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ABSTRACT. Based on hyperbolic geometric considerations, Roger and Yang introduced an
extension of the Kauffman bracket skein algebra that includes arcs. In particular, their
skein algebra is a deformation quantization of a certain commutative curve algebra, and
there is a Poisson algebra homomorphism between the curve algebra and the algebra of
smooth functions on decorated Teichmüller space. In this paper, we consider surfaces with
punctures which are not the 3-holed sphere and which have an ideal triangulation without
self-folded edges or triangles. For those surfaces, we prove that Roger and Yang’s Poisson
algebra homomorphism is injective, and the skein algebra has no zero divisors. A section
about generalized corner coordinates for normal arcs may be of independent interest.

1. INTRODUCTION

Let Σ be a closed surface with finitely many punctures. Defined by Penner [Pen87], the
decorated Teichmüller space Td(Σ) consists of complete, finite area hyperbolic metrics
on Σ that come with a choice of horoball around each puncture. This paper describes
progress in a program initiated by Roger and Yang in [RY14] to establish a certain skein
algebra Sh(Σ) as a quantization of Td(Σ).

One of Roger and Yang’s objective was to extend the rich body of work showing that
the Kauffman bracket skein algebra is a quantization of the usual Teichmüller space, via
the SL2-character variety [HP90, Tur91, Bul97, BFKB99, PS00, BFKB02, CM12]. In particu-
lar, they introduced an extension Sh(Σ) of the Kauffman bracket skein algebra to the case
of punctured surfaces that uses arcs. Observe that, in contrast to the usual Teichmüller
space, in Td(Σ) one can assign a length to arcs that go from puncture to puncture, by trun-
cating at the horoballs. This way of assigning lengths leads to the so-called lambda-length
functions which parametrize Td(Σ) ([Pen87]). Roger and Yang’s skein algebra Sh(Σ) is
generated by both framed arcs and loops, and an indeterminate variable for each of the
punctures that accounts for the size of the horoballs decorations. Besides the two usual
Kauffman bracket skein relations, Sh(Σ) has two more which, by design, match the rela-
tions between lambda-length functions of arcs. For the definition of Sh(Σ), see Section 10.

Roger and Yang also define a commutative curve algebra C(Σ) generated by loops and
arcs in Σ (see Section 2 for the relations), and they show that it has a Poisson bracket
that generalizes the Goldman bracket formula for the Kauffman bracket skein algebra.
Furthermore, there is a Poisson algebra homomorphism

(1.1) Φ : C(Σ)→ C∞(Td(Σ)),
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where C∞(Td(Σ)) is the algebra of C-valued smooth functions on Td(Σ). The Poisson
structure on C∞(Td(Σ)) is an extension of the Weil-Petersson Poisson structure [Pen92]
whose action on lambda-length functions was explicitly computed by [Mon09].

Roger and Yang show that the skein algebra, Sh(Σ) is a deformation quantization of
C(Σ) ([RY14, Theorem 1.1]). It then follows that Sh(Σ) seems a likely candidate for quan-
tization of Td(Σ). However, there remain several technical hurdles to the program Roger
and Yang sketched out.

1.1. Main results. The main purpose of this paper is to present progress toward the
biggest obstacle, which Roger and Yang conjectured, as below.

Conjecture 1.1 ([RY14, Conjecture 3.17]). The Poisson algebra homomorphism Φ in (1.1) is
injective.

In this paper, we provide an overall strategy for proving the conjecture, and carry it
out in full for locally planar surfaces, which are surfaces that have an ideal triangulation
without self-folded edges or triangles (and is not the three-puncture sphere). Note that for
any surface, if we drill enough extra points, then it becomes locally planar. The following
two theorems are the main results of this paper.

Theorem A (Theorem 3.1). If Σ has an ideal triangulation such that no edge of the triangulation
is a zero divisor in C(Σ), then Φ in (1.1) is injective.

Theorem B (Theorem 5.1). If Σ is locally planar, then no edge of a locally planar triangulation
is a zero divisor in C(Σ). In particular, Φ in (1.1) is injective.

An interesting algebraic consequence of the injectivity of Φ is the following, which is
proved in Section 10.3.

Theorem C (Theorem 10.5). If Conjecture 1.1 is true, then C(Σ) and its quantization Sh(Σ) are
domains. In particular, if Σ is locally planar, C(Σ) and Sh(Σ) are domains.

A similar statement for the Kauffman bracket skein algebra SA(Σ) appeared in [PS00,
PS19], and was a necessary step in showing that whenA = ±1, S±1(Σ) is isomorphic with
the coordinate ring of the SL2-character variety [Bul97, CM12].

In addition, we developed a generalization of the theory of normal curves on a surface
(as in [Mat07]) to describe normal arcs. Whereas the corner coordinates of a normal loop
is an integer, the generalized corner coordinate of a normal arc ending at a puncture is
the negative fraction −1

2
. The generalized corner coordinates satisfy the usual matching

equation at edges. See Section 6, which may be of independent interest in combinatorial
topology.

1.2. Summary of the proof. We give here a brief summary of the main points of the
proofs of Theorems A and B.

The key insight for Theorem A is to consider the localization S−1C(Σ) by the multiplica-
tive set, S, that is generated by edges of an ideal triangulation. If λi denotes the lambda-
length function of the i-th edge of the triangulation, we show that Φ : C(Σ)→ C∞(Td(Σ))
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factors through C[λ±i ] and its localized map Ψ : S−1C(Σ) → C[λ±i ] is an isomorphism.
Furthermore, we show that if none of the edges are zero divisors, then the localization
map L : C(Σ)→ S−1C(Σ) is injective. This implies the injectivity of Φ. See Section 3.

The proof of Theorem B is significantly more complicated, and we only mention some
interesting points here. The proof is outlined in Section 5 and takes up Sections 6–9. The
goal is to show that given any edge e in a locally planar triangulation, β 6= 0 implies
eβ 6= 0 for every β ∈ C(Σ). When β = αi, representing a single reduced multicurve class
(no self-crossings or turn-backs inside a triangle, and no component is a trivial loop or
loop around a puncture), that eαi 6= 0 is fairly obvious, since eαi is a linear combination
of distinct, linearly independent resolutions. However, it is not so obvious when β =∑

j∈I fjαj is a C[v±i ]-linear combination of reduced multicurves αi. In particular, we must
understand the various ways that resolutions of eαi and eαj could cancel out in eβ, in
order to rule out the scenario where all the resolutions cancel each other out in eβ.

Our solution is to define an order on the reduced multicurves and to consider reso-
lutions that produce “leading terms” according to that order. In particular, we consider
the two resolutions of eαi without turnbacks, the so-called positive and negative resolu-
tions, Pe(αi) and Ne(αi), respectively. Our strategy is to explicitly find an αi component
of β so that the positive resolution Pe(αi) becomes the leading term of eβ. Although this
strategy is very much inspired by similar results and techniques developed for the Kauff-
man bracket skein algebra, e.g. recently in [PS19, FKBL19], multiplying by arcs leads to
complications not present when only looking at loops. For example, in the Roger-Yang
skein algebra, there are numerous cases where αi 6= αj but Pe(αi) = Ne(αj), even when αi
and αj have the same order. We found that most natural and reasonably simple choices
of order produced such examples, so cancellations in eβ were consistently an issue. See
Remark 1.2 below.

To understand when cancellations happen, we needed a very precise description of the
positive and negative resolutions, which we found tractable in the locally planar case.
In the larger non-locally planar examples that we examined, the positive and negative
resolutions can simplify in very unexpected ways, and finding explicit formulas for them
seemed to require ad hoc methods. We nonetheless believe that our method should still
work; namely, that it is possible to show that no edge of a triangulation zero divisor, even
when the triangulation is not locally planar.

We close this section with a few remarks.

Remark 1.2. In the algebraic viewpoint, a natural way to attack Theorem B is as follows:
First, introduce a total order � on the generating set of multicurves of C(Σ). Next, es-
tablish a particular resolution R which is a �-preserving map, i.e., so that α � β implies
Rα � Rβ, andRα is the leading term in eα. Finally, prove that for any β =

∑
j∈I fjαj , if α0

is the leading term, then Rα0 is the nonzero leading term of eβ, thus eβ 6= 0. For example,
such an algebraic scheme was successfully implemented for the Kauffman skein algebra,
[PS19, FKBL19].

In our context, there are a number of natural candidates for R. However, as we men-
tioned briefly above, we were unable to find a total order � satisfying the algebraic



4 HAN-BOM MOON AND HELEN WONG

scheme just described. Various, different issues arose, mainly because of the existence of
arc classes. Thus we decided to use a partial order, and relied on some extra tie-breaking
conditions when necessary.

Remark 1.3. Conjecture 1.1 is verified for the non-locally planar cases of the three-puncture
sphere and one-punctured torus. One can directly compute, or use the presentations of
the Roger-Yang skein algebra from [BKPW16b], to show that no edge is a zero divisor.

Remark 1.4. A natural way to extend Theorem B to arbitrary Σ is to drill new punctures
and get another pointed surface Σ′ which is locally planar, and then compare C(Σ) and
C(Σ′). However, the lack of functorial morphisms makes comparing C(Σ) and C(Σ′) diffi-
cult.

Remark 1.5. The proof of the three main theorems are completely independent from the
choice of base ring. So one may use arbitrary commutative ring A instead of C, with a
replacement of C∞(Td(Σ)) by the ring of A-valued functions on Td(Σ).

1.3. An extended remark about the Muller skein algebra. At about the same time as
Roger and Yang used hyperbolic geometry to motivate the algebras C(Σ) and Sh(Σ) for
punctured surfaces, Muller [Mul16] used the theory of cluster algebras to define a differ-
ent set of algebras for surfaces with marked points on its boundary. Both theories relate
to the decorated Teichmüller space Td(Σ), and so they are expected to be parallel in many
ways. However, explicit connections between the two points of view are still lacking.

To start, the algebra generated by lambda-length functions of edges of an ideal trian-
gulation forms a cluster algebra A1(Σ), so that Td(Σ) has a cluster manifold structure
([GSV05], see also [FST08]). This result applies for any surface with markings. This in-
cludes the case of a surface with punctures (the Σ studied in this paper), and a surface
with non-empty boundary and marked points on the boundary (which, to contrast, we
denote by Σ̂).

In the latter case, Muller in [Mul16] defined three related algebras related to Td(Σ̂).
Based on the work of [BZ05], he defined a quantum cluster algebra Aq(Σ̂) and an upper
quantum cluster algebra Uq(Σ̂) associated to Σ̂. When q = 1, the quantum cluster algebra
corresponds to A1(Σ̂) in the previous paragraph. In addition, Muller also defined a skein
algebra Skq(Σ̂) that is generated by framed loops and arcs which end at the marked points
on the boundary components. Muller showed that there are natural inclusions

(1.2) Aq(Σ̂) ⊆ T−1Skq(Σ̂) ⊆ Uq(Σ̂)

where T−1Skq(Σ̂) is the non-commutative localization of Skq(Σ̂) by T , the set containing
the boundary parallel curves. When there are two or more marked points on each bound-
ary component, the inclusions are equalities, so that the skein algebra is identical to the
two quantum cluster algebras. Up to localization, T−1Sk1(Σ̂) becomes isomorphic to the
algebraic coordinate ring O(Td(Σ̂)).

