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ABSTRACT. We describe presentations of the Roger-Yang generalized skein algebras for
punctured spheres with an arbitrary number of punctures. This skein algebra is a quantiza-
tion of the decorated Teichmüller space and generalizes the construction of the Kauffman
bracket skein algebra. In this paper, we also obtain a new interpretation of the homoge-
neous coordinate ring of the Grassmannian of planes in terms of skein theory.

1. INTRODUCTION

Since the Kauffman bracket skein algebra Sq(Σ) of a closed surface Σ was introduced
by Przytycki ([Prz91]) and Turaev ([Tur88]), based on Kauffman’s skein theoretic descrip-
tion of the Jones polynomial ([Kau87]), it has been one of the central objects in low-
dimensional quantum topology. It has interesting connections with many branches of
mathematics, including character varieties ([Bul97, BFKB99, PS00]), Teichmüller spaces
and hyperbolic geometry ([BW11]), and cluster algebras ([FST08, Mul16]).

Roger and Yang extended skein algebras to oriented surfaces with punctures and de-
fined the algebra Aq(Σ) ([RY14]) by including arc classes. The algebra Aq(Σ) is indeed
a quantization of the decorated Teichmüller space ([Pen87, RY14]) and is also compati-
ble with the cluster algebra from surfaces ([MW20]). Thus, it can be regarded as a good
extension of Sq(Σ) and strengthens the connections of the aforementioned subjects.

For both Sq(Σ) and Aq(Σ), many algebraic properties have been shown. For exam-
ple, they are finitely generated algebras ([Bul99, BKPW16a]) without zero divisors ([PS00,
BW11, MW19, MW20]) with a few exceptions. However, very few examples of Sq(Σ) and
Aq(Σ) with explicit presentations are known. If we denote by Σg,n (resp. Σk

g) the oriented
surface with genus g and n punctures (resp. k boundary components), then a presentation
of Sq(Σk

g) is known only for g = 0, k ≤ 4 and g = 1, k ≤ 2 cases ([BP00]). The presentation
of Aq(Σg,n) is known for g = 0, n ≤ 3 and g = 1, n ≤ 1 ([BKPW16b]).

The main result of this paper is a calculation of a presentation of Aq(Σ0,n) for arbitrary
n. Arrange n punctures v1, v2, · · · , vn in a small circle C on S2 clockwise. Let βij = βji be
the geodesic in C, which connects vi and vj .

Theorem 1.1 (Theorem 6.1). The algebra Aq(Σ0,n) is isomorphic to

Z[q±
1
2 , v±1 , v

±
2 , · · · , v±n ]〈βij〉1≤i<j≤n/J
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where J is the ideal generated by

(1) (Ptolemy relations) For any 4-subset I = {i, j, k, `} ⊂ [n] in cyclic order, βikβj` =

qβi`βjk + q−1βijβk`;
(2) (Quantum commutation relations) For any 4-subset I = {i, j, k, `} ⊂ [n] in cyclic order,

βijβk` = βk`βij . For any 3-subset I = {i, j, k} ⊂ [n] in cyclic order, βjkβij = qβijβjk +

(q−
1
2 − q 3

2 )v−1
j βik;

(3) (γ-relations) For any i, j ∈ [n], γ+
ij = γ−ij ;

(4) (Big circle relation) δ = −q2 − q−2.

The definition of γ±ij and δ, as well as their formulas in terms of the βij’s, are given in
Section 4. We want to emphasize that each generator of J has a very simple and explicit
topological interpretation. See Section 4 for the details.

A key step of the proof is the computation of a presentation ofAq(R2
n) (Section 5), where

R2
n is the plane with n punctures. By finding a generating set and many relations (Sections

3 and 4), it is straightforward to construct a surjective homomorphism of the form

f̄ : Z[q±
1
2 , v±1 , v

±
2 , · · · , v±n ]〈βij〉/K → Aq(R2

n),

where K is the ideal generated by Ptolemy relations and Quantum commutation rela-
tions.

Similar to many other problems of finding presentations, a difficult non-trivial step is
to show the injectivity of f̄ . To do so, we employ a technique from algebraic geome-
try, in particular the dimension theory. When q = 1, f̄ is a surjective homomorphism of
commutative algebras. The affine variety associated to C ⊗Z Aq(R2

n) is a closed subvari-
ety of the affine variety associated to C ⊗Z Z[q±

1
2 , v±1 , v

±
2 , · · · , v±n ]〈βij〉/K. They have the

same dimension and the latter is irreducible. Therefore, they are isomorphic and f̄ is an
isomorphism.

Remark 1.2. During the proof, we show that the presentation of Aq(R2
n) with q = 1 is a

ring extension of the homogeneous coordinate ring of the Grassmannian of planes. The
ring has occurred in many different territories of mathematics including classical invari-
ant theory, cluster algebras, and even computational biology (Remarks 5.2, 5.6). Our re-
sult provides a skein theoretic interpretation of the same object.

