps to the stable locus of X. Therefore the pull-back of L′ to Js is the lin-
earization we want to find. �

Therefore by gluing the categorial quotients of affine SL4-invariant subschemes,
we obtain a well-defined quotient scheme Js/SL4.

Definition 6.5. The formal GIT quotient J//SL4 is Js/SL4.

Remark 6.6. Note that if U0,0(P3, 3) is a projective scheme, then for a standard

choice of linearization L′ on U0,0(P3, 3) × (P3)7, J//L′SL4
∼= Js/SL4. So far, we

don’t know the projectivity of U0,n(Pr, d). We will investigate geometric properties
of this moduli space in forthcoming papers.

Lemma 6.7. The locus Js is normal.

Proof. Set J(0) = U0,0(P3, 3)nd and for n ∈ N, let J(n) = {((f : C →W ), x1, x2, · · · , xn) | xi ∈
π ◦ f(C)} ⊂ U0,0(P3, 3)nd × (P3)n for π : W → P3. We claim that J(n) is normal.
Note that J(0) is normal by Lemma 6.3.

Let pn : J(n)→ J(n− 1) be the projection map forgetting the last point. Then
for any point ((f : C → W ), x1, x2, · · · , xn−1) ∈ J(n − 1), the fiber is isomorphic
to π ◦ f(C) ⊂ P3. Since the Hilbert polynomial Pπ◦f(C)(m) = 3m+ 1 is constant,
pn is flat by [23, Theorem III.9.9].

Note that a general fiber of pn is smooth because a general element of J(n− 1)
parametrizes a smooth rational curve. So J(n) is regular in codimension one if
J(n−1) is. Also since all fibers are curves, it automatically satisfies Serre’s condition
S2. Therefore J(n) satisfies S2 by [20, Corollary 6.4.2]. By Serre’s criterion, J(n)
is normal if J(n− 1) is.

Since Js is an open subset of J(7), we have the desired result. �

Now we prove the second main result of this paper.

Theorem 6.8. The formal GIT quotient J//SL4 is isomorphic to M
3

0,7.

Proof. Let M0,7(P3, 3)s = F−1(Is) ⊂ M0,7(P3, 3) and let U0,7(P3, 3)s = S−1(M0,7(P3, 3)s) ⊂
U0,7(P3, 3). We have the following diagram:

U0,7(P3, 3)s

S

��
g

%% ))
M0,7(P3, 3)s

F

��

/SL4

// M0,7

φ

��

M̃3
0,7π3

oo

π′
3

��

Is
/SL4 // V 3

A M
3

0,7

φ′
3oo

We first show that there is a morphism g̃ : U0,7(P3, 3)s → M̃3
0,7. Because π3 is the

blow-up along F-curves of type F1,2,2,2, from the universal property of blow-up, it

is enough to show that g−1(F1,2,2,2) is a Cartier divisor in U0,7(P3, 3)s.
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Let Z0 ⊂ U0,0(P3, 3)nd be the locally closed subvariety parametrizing f : C →W
such that the domain C has three tails C1, C2, C3 of degree one and an irreducible
spine C0 which is a ghost component of level one. Let Z be the closure of Z0.
To obtain f ∈ Z0, we need to choose three lines C1, C2, and C3 on P3 meeting
at a point, and a cubic rational normal curve C0 in a non-rigid P3 which passes
through three points at rigid P2 ⊂ P3. Thus the dimension of Z0 is 3 + 3 · 2 + (12−
3 · 2) − 4 = 11. Hence Z0 and Z have codimension one in U0,0(P3, 3)nd. Because

U0,0(P3, 3)nd is smooth (Lemma 6.3), Z is a Cartier divisor. On the other hand,

for F : U0,7(P3, 3) → U0,0(P3, 3), F (U0,7(P3, 3)s) ⊂ U0,0(P3, 3)nd since π ◦ f(C) is

non-degenerated for all f : C → W in U0,7(P3, 3)s. Finally, for the forgetful map

F : U0,7(P3, 3)s → U0,0(P3, 3)nd, it is straightforward to check that g−1(F1,2,2,2) =
F−1(Z). Therefore g−1(F1,2,2,2) is a Cartier divisor as well. Thus we have a

morphism g̃ : U0,7(P3, 3)s → M̃3
0,7. Let ḡ = π′3 ◦ g̃ : U0,7(P3, 3)s → M

3

0,7.

The forgetful map F ′ : U0,7(P3, 3)s → U0,0(P3, 3) × (P3)7 factors through Js,

because S′ ◦ F ′(U0,7(P3, 3)s) = F ◦ S(U0,7(P3, 3)s) = Is and Js = S′
−1

(Is). We

have an algebraic fiber space U0,7(P3, 3)s → Js because Js is normal ([23, Proof of

Corollary III.11.4]). The only possible exceptional curve E for U0,7(P3, 3)s → Js is
obtained by varying a unique marked point on a ghost component, hence varying the

cross-ratio of them. E is contracted by ḡ : U0,7(P3, 3)s → M
3

0,7 because ḡ = π′3 ◦ g̃
and π′3 : M̃3

0,7 → M
3

0,7 forgets the cross-ratio. Therefore there is a morphism

Q : Js → M
3

0,7 ([38, Proposition II.5.3]). Finally, because it is SL4-equivariant,

there is a quotient map Q : J//SL4 = Js/SL4 → M
3

0,7 and a commutative diagram

J//SL4
Q //

��

M
3

0,7

φ′
3

��
I//LSL4

∼= // V 3
A.

On a point x of the exceptional locus of φ′3 : M
3

0,7 → V 3
A, by dimension counting, it

is straightforward to check that the inverse image Q
−1

(x) does not have a positive
dimensional moduli. Also on the outside of the exceptional locus, they are isomor-
phic. Thus Q is a quasi-finite birational morphism to a smooth variety. So it is an
isomorphism by [44, Proposition III.9.1]. �

Remark 6.9. We may describe an object in J//SL4 in an intrinsic way. For
(f : C → W ) ∈ U0,0(P3, 3)nd, suppose that the image of π ◦ f : C → W → P3
has a non-Gorenstein singularity at x ∈ im π ◦ f(C). There are three irreducible
components meet at x. The level one component Y = P(TxP3⊕C) of W at x can be
regarded as a compactified non-rigid tangent space P(TxC ⊕C), because the three
irreducible components generate P3. Hence the infinitesimal structure we can give
on the non-Gorenstein singularity x ∈ C, as an answer for Questions 6.1 and 6.2,
is a ghost rational cubic curve (and its degeneration) on a compactified non-rigid
tangent space of C at x.

Remark 6.10. (1) It would be very interesting if one can define J//SL4 as
a moduli stack directly, instead of describing it as a quotient stack of a
certain moduli stack.
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(2) The similar modular flip appears for every n ≥ 7. For example, if we
consider a D-filp for the total boundary divisor B on M0,n, then the flipping
locus contains the locus covered by F1,i,j,k where i, j, k ≥ 2. Therefore it
is inevitable to study such flips in general, if we would like to study full
symmetric Mori’s program for M0,n.
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