Returning to the case of punctured surfaces that we study in this paper, at least for the
classical case (q = 1 or h = 0), we expect that Roger and Yang’s skein algebra Sh(Σ) fits
into a similar framework. The cluster algebra A1(Σ) coming from Td(Σ) is generated by
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arc classes and ‘decorated’ arc classes ([FST08]). We expect that the decoration can be
understood by using vertex classes, and there is an injective homomorphism

(1.3) A1(Σ)→ C(Σ) = S0(Σ)

regardless of the local planarity of Σ ([MW20]). Furthermore, the proof of Lemma 3.2 tells
us that every curve class α is a Laurant polynomial with respect to {ei} in a fixed (arbi-
trary) triangulation. Similarly, by applying the second skein relation in Definition 2.4, we
may conclude that each vie1e2 is a linear combination of arc classes, so vi is also a Laurent
polynomial with respect to {ei}. This observation suggests a connection between C(Σ)
and U1(Σ). In the specific case where Σ is a one-punctured torus, C(Σ) is a localization of
U1(Σ) ([MW20]), but in general, a precise relation between them is still not yet known.

The analogy between the Roger-Yang and Muller algebras may extend also to the more
algebraic geometric approach of Fock and Goncharov. In [FG06], they described how to
understand A1(Σ̂) as a coordinate ring of a certain moduli space of decorated SL2 local
systems. It would be really interesting to have an analogous statement for Σ, i.e., find a
moduli space B(Σ) whose coordinate ring (or Cox ring) O(B(Σ)) is isomorphic to C(Σ).

1.4. Structure of the paper. Section 2 reviews the main points of [RY14]. In particular,
we define the curve algebra C(Σ), the decorated Teichmuller space Td(Σ), and the map
Φ. Theorem A is proven in Section 3. Section 4 is a very short section introducing locally
planar surfaces. The proof of Theorem B is outlined in Section 5, and the details appear in
Sections Sections 6–9. Note that in Section 6 we generalize the theory of normal curves on
surfaces for normal arcs, and this may be of independent interest. In Section 10 we define
Roger-Yang’s skein algebra Sh(Σ), and we prove Theorem C.

Acknowledgements. The authors met while both were members at the Institute for Ad-
vanced Study in 2017-18, and we gratefully acknowledge the IAS’s financial support,
hospitality, and childcare provisions throughout this collaboration. H.M. was partially
supported by the Minerva Research Foundation while he was staying at IAS, and H.W.
was partially funded by NSF DMS-1841221 and DMS-1906323. The authors thank Tian
Yang for pointing out this research problem, and the referees for many valuable sugges-
tions.

2. BACKGROUND: ROGER AND YANG’S CURVE ALGEBRA AND DECORATED
TEICHMÜLLER SPACE

2.1. Triangulation. We begin with some notation for a surface with triangulation.

Let Σ be a compact Riemann surface without boundary and V = {vi} be a finite set of
points in Σ. Then Σ := Σ \ V is a punctured surface and V is the set of its punctures.

For a triangulation T = (V,E, T ) of a compact Riemann surface Σ, let V be the set
of vertices, E be the set of edges, and T be the set of triangles. A triangulation for a
punctured surface Σ = Σ \ V is a triangulation of Σ whose vertex set is V .
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A corner of T is a pair (v,∆) where ∆ ∈ T is a triangle and v ∈ V is a vertex of ∆. Let C
be the set of all corners of T .

2.2. Curve classes on a punctured surface. Let Σ = Σ \ V be a punctured surface. A loop
in Σ is an immersion of a circle into Σ that is disjoint from V . An arc in Σ is a map of a
closed finite interval into Σ such that the interior of the interval is immersed into Σ \ V ,
and the endpoints of the interval are mapped to (one or two points in) V . A multicurve in
Σ is a union of finitely many loops and arcs in Σ. Note that more than one component of
a multicurve may have endpoints at the same puncture. If α and β are two multicurves,
then we denote their union, which is again a multicurve, by α · β or αβ.

We will consider multicurves up to regular homotopy, as defined in detail in [RY14,
Whi37]. In practice, this means that we allow Reidemeister II and III moves, but not
Reidemeister I moves, on diagrams. We assume that multicurves are in general position
and although many arcs can end at a vertex, only double points occur in the interior.
For simplicity, we say that a double point in the interior form an interior crossing, and
endpoints at the same vertex form an endpoint crossing.

Let T be a fixed triangulation of Σ. We may further assume that our curve class α is
general with respect to this triangulation. By this we mean that for any edge e ∈ E, if α
intersects the relative interior of e then the intersection is transversal and if α ends at a
vertex v, then any component of α does not tangent to any edge e ∈ E at v, except the
case that e is a component of α.

A trivial loop in Σ is a loop bounding a disk in Σ that contains no punctures, and a
puncture loop in Σ is a loop bounding a disk in Σ that contains exactly one puncture.

Definition 2.1. Let Σ be a surface with a triangulation T . We say that a multicurve α on Σ
is normal if it is an embedding (thus no crossings at all), and there are no turn-backs inside
any triangle. If all of its components are loops, we call the normal multicurve also by the
term normal multiloops. Let NMC be the set of isotopy classes of normal multicurves and
NML be the set of isotopy classes of normal multiloops.

A normal multicurve is reduced if no component is a trivial loop or a puncture loop.
By convention, the empty set ∅ is a reduced multicurve. Let RMC be the set of isotopy
classes of reduced multicurves on Σ. Let RML be the subset of isotopy classes of reduced
multiloops.

In particular, this means that, since it has no crossings, a normal (or reduced) multic-
urve has at most one arc component ending at a vertex and is the union of disjoint simple
arcs and loops.

Remark 2.2. (1) The definition of a normal multiloop above is the same as that of
normal curve in [Mat07, Section 3.2].

(2) Note that, as sets, the isotopy classes NMC, NML, RMC, and RML are independent
from a choice of triangulation. This is because, we can always perform an isotopy
on a multicurve without crossings so that it is has no turn-backs and is in general
position with respect to any triangulation.
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2.3. Decorated Teichmüller space. Suppose for the moment that χ(Σ) < 0 so that the
surface Σ with punctures V admits a hyperbolic metric. In [Pen87], Penner introduced
the decorated Teichmüller space Td(Σ) to be the space of pairs (m, r) where m is a complete
hyperbolic metric on Σ with finite area, regarded up to an isometry that is isotopic to
the identity map, and r : V → R is a function which assigns a length r(v) horocycle to
each puncture v ∈ V . The decoration of horocycles r allows us to measure the length of
arcs in Σ. In particular, given some (m, r) ∈ Td(Σ) and an arc α, the length `(α) is (up to
sign) the length in the metric m of the part of the geodesic representative of α between
the horocycles described by r. When α is a reduced loop (that is, not a trivial or puncture
loop), its length `(α) is the usual one determined by m.

Define the lambda-length to be λ(α) = e`(α)/2 when α is an arc class, and λ(α) = 2 cosh `(α)
2

when α is a loop. The decorated Teichmüller space is parametrized by the lambda-length
functions; more specifically we have the following theorem due to Penner.

Theorem 2.3. [Pen87, Theorem 3.1] Let {e1, · · · , en} be the set of edges of a triangulation T of
Σ. Then there is a homeomorphism λ : Td(Σ)→ Rn

>0 which maps each edge ei to its lambda-length
λi = λ(ei).

Note that Td(Σ) is a Zariski-dense semi-algebraic set in the complex n-dimensional
torus SpecC[λ±i ]1≤i≤n ∼= (C∗)n. More precisely, Td(Σ) is the set of positive real points
(C∗)n(R>0) in (C∗)n. There are no algebraic relations between the λi’s.

2.4. The curve algebra C(Σ) of loops and arcs in a punctured surface. To define the
curve algebra C(Σ), we associate an indeterminate vi for each puncture in V , and further
assume that the formal inverse v−1

i exists. (Note, by a slight abuse of notation, we use
vi for both a puncture and its associated indeterminate variable.) Let C[v±1

i ] denote that
C-algebra generated by {v±1

i }.

Definition 2.4. The (classical) curve algebra C(Σ) is the C[v±1
i ]-algebra freely generated by

the multicurves in Σ modded out by the following relations

1) −

(
+

)

2) vi −

(
+

)

3) + 2

4) − 2
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where the diagrams in the relations are assumed to be identical outside of the small balls
depicted, and the ith vertex vi is depicted in the second relation. Multiplication of ele-
ments in C(Σ) is the one induced by taking the union of multicurves in Σ, and the unit is
the empty curve ∅.

Figure 2.1 shows how the skein relations are applied when more than two strands cross
at a vertex.

vi = +

= + +

FIGURE 2.1. Skein relations are applied to a crossing at the ith vertex, and
then to a crossing in the interior.

Remark 2.5 (On vector notation). We will make the following notational convention, to
use in the following proposition and throughout the rest of the paper. When we need
to describe a tuple of objects, we use a boldface letter. For instance, for a finite subset
{v1, v2, · · · , vn} of a commutative algebra R and an integral vector m = (m1,m2, · · · ,mn),
vm =

∏n
i=1 v

mi
i .

Proposition 2.6 ([RY14, Remark 2.5, Proposition 2.10]). Let W be the C-vector space gener-
ated by RMC. Then C(Σ) ∼= W ⊗ C[v±i ]. In other words, any β ∈ C(Σ) can be written uniquely
as a finite sum ∑

m∈ZV
βmvm,

where βm is a C-linear combination of elements in RMC and vm is a monomial in C[v±i ]. And
β ∈ C(Σ) can also be written uniquely as a finite sum∑

j∈I

fj(v
±
i )αj

where αj ∈ RMC and fj(v±i ) ∈ C[v±i ].

Although C(Σ) is in itself interesting from the algebraic point of view, it is its relation-
ship with hyperbolic geometry that is most intriguing. Indeed, its definition grew out
of a study of the decorated Teichmüller space of the punctured surface Σ, and we will
describe this relationship in the next section.

2.5. The Poisson algebra structures of Td(Σ) and C(Σ). Let C∞(Td(Σ)) be the space of
C-valued smooth functions on the decorated Teichmüller space. The algebra C∞(Td(Σ))
admits a Poisson structure which is an extension of the Weil-Petersson Poisson structure
on the usual Teichmüller space [Pen92]. To describe the Poisson bracket, one can use the
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lambda-length functions λi (or equivalently, the length functions `(α)) that we introduced
in Section 2.3 .

The Poisson bracket for the lambda-length functions was explicitly computed in [Mon09].
Although we will not need it in this paper, we include formulas of it here for the sake of
completeness. Fix a triangulation T on Σ. For notational simplicity, assume that two ends
of any edge are different vertices. For an edge α, let `(α) be the normalized length of
α. For two edges α, β ∈ E which meet at v, let θv be the generalized angle (equal to the
length of the part of the horocycle) from α to β in the positive direction, and θ′v be the
generalized angle from β to α. Then the following bi-vector field

ΠWP =
1

4

∑
v∈V

∑
α,β∈E
α∩β=v

θ′v − θv
r(v)

∂

∂`(α)
∧ ∂

∂`(β)

defines the Poisson bracket on C∞(Td(Σ)).