Remark 1.3. The method of the proof relies on the fact thatAq(Σ0,n+1) is a domain, which
was shown in [MW19] for n ≥ 3. Thus, the proof is valid for n ≥ 3. However, even for
n ≤ 2, our presentation still coincides with the calculation in [BKPW16b]. See Remark 6.3.

Acknowledgements. The last author thanks Helen Wong for helpful discussions and
many valuable suggestions. The authors also thank the anonymous referees for valuable
comments on earlier drafts of this paper.
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2. THE ROGER-YANG GENERALIZED SKEIN ALGEBRA

In this section, we present the definition and basic properties of the Roger-Yang gener-
alized skein algebra Aq(Σ).

Let Σ be an oriented surface without boundary, not necessarily compact nor connected.
Let V ⊂ Σ be a finite subset of points and let Σ = (Σ, V ). A point v ∈ V is called a
puncture and Σ is called a punctured surface. We allow the case that V = ∅. In this paper,
there are two relevant examples of a punctured surface. Let Σg,n be the n-punctured genus
g surface. Let R2

n be the n-punctured plane. If V is any n-subset of R2, then R2
n = (R2, V ).

Definition 2.1. Fix a punctured surface Σ = (Σ, V ). A multicurve is a one-dimensional
compact submanifold Γ (possibly with boundary) of Σ × (0, 1) satisfying the following
properties:

(1) ∂Γ = V × (0, 1) ∩ Γ;
(2) the composition map Γ→ Σ× (0, 1)→ Σ is a generic immersion.

A curve is a connected multicurve. A loop is a curve without boundary, and an arc is a
curve with boundary.

To visualize a curve, we draw its diagram. The second coordinate t ∈ (0, 1) is the vertical
coordinate oriented toward the reader. It encodes which strand is over/under another
strand, as in Figure 2.1.

FIGURE 2.1. Examples of local planar diagram for curves

We will always think about the regular isotopy classes of multicurves. Roughly, two mul-
ticurves are regular isotopic if (1) they are homotopic, (2) each step in the deformation is
a multicurve in the above sense, and (3) the deformation does not involve a Reidemeister
move of type I. For the precise definition, consult [RY14, Section 2]. We may assume that
for any multicurve, the only multiple points on Σ in the planar diagram above are double
points. However, note that it is possible that there are more than two strands meeting at
a puncture.

There is a natural stacking operation of multicurves. Let α, β be two multicurves. By
rescaling the vertical coordinate, we may assume that α ⊂ Σ × (0, 1

2
) and β ⊂ Σ × (1

2
, 1).

Then α ∗ β is defined as ‘stacking’ β over α: α ∗ β := α ∪ β.

Definition 2.2. Let Σ = (Σ, V ) be a punctured surface. Suppose that V = {v1, v2, · · · , vn}.
Let Rq,n := Z[q±

1
2 , v±1 , v

±
2 , · · · , v±n ], which is the commutative Laurent polynomial ring

with respect to q
1
2 , v1, · · · , vn with integer coefficients. The generalized skein algebraAq(Σ) is
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anRq,n-algebra generated by regular isotopy classes of multicurves in Σ. The addition and
scalar multiplication are formal, but the multiplication is given by the stacking operation
αβ := α ∗ β. The algebra Aq(Σ) has four types of relations:

1) Skein relation = q + q−1

2) Puncture-Skein relation = v−1
(
q

1
2 + q−

1
2 )

3) Framing relation = −q2 − q−2

4) Puncture-Framing relation = q + q−1

Example 2.3. For each vertex vi ∈ V , the waterdrop ωi at vi is the small arc class starting at
vi, turning around counterclockwise, and ending at vi. We assume that the ending point
is higher than the starting point. By using the Puncture-Skein relation, Framing relation,
and Puncture-Framing relation, one may check that

ωi = = v−1
i

(
q

1
2 + q−

1
2

)
=
(
q

1
2 (−q2 − q−2) + q−

1
2 (q + q−1)

)
v−1
i = (q

1
2 − q

5
2 )v−1

i .

Example 2.4. For any curve class α ∈ Aq(Σ), the conjugate α of α is the new curve obtained
by reversing all of the crossing data. Equivalently, it is induced by the map (x, t) 7→ (x, 1−
t) from Σ×(0, 1) to itself. Then the conjugation map α 7→ α is an anti-involution onAq(Σ).
A calculation shows that ωi = (q−

1
2 − q− 5

2 )v−1
i = −q3ωi = qωi + (q−

1
2 − q 3

2 )(−q2 − q−2)v−1
i .

Remark 2.5. The original definition in [RY14] is a ring-theoretic completion of Aq(Σ) in
Definition 2.2. The original paper [RY14] did not address non-compact Σ cases, but the
construction can be done in the same way. However, its connection to hyperbolic geome-
try ([RY14, Section 3]) cannot be directly extended.