On the other hand, Roger and Yang in [RY14] show that the curve algebra C(Σ) admits
a Poisson structure using a bracket { , } that generalizes Goldman’s construction for loops
on a closed surface. The generalized Goldman bracket on C(Σ) is a bilinear map { , } : C(Σ)×
C(Σ)→ C(Σ) satisfying:

(1) For any v ∈ V and β ∈ C(Σ), {v, β} = 0;
(2) For α, β ∈ RMC,

{α, β} :=
1

2

∑
p∈α∩β∩Σ

(
(αβ)+

p − (αβ)−p
)

+
1

4

∑
v∈α∩β∩V

1

v

(
(αβ)+

v − (αβ)−v
)
,

where (αβ)±x denotes two resolutions (called positive/negative resolutions (Defi-
nition 7.1)) of αβ at the point x.

Roger and Yang were able to show that the lambda-length functions satisfy the skein
relations of the curve algebra C(Σ), and moreover, there is a map Φ which respects the
Poisson brackets of C(Σ) and C∞(Td(Σ)).

Theorem 2.7 ([RY14, Theorem 3.4]). For any vertex v, set Φ(v) = r(v), the length of the
horocycle around v, and for any non-self intersecting arc or reduced loop α, set Φ(α) = λ(α), the
lambda-length function of α.

Then there exists a well-defined map Φ : C(Σ) → C∞(Td(Σ)) which extends uniquely the
map Φ before. Furthermore, Φ is a Poisson algebra homomorphism with respect to the generalized
Goldman bracket on C(Σ) and the Weil-Petersson Poisson bracket on C∞(Td(Σ)).

3. PROOF OF THEOREM A

The following appeared as Theorem A in the introduction.

Theorem 3.1. If Σ has an ideal triangulation such that no edge of the triangulation is a zero
divisor in C(Σ), then Φ in (1.1) is injective.

Several lemmas will build up to the proof. Let T = (V,E, T ) be a (not necessarily locally
planar) triangulation on Σ with edges {ei}1≤i≤n. For any vector m = (mi)1≤i≤n ∈ (Z≥0)n,
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we define em to be the monomial em1
1 em2

2 · · · emnn . Let S = {em | m ∈ (Z≥0)n} be the set of
all monomials with variables in {ei}. Then S is a multiplicative subset of C(Σ). Thus, we
may consider the localization S−1C(Σ), consisting of formal fractions β

em
where β ∈ C(Σ)

and em ∈ S. Let L denote the associated localization map L : C(Σ)→ S−1C(Σ).

Lemma 3.2. The localization S−1C(Σ) is generated by the set {e±i } of edges and their formal
inverses.

Proof. Let R be the subring of S−1C(Σ) generated by {e±i }.
First consider the case where α is a multicurve. Lemma 3.18 of [RY14] says that if m is

the vector whose i-th coordinate is the intersection number of α and the edge ei, then the
product emα ∈ C(Σ) can be expressed as a polynomial with variables in {ei}. It follows
that α, when regarded as an element of S−1C(Σ), can be expressed as a polynomial with
respect to {e±i }. Therefore α is in R.

Next consider the case of a vertex v. Let e1, e2 be two (not necessarily distinct) edges
ending at v. Then by using the second relation in Definition 2.4, we obtain ve1e2 as a
linear combination of multicurves. By the previous case, we have ve1e2 ∈ R. Since edges
e1, e2 ∈ S are invertible, then v ∈ R as well. �

Returning to the proof of Theorem 3.1, recall that Φ : C(Σ) → C∞(Td(Σ)) denotes the
Poisson algebra homomorphism from [RY14], which we introduced in Section 2.5. For
every edge ei, let us denote Φ(ei) = λ(ei) by λi.

Lemma 3.3. Φ factors through C[λ±i ] ⊂ C∞(Td(Σ)).

Proof. By Lemma 3.2, for any linear combination of generalized curves and vertex classes
β ∈ C(Σ), there is some em ∈ S such that emβ is a polynomial with respect to {ei}.
Therefore Φ(emβ) ∈ C[λ±i ]. But Φ(emβ) = Φ(em)Φ(β). Notice that Φ maps every edge ei
to a unit in C[λ±i ]. So Φ(em) ∈ C[λ±i ] is a unit. Thus Φ(β) ∈ C[λ±i ], as desired. �

By the Universal Property of Localization, there is a unique homomorphism Ψ : S−1C(Σ)→
C[λ±i ] so that the following diagram commutes:

(3.1) C(Σ) //

L
��

Φ

&&

C∞(Td(Σ))

S−1C(Σ)
Ψ

// C[λ±i ]
?�
id

OO

Lemma 3.4. The localized map Ψ is an isomorphism.

Proof. Consider the map Ξ : C[λ±i ] → S−1C(Σ) which sends λi to ei. Then Ξ is an algebra
homomorphism such that Ψ ◦Ξ = idC[λ±i ], implying that Ξ is injective. By Lemma 3.2, any
generator of S−1C(Σ) can be written as a Laurent polynomial with respect to {ei}. Thus Ξ
is surjective. Hence Ξ and Ψ are bijective. �

The proof now falls easily from the previous lemmas.
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Proof of Theorem 3.1. If no ei is a zero divisor, then S will not contain any zero divisors. It
follows that the localization map L : C(Σ) → S−1C(Σ) is injective. Indeed, suppose that
L(α) = L(β). By the definition of localization, there is em ∈ S such that em(α − β) = 0.
But because em is not a zero-divisor, α = β. By Lemma 3.4, Φ is injective because it is a
composition of injective morphisms. �

4. LOCALLY PLANAR SURFACES

Definition 4.1. A locally planar triangulation of Σ is a triangulation T = (V,E, T ) of Σ,
where Σ = Σ \ V such that

(1) there is no 1-cycle or 2-cycle in the 1-skeleton of T ;
(2) Σ is not the three-punctured sphere.

In that case, we also say that a surface Σ is locally planar.

In other words, a locally planar triangulation (except for the three-punctured sphere) is
one where no edge is self-folded, with both endpoints at the same vertex, and where no
pair of edges have the same pair of endpoints. Obvious examples of non-locally planar
surfaces are the one- and two- punctured surfaces. On the other hand, the four-punctured
sphere, which has a tetrahedral triangulation, is locally planar. It is evident that any
triangulation can be refined to a locally planar one by introducing more vertices. Indeed,
by [JR80, Theorem 1.1] and a standard Euler characteristic computation, one can show
that Σ is locally planar if and only if

|V | ≥

{
d7+

√
1+48g
2

e, g 6= 2

10, g = 2,

where g is the genus of Σ.

Locally planar triangulations T satisfy the following properties:

(1) There is no self-folded triangle in T .
(2) For any v ∈ V , the star Star(v) :=

⋃
v∈∆∈T ∆ has at least three triangles.

(3) For any edge e, the relative interior of the star Star(e) :=
⋃
e∩∆ 6=∅∆ (see Figure 7.3)

is contractible. No two triangles can be identified because otherwise there must be
a two-cycle connecting v and w. Also any internal edge cannot be identified with
a boundary edge. Thus the map int Star(e)→ Σ is a continuous embedding.

However, note that it is possible that two boundary edges of ∂Star(e) are identified in a
locally planar triangulation.

5. OUTLINE OF THE PROOF OF THEOREM B

For the convenience of the reader, we here give an outline and purpose of each of Sec-
tions 6–9 in proving the next main result of this paper.

Theorem 5.1. If Σ is locally planar, then no edge of a locally planar triangulation is a zero divisor
in C(Σ). In particular, Φ in (1.1) is injective.
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Before proving Theorem 5.1, in Section 6 we introduce an extension of the theory of
normal curves on surfaces, as in Chapter 3 of [Mat07]. In the usual theory, normal loops
on a surface correspond to integer-valued corner coordinates that satisfy a matching con-
dition at each edge. In the extended theory, normal multicurves (recall Definition 2.1)
now correspond to integer- and half-integer-valued generalized corner coordinates that also
satisfy the same matching conditions at each edge, and some other obvious conditions.

Let e be an edge of a locally planar triangulation of Σ, and γ ∈ C(Σ). We here outline
a proof that eγ 6= 0. We refer the reader to the appropriate sections, as mentioned below,
for formal definitions and detailed proofs.

(1) Since the set of reduced multicurves RMC generates C(Σ), in Section 7 we focus
first on the resolutions of e ∪ α where α ∈ RMC. We pick out the two, the positive
resolution Pe(α) and the negative resolution Ne(α), where all the intersections are
resolved in the same direction. We give explicit formulas for their generalized
corner coordinates.

(2) In Section 8 we define an ordering on RMC, which we call edge degree dege. Given a
finite set of reduced multicurves, we may now determine which are leading terms
with respect to dege, i.e. which have the highest degree. We apply this to the case
when α ∈ RMC, and eα is a finite linear combination of resolutions. Lemma 8.3
shows that, with respect to dege, the resolutions Pe(α) and Ne(α) are the only pos-
sible leading terms of eα.

(3) Next, we consider C-linear combinations of reduced multicurves, say some non-
zero β =

∑
k∈I ckαk and ck ∈ C. Then eβ =

∑
k∈I ck(eαk) is a C[v±i ]-linear combina-

tion of resolutions of all the eαk. We wish to understand when resolutions of the
eαk could cancel each other out in eβ.
(a) Proposition 8.6 shows that for α ∈ RMC, the maps α 7→ Pe(α) and α 7→ Ne(α)

are injective. In other words, Pe(αi) 6= Pe(αj) and Ne(αi) 6= Ne(αj) for αi 6=
αj ∈ RMC. So a positive resolution cannot cancel out with another positive
resolution in eβ, and similarly for the negative resolutions.

(b) In Section 9, we encounter examples where Pe(αi) = Ne(αj) for αi 6= αj ∈
RMC, as illustrated in Figures 9.1 and 9.2. Thus there can be situations where
cancellations between resolutions of different components occur in eβ.

(4) Proposition 9.3 proves eβ 6= 0 for β =
∑

k∈I ckαk and ck ∈ C. The proof gives
instructions on how to identify αj so that Pe(αj) 6= Ne(αk) for all j 6= k ∈ I . So
Pe(αj) is a resolution that does not cancel with any other resolutions in eβ, and
hence it is a non-zero leading term of eβ.

(5) Proposition 9.6 finishes with the most general case, for γ =
∑

k∈I fk(v
±
i )αk with

fk(v
±
i ) ∈ C[v±i ]. The result follows from Proposition 9.3 and a short algebraic argu-

ment based on Proposition 2.6.

We remark that, with the exception of Proposition 9.6, all the statements mentioned
in the outline above require the local planarity assumption. In particular, our analysis
relies on having exact formulas for the generalized corner coordinates of the positive and
negative resolutions.
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6. GENERALIZED CORNER COORDINATES

Let Σ = Σ \ V be a punctured surface with a triangulation T = (V,E, T ). The set of
corners C consists of pairs (v,∆) where ∆ ∈ T and v ∈ V is a vertex of ∆. Recall Defini-
tion 2.1 of a normal and reduced multicurves. In this section, we describe how to uniquely
describe them using a tuple of numbers that encodes essential geometric information.

6.1. Edge and corner coordinates. The well-known theory of normal curves on surfaces
applies when our normal multicurve α has no arc components (see for example [Mat07,
Section 3.2]). In that case, there are two equivalent ways to describe a normal multiloop
as a tuple of integers. One way is to record the intersection numbers of α with the edges.
For any normal multiloop α and edge e, let α(e) be the minimal number of transversal
intersections of α with e. Then the edge coordinates of α are φE(α) = (α(e))e∈E .

Another way to coordinatize is to use the corners. For any normal multiloop α and
corner c = (v,∆), let α(c) be the number of components of α ∩ ∆ that connect one edge
adjacent to v to the other edge adjacent to v. Then the corner coordinates are φC(α) =
(α(c))c∈C .

Clearly, the two coordinates maps φE(α) and φC(α) are related. Let c0, c1, c2 be the three
corners of a triangle ∆, and let ei be the edge opposite to ci. Then for i taken modulo 3,

α(ei) = α(ci+1) + α(ci+2)(6.1)

α(ci) =
1

2
(α(ei+1) + α(ei+2)− α(ei)).(6.2)

From now on, we will use corner coordinates exclusively, as they are more suitable for
arcs.

To characterize the tuples of ZC which are corner coordinates of some multiloop, we
have the following definition. For any corner c ∈ C, we denote the c-th coordinate of
some w ∈ ZC by w(c).

Definition 6.1. Let e be the common edge of two triangles ∆1 and ∆2. Let c1 and d1 be the
corners of ∆1 adjacent to e, and c2 and d2 be the corners of ∆2 adjacent to e. Then a tuple
w ∈ ZC satisfies the matching condition at e if

w(c1) + w(d1) = w(c2) + w(d2).

A vector w ∈ ZC is the corner coordinates of some α ∈ NML if and only if w has all
non-negative coordinates and satisfies the matching condition at every edge.

6.2. Generalized corner coordinates. We now extend the corner coordinate map φC to
normal multicurves, which include both arcs and loops. Any normal multicurve α can
intersect a triangle ∆ ∈ T in one of three ways, as illustrated in Figure 6.1.

We say α in ∆ is

• type I, if there is no component of α ∩∆ is an arc connecting to a vertex of ∆
• type II, if some component of α ∩∆ is an arc from an edge to a vertex of ∆
• type III, if some component of α ∩∆ is an edge of ∆.
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3

22

(A) type I

 -½

2½1½

(B) type II

 -½

2½-½

(C) type III

FIGURE 6.1. A normal multicurve α can intersect a triangle in one of three
ways. The corner coordinates of α are integers and half-integers.

Notice that in the case of type III, α contains an edge of the triangulation as a com-
ponent. We will also use the notation typeα(c) ∈ {I, II, III} to describe the type of the
triangle that contains the corner c for α. In addition, we use 1

2
Z = {k ∈ Q | 2k ∈ Z} for

the set of integers and half-integers. To be more precise, integers are elements of Z, and
half-integers are elements of 1

2
Z− Z.

Definition 6.2. For each α ∈ NMC and corner c = (v,∆) ∈ C, the generalized corner co-
ordinate α(c) is computed as follows. Let a be the number of components of α ∩ ∆ that
connect the edges adjacent to v.

• If typeα(c) = I, α(c) = a.
• If typeα(c) = II, α(c) = −1

2
if there is an arc connecting v and the opposite edge,

and otherwise α(c) = a+ 1
2
.

• If typeα(c) = III, α(c) = −1
2

if v is one end of e, and otherwise α(c) = a+ 1
2
.

The generalized corner coordinate map is φ : NMC→
(

1
2
Z
)C such that φ(α) = (α(c))c∈C .

See Figure 6.1 for some examples. It is evident that φ is well-defined and generalizes
the corner coordinate map φC for normal multiloops. For example, all of the generalized
corner coordinates satisfy the matching condition of Definition 6.1. Furthermore, two
distinct normal multicurves must be assigned distinct generalized corner coordinates, so
that the map φ is injective. We leave the proof of the following lemma as an exercise.

Lemma 6.3. For any α ∈ NMC, its generalized corner coordinates φ(α) = (α(c))c∈C satisfy the
following:

(1) for every triangle ∆, its corners c0, c1, c2 satisfy one of three mutually exclusive possibili-
ties:
• all three α(c0), α(c1), α(c2) are non-negative integers (∆ is type I), or
• all three α(c0), α(c1), α(c2) are half-integers larger than or equal to −1

2
, and exactly

one is equal to −1
2

(∆ is type II), or
• all three α(c0), α(c1), α(c2) are half-integers larger than or equal to −1

2
, and exactly

two are equal to −1
2

(∆ is type III),
(2) at every vertex v, there are at most two corners (v,∆1) and (v,∆2) ∈ C with corner

coordinates −1
2
. If there are two of them, then they must be adjacent and both ∆1 and ∆2

are of type III.
(3) φ(α) satisfies the matching condition at every edge e ∈ E.
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Conversely, if w ∈
(

1
2
Z
)C satisfies (1)–(3) above, then there exists α ∈ NMC such that φ(α) = w.

Because of the second condition in the lemma above, we will often say that a triangle
of type I is integral, whereas triangles of type II and III are fractional or half-integral.

Remark 6.4. The inquisitive reader may ask whether it is possible to generalize edge
coordinates instead of corner coordinates. For type I and II triangles, the corner numbers
are easily deduced from edge numbers, and vice versa, by Formulas (6.1) and (6.2). But
for type III, it is unclear, at least to the authors, how to generalize the edge coordinates.

For the remainder of this article, we will focus on the reduced multicurves RMC, since
they generate the curve algebra C(Σ).

Observation 6.5. For any α ∈ RMC, its generalized corner coordinates φ(α) = (α(c))c∈C ∈(
1
2
Z
)C satisfy the three conditions (1)–(3) of Lemma 6.3 and

(4) at every vertex v, there must be at least one corner c = (v,∆) such that α(c) = 0 or −1
2
.

Conversely, if w ∈
(

1
2
Z
)C is a vector satisfying (1)–(3) of Lemma 6.3 and (4) above, then there

exists a unique α ∈ RMC such that φ(α) = w.

7. THE POSITIVE AND NEGATIVE RESOLUTIONS

Let α ∈ RMC, and let e ∈ E. If |α ∩ e| = n, then their product eα ∈ C(Σ) can be
decomposed into a C[v±i ]-linear combination of 2n crossingless multicurves. Of those,
there are two special ones.

7.1. Definition of Pα and Nα. We say that a positive resolution of an interior crossing of e
and α is one that goes counterclockwise from e to α as in Figure 7.1a. A positive resolution of
an endpoint crossing of e and α is one that goes clockwise from e to α as in Figure 7.1b, and
when in the exceptional case where e and α coincide (e.g. when e is a component of α), is
the one in Figure 7.1c. Let Peα be the reduced multicurve isotopic to the one obtained by
a positive resolution at every crossing of e and α and called the positive resolution of e ∪ α
(or of eα). For notational simplicity, we write Pα instead of Peα.

e

P
a

(A) interior crossing

e

P
α

(B) endpoint crossing

e
P

a

(C) Pα when e ⊆ α

FIGURE 7.1. Pα is depicted in blue on the right side of the arrow.

We may similarly define the negative resolution Neα = Nα by taking the opposite res-
olution for every intersection. For an interior crossing of e and α, we go clockwise from
e to α. For an endpoint crossing, we move counterclockwise from e to α. And in the
exceptional case where e is a component of α, so that α = et (α \ e), then Nα = −2(α \ e).
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e

N

α

(A) interior crossing

e

N
α

(B) endpoint crossing

e
N

α

(C) Nα when e ⊆ α

FIGURE 7.2. Nα is depicted in blue on the right side of the arrow.

When e and α do not intersect, there are no crossings to resolve; in that case Pα = Nα =
α t e.

By identifying α ∈ RMC with its generalized corner coordinates φ(α) ∈
(

1
2
Z
)C , we may

regard P and N as functions
(

1
2
Z
)C → (

1
2
Z
)C . The goal of the next few sections is to write

down formulas for these two resolution maps when Σ is locally planar.

7.2. Definition of RMCj . The formulas for the positive and negative resolution maps will
usually require us to subdivide RMC. For j = 0, 1, 2, define RMCj to be the set of reduced
multicurves which share j endpoints with e. Let C(Σ)j be the submodule of C(Σ) gener-
ated by RMCj . Since the basis elements are disjoint, C(Σ) = C(Σ)0 ⊕ C(Σ)1 ⊕ C(Σ)2.

When the edge e has two distinct vertices v0 and v1, on occasion we will further refine
RMC1 and C(Σ)1 into two smaller sets, according to where α and e intersect. For i = 0, 1
let RMC1

vi
be the set of reduced multicurves in RMC with an endpoint at vi, and let C(Σ)1

vi

be the submodule of C(Σ) generated by RMC1
vi

. Clearly, C(Σ)1 = C(Σ)1
vi
⊕ C(Σ)1

v1−i
.

The next two lemmas are immediate from the definition of the curve algebra.

Lemma 7.1. e · C(Σ)j ⊂ C(Σ)2−j . Moreover, e · C(Σ)1
vi
⊂ C(Σ)1

v1−i
.

Lemma 7.2. P,N : RMCj → RMC2−j . Moreover, P,N : RMC1
vi
→ RMC1

v1−i
.

7.3. Notation for the corners of Star(e). We assume from now on that Σ admits a locally
planar triangulation T .

Our first objective will be to describe the corner coordinates of Pα and Nα when Σ. To
do so, we need notation for the vertices and edges in a star neighborhood of the edge e.

Let the two vertices of e be denoted by v and w. We will think of e as vertical, so that
v is at the top and w is at the bottom. There is also an endpoint opposite e to the left,
and an endpoint opposite e to the right, and these two and v and w are distinct from local
planarity. Let ∆L be the triangle on the left of e, and ∆R be the triangle on the right.

Label the corners in Star(e) as in Figure 7.3. In particular, let a0 be the corner at v
which is adjacent to and on the left of e. Let a0, a1, . . . , as be the successive corners going
counterclockwise around v, so that as is the corner at v which is adjacent to and on the
right of e. For each i = 0, . . . , s, let aLi (resp. aRi ) correspond to the corner opposite to
and on the left side (resp. right side) of the triangle containing the corner ai. We say that
ai, aLi , aRi for i = 0, . . . , s are the top corners, near v. Similarly, let b0, . . . bt be the corners
going counterclockwise around w, starting at e, let bLj and bRj be the corners opposite bj
for j = 0, . . . , t, and we say that these near w are the bottom corners.
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e

a
0

a
1

a
2

a
s

a
i

a
i

L

a
1

R

a
1

L

a
2

La
i

R

a
2

R

b
0

b
1

b
j

b
t

b
1

R

b
1

L

b
j

R

b
j

L

...

..
.

...

...

FIGURE 7.3. Notation for vertices and edges in Star(e)

Note that by local planarity assumption, s, t ≥ 2 and all of the corners near v and the
corners near w are distinct and the notation is well-defined, except for the six corners at
the two triangles on either side of e. The only identifications are bt = aR0 , a0 = bLt , aL0 = bRt ,
and as = bR0 , b0 = aLs , aRs = bL0 .

7.4. Corner cooordinates of Pα and Nα when Σ is locally planar. By the local planarity
assumption, any change in the corner coordinates between α and Pα or Nα can occur
only on Star(e). The changes are tractable, and in this section we describe the algorithms
to compute them. Because there are no turnbacks in Pα or Nα, the only place where an
isotopy is needed to reduce them is near the vertices of e. For example, if α does not
intersect e at the vertex v, then Pα and Nα will end at v and could wind around it. See
Figure 7.4, which we will discuss in more detail shortly.

As we shall see, the formulas obtained for Pα and Nα are relatively simple. Each
formula is composed of two independent parts, one for each of vertices. Each of those two
parts depends only on whether α ends at v, whether α ends at w, and on the placement
of the first corner around the vertex such that the corner coordinate is 0 or −1

2
.

7.4.1. Formulas when α ∈ RMC0. Figure 7.4 shows two sample computations for Pα near
the top vertex v. Notice that Pα can be unwound around v, depending exactly on how far
the innermost strand of α winds around v to begin with. Because there are no turnbacks
in Pα, no other simplifications are possible, except at the bottom vertex where similar
unwinding can occur. If the reader so wishes, they may rotate each of the pictures in
Figure 7.4 by 180◦ to see examples of calculations near the bottom vertex. Any unwinding
around the top vertex does not interfere with unwinding around the bottom vertex.

Algorithm 7.3. [Coordinates for Pα when α ∈ RMC0]

Let am be the first corner of v (going counterclockwise, starting at e) where α has corner
number zero. Define the top change P t

0 linearly as follows: P t
0α(ai) = α(ai) − 1 if i < m,
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=0  -½

 ½

 1½ 1

 1

 1 0

 1 0

 1 0

P

e e e

=0  -½

 -½

 1

 1 0

 1 0

 -½0

 ½

 2½

 -½

 -½

 1½  2½

e

P

e e

FIGURE 7.4. Computations of Pα for α ∈ RMC0

P t
0α(am) = α(am)− 1

2
, P t

0α(aRm) = α(aRm)− 1
2
, and P t

0α(aLm) = α(aLm) + 1
2
. The other corners

are same.

Let bn be the first corner of w (going counterclockwise, starting at e) where β has corner
number zero. Define the bottom change P b

0 linearly as follows: P b
0α(bi) = α(bi)− 1 if i < n,

P b
0α(bn) = α(bn)− 1

2
, P b

0α(bRn ) = α(bRn )− 1
2
, and P b

0α(bLn) = α(bLn) + 1
2
. The other corners are

same.

When Σ is locally planar and α ∈ RMC0, Pα = P t
0P

b
0α = P b

0P
t
0α.

For example, if m 6= 0, s and n = 0, then because as = bR0 , Pα(as) = P t
1(P b

0α(as)) =
P t

1(α(as)− 1
2
) = α(as)− 1

2
. However, in this case and in all others we subsequently describe,

the corners a0, as, b0, and bt are the only ones that could possibly be affected by both the
top change and the bottom change.

We leave verification of the algorithm as an exercise for the interested reader. Notice
that for α ∈ RMC0, the case m = s and n = 0 is impossible. Furthermore, the top change
and bottom change do not affect each other, whence it follows that P t

0P
b
0 = P b

0P
t
0 .

By reflecting the figure horizontally, we get the computation for N . Thus, in contrast,
the formulas for Nα go clockwise.

Algorithm 7.4. [Coordinates forNαwhen α ∈ RMC0] Let am be the first corner of v (going
clockwise, starting at e) where α has corner number zero. Define a top change N t

0 linearly
as follows: N t

0α(ai) = α(ai)− 1 if i > m, N t
0α(am) = α(am)− 1

2
, N t

0α(aRm) = α(aRm) + 1
2
, and

N t
0α(aLm) = α(aLm)− 1

2
. The other corners are same.

Let bn be the first corner ofw (going clockwise, starting at e) where α has corner number
zero. Define a bottom change N b

0 linearly as follows: N b
0α(bi) = α(bi)− 1 if i > n, N b

0α(bn) =
α(bn)− 1

2
, N b

0α(bRn ) = α(bRn ) + 1
2
, and N b

0α(bLn) = α(bLn)− 1
2
. The other corners are same.

When Σ is locally planar and α ∈ RMC0, Nα = N t
0N

b
0α = N b

0N
t
0α.



ROGER-YANG SKEIN ALGEBRA 19

7.4.2. Formulas when α ∈ RMC2. In this case, α intersects e at both endpoints. In Figure 7.5,
we’ve illustrated how to compute Pα where α approaches the top vertex in a type II
triangle, and another where α approaches in a type III triangle. In both examples, the a2

=

 2
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 2½
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 1
 0

 0

 0

 0  1

 1 1

 1  0
P

e e e

=  0

 

0

 -½

 1½

 1

 1

 0

 -½  -½

 -½

 2½  2

 0 -½

 ½

 1½

e

P

e e

FIGURE 7.5. Computing Pα for α ∈ RMC2

is the first corner of v where α has corner number −1
2
. Moreover, we see that the affected

corners are a2, aR2 , aL2 , and a3, . . . , as, and that the changes are by the same amount for
both. This generalizes to the following algorithm.

Algorithm 7.5. [Coordinates for Pα when α ∈ RMC2] Let am be the first corner of v (going
counterclockwise, starting at e) where α has corner number −1

2
. Define a top change P t

1

linearly as follows: P t
1α(ai) = α(ai)+1 if i > m, P t

1α(am) = α(am)+ 1
2
, P t

1α(aRm) = α(aRm)− 1
2
,

and P t
1α(aLm) = α(aLm) + 1

2
. The other corners are same.

Let bn be the first corner of w (going counterclockwise , starting at e) where α has corner
number −1

2
. Define a bottom change P b

1 linearly as follows: P b
1α(bi) = α(bi) + 1 if i > n,

P b
1α(bn) = α(bn) + 1

2
, P b

1α(bRn ) = α(bRn )− 1
2
, and P b

1α(bLn) = α(bLn) + 1
2
. The other corners are

same.

When Σ is locally planar, Pα = P t
1P

b
1α = P b

1P
t
1α.

As before, by reflecting the picture horizontally, we obtain the algorithm for N .

Algorithm 7.6. [Coordinates forNαwhen α ∈ RMC2] Let am be the first corner of v (going
clockwise, starting at e) where α has corner number −1

2
. Define a top change N t

1 linearly
as follows: N t

1α(ai) = α(ai) + 1 if i < m, N t
1α(am) = α(am) + 1

2
, N t

1α(aRm) = α(aRm) + 1
2
, and

N t
1α(aLm) = α(aLm)− 1

2
. The other corners are same.

Let bn be the first corner of v (going clockwise, starting at e) where α has corner number
−1

2
. Define a bottom change N b

1 linearly as follows: N b
1α(bi) = α(bi) + 1 if i < n, N b

1α(bn) =

α(bn) + 1
2
, N b

1α(bRn ) = α(bRn ) + 1
2
, and N b

1α(bLn) = α(bLn)− 1
2
. The other corners are same.

Then Nα = N t
1N

b
1α = N b

1N
t
1α.
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7.4.3. Formulas when α ∈ RMC1. The top change and bottom change are as described
previously.

Algorithm 7.7. [Coordinates for Pα when α ∈ RMC1]

(1) Pα = P b
1P

t
0α = P t

0P
b
1α if α ∈ RMC1

w.
(2) Pα = P b

0P
t
1α = P t

1P
b
0α if α ∈ RMC1

v.

Algorithm 7.8. [Coordinates for Nα when α ∈ RMC1]

(1) Nα = N b
1N

t
0α = N t

0N
b
1α if α ∈ RMC1

w.
(2) Nα = N b

0N
t
1α = N t

1N
b
0α if α ∈ RMC1

v

We leave the verification to the interested readers.

8. INJECTIVITY OF THE TWO RESOLUTIONS ON RMC

As in the previous section, assume that Σ is locally planar, and fix an edge e. The goal
of this section is to show that for α ∈ RMC, the resolution maps α 7→ Peα and α 7→ Neα are
injective. We first introduce an important notion, the edge degree, that will be crucial to
the proof of injectivity. We use the notation established in Sections 6 and 7; see especially
Figure 7.3.

8.1. Edge degree and leading terms.

Definition 8.1. For any α ∈ RMC, the edge degree of α with respect to e is defined to be

dege(α) :=
1

2
(α(a0) + α(as) + α(b0) + α(bt)) .

If there is no chance of confusion, we will drop the subscript e. Note that deg(α) ∈ Z,
and by the matching condition at the edge e,

(8.1) deg(α) = α(a0) + α(bt) = α(as) + α(b0).

Definition 8.2. For any element β ∈ C(Σ), write it as a β =
∑

i∈I ciαi, where ci ∈ C[v±i ]
and αi is a reduced multicurve. A leading term with respect to dege of β is a component αj
with maximal edge degree, i.e., such that dege(αj) = max{dege(αi) | i ∈ I}.

We will use deg(α) to compare the different resolutions of eα. In particular, by the
following lemma, it allows us to pick out the positive and negative resolutions.

Lemma 8.3. Let α ∈ RMC. When computing eα ∈ C(Σ), there are at most two leading terms
with respect to dege, and they are Pα and Nα.

Proof. Recall that eα can be written as a C[v±i ]-linear combination of 2n crossingless curves.
Each crossingless curve comes from a choice of a positive or negative resolution at each
of the n intersections between e and α. The distinguished resolutions Pα and Nα are the
only two without any turn-backs (which occur when adjacent intersections are resolved
in opposite ways). For all the others, the existence of a turnback implies that their degree
is strictly smaller. �
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By the formulas for Pα and Nα in Section 7.4, we have the following lemma.

Lemma 8.4. Let α ∈ RMCj . Then deg(Pα) = deg(Nα) = deg(α) + j − 1.

8.2. Visualizing the P and N maps for degree d curves. For any α ∈ RMC, let

π(α) := (α(as), α(bt)).

Then the algorithms from Section 7.4 imply the following lemma. There is a similar one
for the negative resolution, which we omit for brevity.

Lemma 8.5. (1) For α ∈ RMC0, with m = min{i | α(ai) = 0} and n = min{i | α(bi) = 0},

π(Pα) = π(α) +


(0, 0) if m 6= 0, s and n 6= 0, t,

(−1
2
, 0) if m 6= 0, s and n = 0, or if m = s, n 6= 0, t

(0,−1
2
) if m 6= 0, s and n = t, or if m = 0 and n 6= 0, t,

(−1
2
,−1

2
) if m = n = 0 or if m = s, n = t

(2) For α ∈ RMC1 with an endpoint at the bottom vertex w, m = min{i | α(ai) = 0} and
n = min{i | α(bi) = −1

2
},

π(Pα) = π(α) +


(0, 1) if m 6= 0, s and n 6= 0, t,

(−1
2
, 1) if m 6= 0, s and n = 0, or if m = s and n 6= 0, t

(0, 1
2
) if m 6= 0, s and n = t, or if m = 0 and n 6= 0, t,

(−1
2
, 1

2
) if m = n = 0 or if m = s, n = t

(3) For α ∈ RMC2, m = min{i | α(ai) = −1
2
} and n = min{i | α(bi) = −1

2
},

π(Pα) = π(α) +


(1, 1) if m 6= 0, s and n 6= 0, t,

(1
2
, 1) if m 6= 0, s and n = 0, or if m = s and n 6= 0, t

(1, 1
2
) if m 6= 0, s and n = t, or if m = 0 and n 6= 0, t,

(1
2
, 1

2
) if m = n = 0 or if m = s and n = t

Fix d ∈ N. For reduced multicurves of degree d, we visualize the change of coordinates
from Lemma 8.5 as in Figures 8.1, 8.2, and 8.3. The arrows in the left figure point from
π(α) to π(Pα), while the arrows in the right figure point from π(α) to π(Nα).

First, observe that each diagram is supported inside the square
(
[−1

2
, d+ 1

2
] ∩ 1

2
Z
)2. This

is because α(as) = d−α(b0) and α(b0) ≥ −1
2

implies α(as) ≤ d+ 1
2
, and similarly for α(bt).

Moreover, some points inside the square
(
[−1

2
, d+ 1

2
] ∩ 1

2
Z
)2 do not correspond to a

reduced multicurve. In the RMC0 case depicted in Figure 8.1, α cannot have negative
corner coordintes. So there are no arrows based along the α(as) = −1

2
and α(bt) = −1

2

lines. In the RMC1 case depicted in Figure 8.2, we assume that α has an endpoint at the
bottom vertex w, and thus there cannot be arrows based along the α(as) = −1

2
line.

Lastly, notice that when one of the two coordinates is at most zero or at least d (that is,
along the edges of the square in Figures 8.1, 8.2, and 8.3), there can be multiple arrows
based at π(α). In particular, the change of corner coordinates at those extremal points
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1 2
d

1

2

d

as

bt

(A) Arrows go from π(α) to π(Pα)

1 2
d

1

2

d

as

bt

(B) Arrows go from π(α) to π(Nα)

FIGURE 8.1. Change of local coordinates for α ∈ RMC0.

1 2
d

1

2

d

as

bt

(A) Arrows go from π(α) to π(Pα)

1 2
d

1

2

d

α(as)

α(bt)

(B) Arrows go from π(α) to π(Nα)

FIGURE 8.2. Change of local coordinates for α ∈ RMC1 with an endpoint at
the bottom vertex w

does not depend only on π(α), but also on the actual curve class α. Figure 8.4 illustrates
examples where π(α) = π(α′), but π(Pα) 6= π(Pα′).

8.3. Positive and Negative Resolutions are Injective. We are now ready to prove the
main result of this section.
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1 2
d

1

2

d

as

bt

(A) Arrows go from π(α) to π(Pα)

1 2
d

1

2

d

as

bt

(B) Arrows go from π(α) to π(Nα)

FIGURE 8.3. Change of local coordinates for RMC2.

e

 -½

 ½

0

0 1

 1

e e

0

0

=
P

e

0

0 1

 1

e e

0

0

=

0

0

P

FIGURE 8.4. edge degree can depend on the curve class. Pictured are ex-
amples such that π(α) = π(α′) but π(Pα) 6= π(Pα′)

Proposition 8.6. When Σ is locally planar, the positive resolution map P : RMCj → RMC2−j

and the negative resolution map N : RMCj → RMC2−j are injective for j = 0, 1, 2.

Proof. We prove the case of P only, as the proof forN is identical. The proofs for j = 0, 1, 2
are slightly different.

Let α, α′ such that Pα = Pα′. It follows from the Algorithms in Section 7.4 that the
positive resolution map P affects only Star(e). Indeed, Pα is completely determined by
the coordinates of α at the corners around v and w,which are a0, . . . , as and b0, . . . , bt re-
spectively. So α and α′ must agree at all corners, if they agree at a0, a1, · · · , as, b0, b1, · · · , bt.
Case j = 0, with P : RMC0 → RMC2
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Let α, α′ ∈ RMC0. We start with the four corners a0, as, b0, and bt nearest e. If deg(α) 6=
deg(α′), then Lemma 8.4 implies deg(Pα) 6= deg(Pα′), so that Pα 6= Pα′. Thus let d =
deg(α) = deg(α′).

Suppose that α(as) 6= α′(as), and without loss of generality say α(as) > α′(as). For the
corner as in the RMC0 case, P decreases the corner coordinate at as by 0 or 1

2
(Figure 8.1).

From Pα = Pα′, it follows that P decreases α at as by 1
2
, but leaves α′ at as unchanged.

Because P decreases α at as by 1
2
, one of two scenarios are possible. Either the decrease

is caused by the top change whenm = s, or it is caused by the bottom change when n = 0.
In both scenarios, α is zero at one of as or b0. So α is integral, and Pα is half-integral, in
the triangle containing those two corners. On the other hand, because Pα = Pα′ and P
leaves the corner number of α′ at as unchanged, α′ must be half-integral in the triangle
containing as and b0. Type III is ruled out, since α′ ∈ RMC0 means α′ cannot have an
endpoint at either v or w. Thus α′ is type II, with endpoint at the remaining vertex (not v
or w). After applying positive resolutions, we see that Pα must be type II, and Pα′ type
III in that triangle. Again this contradicts Pα = Pα′. We thus deduce that α(as) = α′(as).

We take a moment to remark that the first part of our case analysis above can be seen
visually using Figure 8.1a. Each arrow in the figure depicts how the positive resolution
map P affects the corner coordinates at as and bt. Since P decreases α at as by 1

2
, the

x-coordinates of the arrows in Figure 8.1a are either the same or go down by 1
2
. Further-

more, identifying α and α′ satisfying α(as) > α′(as) and Pα(as) = Pα′(as) corresponds to
finding pairs of arrows which start at different x-coordinates and land at the same spot.
Such pairs of arrows occur only on the far right of the figure, where α(as) = d, α(b0) = 0,
and α′(as) = d − 1

2
, α′(b0) = 1

2
. The proof can be finished as before, by analyzing triangle

type.

A nearly identical argument proves that α(bt) = α′(bt). And because deg(α) = deg(α′),
the identity in Equation 8.1 implies that α and α′ agree on all four corners.

We now consider the remaining corners, beginning with the ones around v. Suppose
that α and α′ disagree at some corner around v which is not a0 or as. Let k be the small-
est index such that α(ak) 6= α′(ak), and without loss of generality, say α(ak) > α′(ak).
Let m and m′ be as in Algorithm 7.3; namely, let m := min{i | α(ai) = 0} and m′ :=
min{i | α′(ai) = 0}. Taking the positive resolution P can cause the corner coordinate at ak
to decrease by 0, 1

2
or 1, and so there are three cases to consider.

In the first case, P decreases α at ak by 1, and P decreases α′ at ak by 1
2
. This implies

(respectively) that m > k, and that k = m′ with α′(ak) = 0 and Pα′(ak) = −1
2
. Since

Pα = Pα′, it follows that α(ak) = 1
2
. Notice that α′ is integral in the triangle containing

ak, and hence is type I. On the other hand, α is half-integral in the triangle containing ak.
Type III is ruled out, since α(ak) = 1

2
would force the previous angle to have α(ak−1) = 0,

contradicting that m > k. So α must be type II, with one end at the corner to the left of ak;
otherwise, it would again force α(ak−1) = 0. After applying positive resolutions, we see
that Pα must be type III, whereas Pα′ is type II. This contradicts Pα = Pα′.

In the second case, P decreases α at ak by 1, and P leaves the corner number of α′ at ak
unchanged. This occurs only if m′ < k < m. Since k was the smallest index where α and
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α′ disagreed, we have that α(am′) = α′(am′) = 0. But this contradicts that am was the first
corner where α is zero.

In the third case, P decreases α at ak by 1
2
, and P leaves the corner number of α′ at ak

unchanged. The first can occur only if k = m with α(ak) = 0 and Pα(ak) = −1
2
. From

Pα = Pα′, it follows that α′(ak) = −1
2
. But α′ cannot have negative corner coordinate,

since it is in RMC0 and cannot have an endpoint at v.

By repeating the argument above for the corners around w, we see that α and α′ must
agree at the corners around w. We thus conclude that α = α′.

Case j = 1, with P : RMC1 → RMC1

Let α, α′ ∈ RMC1 such that Pα = Pα′. Since P : RMC1
vi
→ RMC1

vi−1
, both α, α′ must

have an endpoint at the same vertex. Without loss of generality, assume that common
vertex to be w. As in the previous case, we have d = deg(α) = deg(α′). By Lemma 8.4,
d = deg(Pα) = deg(Pα′) as well.

Suppose that α(as) > α′(as). Since Pα = Pα′, and P can decrease the corner coordinate
at as only by 0 or 1

2
, it follows that P decreases α at as by 1

2
, but leaves α′ at as unchanged.

We look in Figure 8.2 for pairs of arrows that start at different x-coordinates, but land at
the same spot. These are found only on the far right, when α(as) = d+ 1

2
, α(b0) = −1

2
and

α′(as) = d, α′(b0) = 0. Figure 8.4 illustrates such a scenario for d = 0. Notice that because
α′ has an endpoint at w and α′(b0) = 0, α′(bj) = −1

2
for some 0 < j ≤ t. After taking P ,

Pα′(bj) = 0. On the other hand, α(b0) = −1
2

implies that Pα(bi) > 0 for all 0 < i ≤ t. Thus,
α(as) > α′(as) implies Pα 6= Pα′.

Next suppose α(bt) > α′(bt). P can increase the corner coordinate at bt by 1
2

or 1. As
before, we can look in Figure 8.2, to find that necessarily α(bt) = d and α′(bt) = d − 1

2
.

Suppose d > 0. Since d is always an integer, typeα(bt) = I and typeα′(bt) = II. If d = 0,
typeα′(bt) can be either II or III. But in any case, after the positive resolution, typePα(bt) = II
and typePα′(bt) = III, implying Pα 6= Pα′.

We may now assume that α and α′ agree at a0, as, b0, bt. The proof that α(ai) = α′(ai)
for 1 ≤ i ≤ s − 1 is the same as in the case of P : RMC0 → RMC2 above. For the
remaining corners, let n = min{i | α(bi) = −1

2
}. Then by Algorithm 7.7, Pα(bn) = 0, and

all Pα(bi) > 0 for i > n. Thus also n = max{i | Pα(bi) = 0}. For α′, we similarly have
n′ = min{i | α′(bi) = −1

2
} = max{i | Pα′(bi) = 0}. Then Pα = Pα′ implies n = n′. It

follows from Algorithm 7.7 for RMC1
w that α(bj) = α′(bj) for 1 ≤ j ≤ t − 1. Since all their

corner numbers are the same, we may conclude that α = α′.

Case j = 2, with P : RMC2 → RMC0

Suppose that α, α′ ∈ RMC2 with Pα = Pα′. As before, deg(α) = deg(α′) = d, and ar-
guments like in the RMC1 case shows that α and α′ must agree along the corners a0, as, b0,
and bt.

If α and α′ disagree at some corner around v which is not a0 or as, then let k be the
smallest index such that α(ak) 6= α′(ak). Without loss of generality, say α(ak) < α′(ak).
Let m and m′ be as in Algorithm 7.5. Taking the positive resolution P can cause the
corner coordinate at ak to increase by 0, 1

2
or 1. If P increases α at ak by 1 and α′ at ak
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by 0 or 1
2
, then m < k and k ≤ m′. Since ak is the first corner where α and α′ disagree,

α(am) = α′(am) = −1
2
. But this contradicts the minimality of m′. If P increases α at ak

by 1
2

but leaves α′ at ak unchanged, then k = m and k < m′. Focusing on the corner am′ ,
from m′ > m it follows that α increases by 1, whereas α′ increases from−1

2
to 0. However,

0 = Pα(am′) = α(am′) + 1 is impossible. So all the corner coordinates agree, and α = α′.
The case where α and α′ disagree at some corner around w is identical. �

9. EDGES ARE NOT ZERO-DIVISORS

The goal of this section is to prove Theorem 5.1, by showing eβ 6= 0 for all β ∈ C(Σ).
In Section 9.1, we first prove that eβ 6= 0 is when β is a nontrivial linear combination of
reduced multicurves with coefficients in C. In Section 9.2 we shows the result of Section
9.1 implies the general case where the coefficients of β are in C[v±1

i ]. Section 9.1 requires
that Σ be locally planar, whereas Section 9.2 does not. Both proofs are reductive, and
make use of Lemma 9.1 as its first step. It will allow us to split our analysis according to
membership in RMCj .

Recall that α ∈ RMC1
v if v meets an end of α (see Section 7.2 for the formal definition).

Lemma 9.1. Let e be an edge in a triangulation of Σ. Let γ ∈ C(Σ) , and write it as γ =
γ0 + γ1 + γ2, where γj is a C[v±i ]-linear combination of reduced multicurves in RMCj . Then
eγ = 0 if and only if eγj = 0 for j = 0, 1, 2.

Suppose that the edge e has distinct endpoints v and w, we may further write γ1 = γ1
v + γ1

w

where γ1
v is a C[v±i ]-linear combination of reduced multicurves in RMC1

v and γ1
w is that of reduced

multicurves in RMC1
w. Then eγ1 = 0 if and only if and eγ1

v = eγ1
w = 0.

Proof. By Proposition 2.6, RMC is the set of generators in the free C[v±i ]-module C(Σ), and
by Lemma 7.1 eγj is a C[v±i ]-linear combination of elements in RMC2−j . Thus 0 = eγ =
eγ2 + eγ1 + eγ0 implies eγj = 0 for each j. The converse is clear. The proof for γ1 = γ1

v +γ1
w

is similar. �

The next simple computational lemma will be used in the proof of Proposition 9.3.

Lemma 9.2. Let α ∈ RMC and dege(α) = d. Suppose that one of the conditions below holds:

(1) α ∈ RMC0, d > 0, and π(α) = (d, d);
(2) α ∈ RMC1

w and π(α) = (d+ 1
2
, d);

(3) α ∈ RMC2 and π(α) = (d+ 1
2
, d+ 1

2
).

Then Pα(bt−1) > Nα(bt−1).

If either:

(1) α ∈ RMC0, d > 0, and π(α) = (0, 0);
(2) α ∈ RMC1

w and π(α) = (0,−1
2
);

(3) α ∈ RMC2 and π(α) = (−1
2
,−1

2
),

then Pα(b1) < Nα(b1).
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Proof. The proof is immediate if one apply Algorithms in Section 7.4. Here we give the
proof of the very first statement to describe how the proof goes.

Suppose that α ∈ RMC0, d > 0, and π(α) = (d, d). Then dege(α) = d and α(bt) = d, so
we have α(b0) = 0. Thus n = min{i | α(bi) = 0} = 0. Therefore Pα(bt−1) = α(bt−1) by
Algorithm 7.3. On the other hand, because α(bt) = d > 0, max{i | α(bi) = 0} ≤ t− 1. Thus
Nα(bt−1) < α(bt−1) and we obtain the result.

The second half of the statement is obtained by symmetry. �

9.1. First step - complex coefficients.

Proposition 9.3. Suppose that e is an edge of a locally planar triangulation of Σ. For any β that
is a nonzero C-linear combination of reduced multicurves, the product eβ 6= 0 in C(Σ).

Proof. To begin, we split the components of β according to their membership in RMCj .
Applying Lemma 9.1, we may thus fix j and assume that β =

∑
i∈I ciαi, where ci ∈ C and

αi ∈ RMCj . From here on out, the general strategy is to consider the leading terms of β
and eβ. We show that some leading term of eβ is nonzero, and thus eβ 6= 0.

Let d = max{dege(αi) | i ∈ I} and J = {i | dege(αi) = d}. Then S = {αi}i∈J consists
of the leading terms in β, and PS = {Pαi}i∈J and NS = {Pαi}i∈J consist of the positive
and negative resolutions of the leading terms. By Lemmas 8.3 and 8.4, Pαi and Nαi are
the only possible leading terms in eαi, and their degree is d + j − 1. So the set of leading
terms of eβ is a subset of PS ∪NS.

However, as we will see, the leading terms of eβ can be a proper subset of PS ∪ NS,
meaning there can be cancellations among the possible leading terms when computing
eβ. Because the resolution maps are injective by Proposition 8.6, cancellations cannot
occur amongst the positive resolutions, and the same is true of the negative resolutions.
But Pαi = Nαk for i, k ∈ J may occur. See Figures 9.1 and 9.2 for examples. Our goal is
to show that some member of PS ∪NS survives to be a leading term of eβ.

Based on our discussion above, from now on we thus replace I with J and show eβ 6= 0
when β is dege-homogeneous. Proof of the following lemma then finishes the proof of
Proposition 9.3.

Lemma 9.4. Fix j = 0, 1, 2, and let β =
∑

i∈J ciαi with ci ∈ C and all the αi ∈ RMCj having
edge degree d. Then leading terms of eβ have degree d + j − 1, and each is a positive or negative
resolution of a leading term of β.

Proof. To distinguish between the possible leading terms, we analyze their projection
onto two coordinates, with π(α) = (α(as), α(bt)) for any reduced multicurve α. See
Section 8.2. Let us denote π(S) = {π(αi)}i∈J , and similarly π(PS) = {π(Pαi)}i∈J and
π(NS) = {π(Nαi)}i∈J . We order the projected coordinates using lexicographical ordering
�; that is, (x, y) � (x′, y′) if x > x′ or x = x′ and y > y′. There is a maximal πmax in π(S).
We begin with the cases j = 1, 2, as they are simpler.

For the case j = 1, compare the action of the P and N maps, as depicted in Figure 8.2.
Observe that π(Pα) � π(Nα) for all α ∈ RMC1 except those with π(α) = (d + 1

2
, d). If
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πmax 6= (d + 1
2
, d), pick any αmax ∈ {αi}i∈J with π(αmax) = πmax. Since πmax ∈ π(PS) \

π(NS), Pαmax 6= Nαi for every i ∈ J . Moreover, because of the injectivity of the positive
resolution map, Pαmax is distinct from every other Pαi in PS as well. Thus Pαmax will be
a leading term of eβ.

However, if πmax = (d + 1
2
, d), there may exist i, k ∈ J such that π(αi) = π(αk) = πmax

and π(Pαi) = π(Nαk). See Figure 9.1 for an illustrated example. In this case, the projected
coordinates are not enough to determine how to locate a suitable αmax.

In this case, pick αk ∈ {αi | π(αi) = πmax} with the maximum Pαk(bt−1). We claim
that Pαk will survive after the cancellation with other terms. Suppose not. Then Pαk =
Nα` for some α` ∈ {αi | π(αi) = πmax}. Then by Lemma 9.2, Pαk(bt−1) = Nα`(bt−1) <
Pα`(bt−1). It violates the maximality of Pαk(bt−1). Therefore such ` does not exist and Pαk
is a nonzero leading term of eβ.

3½

P

0

 

 -½  3

3½ 0

 

 -½  3

3½0

 

 -½ 3

3½0

 

 -½ 3

3½0

 

 -½ 3

P

N

N

FIGURE 9.1. Examples of αi, αk ∈ RMC1 such that π(Pαi) = π(Nαk). Notice
that Nαi(bt−1) < Pαk(bt−1).

The case j = 2 is very similar. From Figure 8.3, we see that π(Pα) � π(Nα) for all α ∈
RMC2, except those with π(α) = (d+ 1

2
, d+ 1

2
) or (−1

2
,−1

2
). If πmax 6= (d+ 1

2
, d+ 1

2
), (−1

2
,−1

2
),

pick any αmax with π(αmax) = πmax. If πmax = (d+ 1
2
, d+ 1

2
) or πmax = (−1

2
,−1

2
), cancellations

are possible.

Suppose that πmax = (d + 1
2
, d + 1

2
). Pick αk ∈ {αi | π(αi) = πmax} with the maximum

Pαk(bt−1). If Pαk = Nα` for some other α` ∈ {αi | π(αi) = πmax}, then Pαk(bt−1) =
Nα`(bt−1) < Pα`(bt−1) by Lemma 9.2. Thus such α` does not exist and Pαk is a leading
term in eβ. When πmax = (−1

2
,−1

2
), then one can show in a similar way by using N and b1

instead of P and bt−1 by symmetry.
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The case j = 0 also proceeds along the same lines, but we are first required to subdivide
RMC0 based on whether the triangles on either side of e are integral of type I, or fractional
of type II. (Type III is not possible here.) Let RMC0

ii be the set of α ∈ RMC0 with typeα(as) =
I and typeα(bt) = I, and let RMC0

if be the set where typeα(as) = I and typeα(bt) = II.
Similarly define RMC0

fi and RMC0
ff . Clearly, RMC0 = RMC0

ii t RMC0
if t RMC0

fi t RMC0
ff . It

turns out that P and N are �-preserving on these sets.

Lemma 9.5. Let β =
∑

i∈I ciαi, with ci ∈ C and αi ∈ RMC0. Let Tii := {Pαi, Nαi | αi ∈
RMC0

ii} and define Tif , Tfi, Tff in a similar way. Then Tii, Tif , Tfi, and Tff are mutually disjoint.

Proof. We show that Tii and Tfi are disjoint. The other cases are similar.

When integral on the left, we have typeα(as) = I, and we show that Pα(aRs ) ≥ 0. There
are two cases, either typePα(as) is I or II. The type I case is clear. If typePα(as) is type II,
one of Pα(as) and Pα(b0) is −1

2
, and so Pα(aRs ) > 0. Similarly, Nα(aRs ) ≥ 0.

On the other hand, when fractional on the left, we have typeα(as) = II, and then
typePα(as) and typeNα(as) are II or III. Furthermore, Pα(aRs ) = Nα(aRs ) = −1

2
. �

In our setting, Lemma 9.5 implies that cancellations are possible only when the types of
the triangles on either side of e agree. Let us further assume that β =

∑
i∈J ciαi is a linear

combination of αi that are in one of RMC0
ii, RMC0

if , RMC0
fi, or RMC0

ff .

Lexicographically order the projected coordinates π(αi) for i ∈ J , and let πmax be the
maximal coordinates with respect to �. From Figure 8.1, one can check that if we restrict
the domain to one of RMC0

ii, RMC0
if , RMC0

fi, and RMC0
ff , then P and N are �-preserving

maps. We remark that this is not true for RMC0 without the subdivision.

One can verify that π(Pα) � π(Nα) except possibly when π(α) = (0, 0), (d, d). If πmax 6=
(0, 0), (d, d), pick any αmax such that π(αmax) = πmax. If πmax = (d, d), pick αmax so that
Pαmax(bt−1) is the maximum. Arguing like in the j = 1, 2 cases, we see that Pαmax will
survive in eβ. The case of π(α) = (0, 0) is obtained in a similar way. �

We conclude our proof of Proposition 9.3. If β has a leading term of degree d, Lemma 9.4
shows that eβ has a nonzero leading term with the expected degree d + j − 1. Hence
eβ 6= 0. �

9.2. Second step - general coefficients. Unlike Proposition 9.3, Proposition 9.6 below is
valid for arbitrary surfaces, and does not require Σ to be locally planar.

Proposition 9.6. Let e be an edge of a triangulation of Σ, and suppose that eβ 6= 0 for any β that
is a non-zero C-linear combination of reduced multicurves. Then e is not a zero divisor in C(Σ).

Proof of Proposition 9.6. Let γ ∈ C(Σ) be nonzero and eγ = 0. First consider the case where
the edge e has two distinct vertices, v and w. We may assume that in the vector of vertices
v = (v1, v2, · · · , vn), v = v1 and w = v2.

By Lemma 9.1, we may fix j = 0, 1, 2 and assume that γ =
∑

k∈I fk(v
±
i )αk, where

fk(v
±
i ) ∈ C[v±i ] and αk ∈ RMCj . In the case that j = 1, we may further assume that

αk belongs to RMC1
v or RMC1

w, and without loss of generality, let us assume RMC1
v.
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FIGURE 9.2. Examples of αi, αk ∈ RMC0
ii such that π(Pαi) = π(Nαk). Notice

that Nαi(bt−1) < Pαk(bt−1).

Because of Proposition 2.6, we now rewrite γ as a linear combination of vertex classes
as

γ =
∑

m∈ZV
γmvm,

and all γm are C-linear combinations of elements of one of RMC0, RMC1
v, or RMC2.

In the first case, all γm are C-linear combinations of reduced multicurves in RMC0. Then
for any resolution of eγm, there is no resolution at a vertex (the second relation in Defini-
tion 2.4). Thus it does not produce any extra vertex class, so as a linear combination of
the vertex classes,

eγ =
∑

m∈ZV
eγmvm.

Therefore eγ = 0 implies that eγm = 0 for all m. Then by the assumption on e, γm = 0 for
all m. Therefore γ = 0.

If γm is a C-linear combination of elements elements in RMC1
v, then for every resolution

of eγm, there is only one resolution at a vertex v. Thus veγm is a C-linear combination of
reduced multicurves, and we have the unique decomposition

(9.1) eγ =
∑

m∈ZV
veγmvm−e1

where e1 is the first standard coordinate vector. Now eγ = 0 implies veγm = 0 for all m,
since the vm are linearly independent in C(Σ). Since v is a unit in C(Σ), it now follows
that eγm = 0. Our assumption eβ 6= 0 for any β that is a non-zero C-linear combination of
reduced multicurves means that γm = 0 for all m. Therefore γ = 0.
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The cases of RMC2 are similar and we can obtain the same conclusion. The only differ-
ence is that instead of (9.1), we have

(9.2) eγ =
∑

m∈ZV
vweγmvm−e1−e2 .

When e is an edge whose ends are both v, then we have a decomposition RMC = RMC0t
RMC2. We also argue in the same way. The only difference here is that in RMC2 case, we
have (9.1) instead of (9.2) because there is only one endpoint resolution at v. �

Putting together Propositions 9.3 and 9.6, we immediately arrive at the statement of
Theorem 5.1, which states that when e is an edge of a locally planar triangulation of Σ,
then e is not a zero divisor in C(Σ). This also completes the proof in Section 3 of Theorem
B, which states that when Σ is locally planar, the Poisson algebra homomorhpism Φ :
C(Σ)→ C∞(Td(Σ)) is injective.

10. THE ROGER-YANG SKEIN ALGEBRA Sh(Σ)

Having finished the proofs of Theorems A and B about the commutative curve algebra
C(Σ), we now turn to the quantum setting. Let us now consider the skein algebra Sh(Σ)
as defined by Roger and Yang [RY14].

10.1. Framed knots and arcs in a thickened punctured surface. Previously, we consid-
ered only loops and arcs in the 2-dimensional punctured surface Σ. We now go up a
dimension, to the 3-dimensional product Σ× [0, 1]. In particular we define framed knots,
arcs, and generalized framed links in Σ × [0, 1] as analogies of, respectively, the loops,
arcs, and multicurves in the 2-dimensional punctured surface Σ. Recall that V are the
punctures of Σ.

A framed knot in Σ × [0, 1] is an embedding of an oriented annulus into Σ × [0, 1] that
is disjoint from V × [0, 1]. A framed arc in Σ × [0, 1] is a map of a strip [0, 1] × [0, 1] into
Σ × [0, 1] so that on the set (0, 1) × [0, 1] it is an embedding into Σ × [0, 1] that is disjoint
from V × [0, 1], and on each of the sets {0} × [0, 1] and {1} × [0, 1], it is an embedding into
V × [0, 1] that is increasing in the second coordinate. A generalized framed link in Σ× [0, 1]
is a disjoint union of finitely many framed knots and framed arcs. Thus, although more
than one component of a generalized framed link may end above a particular puncture
vi, the components must do so at different heights above vi.

We consider generalized framed links up to a suitable notion of regular isotopy which
is described in detail in [RY14]. In particular, regular isotopy of generalized framed links
can be described using three moves on their diagrams (the Reidemeister II and III moves
on the interior and one more move for ends of arcs meeting at a vertex). In this paper,
we will assume that diagrams are obtained from representatives with vertical framing,
so that the restriction of the embedding from the definition of a framed knot or arc is
always increasing in the second coordinate. Breaks in the diagrams are enough to show
crossing information at double points in the interior or at a vertex, but further numbering
according to height will be necessary when more than two ends of arcs meet at a vertex.



32 HAN-BOM MOON AND HELEN WONG

We say that a generalized framed link in Σ× [0, 1] is simple or reduced when its diagram is
a reduced multicurve in Σ. In particular, the empty set ∅ is a reduced generalized framed
link.

There is a natural stacking operation for two generalized framed links α, β in Σ× [0, 1]. In
particular, α stacked on top of β is the union of the framed curve α′ ⊂ Σ× [0, 1

2
] (obtained

by rescaling α in Σ × [0, 1] vertically by half) and of the framed curve β′ ⊂ Σ × [1
2
, 1]

(obtained by rescaling β in Σ×[0, 1] vertically by half). We denote the framed link obtained
from α stacked on top of β as α · β.

10.2. Roger-Yang skein algebra. Suppose that h is some indeterminate. Then the ring
of power series in h, equipped with a natural h-adic topology, will be denoted by C[[h]].
Furthermore, in this ring, we distinguish a certain power series q = eh/4 ∈ C[[h]]. In
addition, let there be an indeterminate vi associated to each puncture in V , such that a
formal inverse v−1

i exists. Let C[[h]][v±1
i ] denote the commutative C[[h]]-algebra generated

by {v±1
i }.

Definition 10.1. Let Σ be a surface with punctures. Let h be some indeterminate, and
associate a variable vi to the ith puncture. Then the Roger-Yang skein algebra Sh(Σ) is the
C[[h]][v±1

i ]-algebra freely generated by by the generalized framed links on Σ modded out
by the following relations:

1) −

(
q + q−1

)

2) vi −

(
q

1
2 + q−

1
2

)

3) − (−q2 − q−2)

4) − (q + q−1),

where we use q = eh/4, and where the diagrams in the relations are assumed to be iden-
tical outside of the small balls depicted. Multiplication of elements in Sh(Σ) is the one
induced by the stacking operation for generalized framed links.

Observe that in the absence of punctures on Σ, the Roger-Yang Sh(Σ) and the Kauff-
man bracket skein algebra coincide. Hence, Sh(Σ) can be regarded as an extension of the
Kauffman bracket skein algebra.

From comparing the definitions of the curve algebra C(Σ) and the Roger-Yang skein
algebra Sh(Σ), we see that the Roger-Yang algebra is some non-commutative version of
the curve algebra. Formally, we have the following theorem.
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Theorem 10.2 ([RY14, Proposition 2.10 and Theorem 2.13]). Let p : Sh(Σ) → C(Σ) be the
map which associates a generalized framed link in Σ× [0, 1] with its projection to a multicurve in
Σ. Then p induces an isomorphism between the C-algebras Sh(Σ)/(h · Sh(Σ)) and C(Σ).

Furthermore, Sh(Σ) is a deformation quantization of C(Σ).

The above theorem generalizes the analogous statements about the Kauffman bracket
skein algebra [Tur91, HP90, BFKB99]. For the definition and details about deformation
quantizations, see [Kon03].

Although one is commutative whereas the other is usually not, the underlying module
structure of Sh(Σ) is no more complicated than C(Σ). We say that a C[[h]]-module M
is topologically free if M ∼= V ⊗ C[[h]] for some vector space V in the category of C[[h]]-
modules.

Theorem 10.3 ([RY14, Theorem 2.4]). The algebra Sh(Σ) is topologically free. Furthermore,
Sh(Σ) ∼= C(Σ)[[h]] as C[[h]]-modules.

Remark 10.4. Variations in the definition of Sh(Σ) exist in the literature. In particular, let
AA(Σ) be the Z[A][v±i ]-algebra generated by RMC on Σ and with the same four relations as
in Definition 10.1. Observe thatAA(Σ) can be regarded as a coordinate restriction of Sh(Σ),
by mapping A → q = eh/4. Thus statements about AA(Σ) apply also to C(Σ) and Sh(Σ).
In particular, Sh(Σ) and C(Σ) are also finitely generated, with an explicit generating set
[BKPW16a], and a presentation is known for certain small surfaces including the three-
punctured sphere and the one-punctured torus [BKPW16b].

10.3. Integrality of the Roger-Yang algebras. As we mentioned in the introduction, Sh(Σ)
seems a likely candidate to be a quantization of the decorated Teichmüller space. In the
case of the Kauffman bracket skein algebra, its integrality was an important step towards
showing that it is a quantization of the decorated Teichmüller space [Bul97, PS00, PS19].
Analogously, we also have integrality for the Roger-Yang algebras.

Theorem 10.5. Suppose that Conjecture 1.1 is true for a punctured surface Σ. Then Sh(Σ),
AA(Σ), and C(Σ) are all domains. In particular, if Σ is locally planar, then Sh(Σ), AA(Σ), and
C(Σ) are domains.

Proof. By the proof of Theorem 3.1, C(Σ) is a subalgebra of C[λ±i ]. The latter is an integral
domain, thus C(Σ) is, too.

Recall from Theorem 10.3 that Sh(Σ) is topologically free. Thus as a C[[h]]-module,
Sh(Σ) ∼= C(Σ)[[h]]. Let α, β ∈ Sh(Σ) be two nonzero elements. Then α (resp. β) can be
written as

∑
i≥m αih

i (resp.
∑

i≥n βih
i) with αi, βi ∈ C(Σ). Now

αβ = αmβnh
m+n +O(hm+n+1).

Since the smallest degree term is nonzero by the classical case, αβ 6= 0 in Sh(Σ).

The algebra AA(Σ) is a subalgebra of Sh(Σ) by sending A 7→ q = eh/4, and any subring
of a domain is a domain. �
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