In [RY14], the authors defined the curve algebra C(Σ) which is the classical limit ofAq(Σ),
which can be described by using immersed curves on Σ. For the detail of the construction,
see [RY14, Section 2.2]. Algebraically, the curve algebra C(Σ) can be obtained by setting
q

1
2 = 1, i.e., C(Σ) = A1(Σ) = Aq(Σ)/(q

1
2 − 1). Thus, if we set

(2.1) Rn := Rq,n/(q
1
2 − 1) ∼= Z[v±1 , v

±
2 , · · · , v±n ],

C(Σ) is an Rn-algebra. The algebra C(Σ) is a commutative algebra and has a Poisson al-
gebra structure. Moreover, Aq(Σ) is a deformation quantization of C(Σ) ([RY14, Theorem
2.13]).

We leave a few known structural results on Aq(Σ).

Theorem 2.6 ([Bul99, Theorem 1], [BKPW16a, Theorem 2.2]). The algebra Aq(Σg,n) (and
hence C(Σg,n)) is finitely generated.
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The proof of [MW19, Theorem 10.5] tells us the following result.

Theorem 2.7 ([MW19, Theorem 10.5]). Let Σ be a punctured surface. If C(Σ) is an integral
domain, then Aq(Σ) is a domain (there is no zero divisor).

Theorem 2.8 ([MW19, Theorem 5.1 and Section 4]). There is a function f(g) such that for
n ≥ f(g), C(Σg,n) (and hence Aq(Σg,n) by Theorem 2.7) is a domain. When g = 0, Aq(Σ0,n) and
C(Σ0,n) are domains for n ≥ 4.

Remark 2.9. When n = 0, Aq(Σg,0) is the classical Kauffman skein algebra Sq(Σg,0). Przy-
tycki and Sikora showed that Aq(Σg,0) is a domain ([PS00]).

For any finitely generated commutative algebra A over C we may define the (Krull)
dimension ofA ([Har77, Section I.1]). This is equal to the dimension of its associated affine
algebraic variety Spec A ([Har77, Proposition I.1.7.]). When A is an integral domain, this
is equal to the transcendental degree of the field of fractions Q(A) of A ([Har77, Exercise
II.3.20.]).

Proposition 2.10. Let T be a triangulation of Σg,n where its zero-skeleton is the set of punc-
tures of Σg,n. For the same range of n in Theorem 2.8, the field of fractions Q(C ⊗Z C(Σg,n)) is
transcendentally generated by edges in T . Thus, the dimension of the C-algebra C ⊗Z C(Σg,n)

is the number of edges for a triangulation T , which is 6g − 6 + 3n. In particular, for n ≥ 4,
dimC⊗Z C(Σ0,n) = 3n− 6.

Proof. By [MW19, Lemma 3.4], after a certain localization, C ⊗Z C(Σg,n) is isomorphic to
C[λ±i ], where λi is a variable for each edge xi in T . The localization does not affect the
field of fractions, so Q(C ⊗Z C(Σg,n)) ∼= Q(C[λ±i ]) ∼= C(λi). The remaining statements are
immediate from an Euler characteristic calculation. �

Finally, we state the following module theoretic result.

Definition 2.11. A reduced curve is a curve class without any self-crossing (both on the
interior and at a puncture) on the planar diagram that is neither a trivial loop nor a punc-
tured loop. A multicurve is reduced if it is a finite union of reduced curves without any
crossings. For a notational convention, we will regard the empty set as a reduced multic-
urve.

Proposition 2.12. Fix a surface Σ = (Σ, V ) with |V | = n. The algebra Aq(Σ) (resp. C(Σ)) is
a free Rq,n-module (resp. Rn-module) with a basis consisting of reduced multicurves, with one
exception when Σ = Σ0,1 (see Remark 6.3).

Proof. The classical case is in the proof of [RY14, Theorem 2.4]. The quantum case is
obtained from the fact that Aq(Σ) is embedded into a topologically free algebra ([RY14,
Theorem 2.4]) which does not have any relation among basis vectors. �
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3. GENERATORS

In this section, we describe a collection of curves in R2
n and Σ0,n and show that they

generate Aq(R2
n) and Aq(Σ0,n) as Rq,n-algebras.

Let Σ be R2 or S2. We may arrange n punctures arbitrarily. Take a small circle C on Σ.
From now on, we assume that the n punctures v1, v2, · · · , vn lie on C in clockwise order.
Let P be the convex polygon inscribed in C, whose vertices are v1, v2, · · · , vn (Figure 3.1).

Definition 3.1. For any pair i < j in [n] := {1, 2, · · · , n}, let βij be the regular isotopy
class of the geodesic in C, which connects vi and vj . For notational convenience, we set
βji = βij .

FIGURE 3.1. βij classes and configuration of P , D, and R.

Thus, βij classes can be represented by the diagonals and sides of P .

Proposition 3.2. As an Rq,n-algebra, Aq(Σ0,n) and Aq(R2
n) are generated by {βij}1≤i<j≤n.

Proof. Any multicurve α is generated by reduced multicurves by Proposition 2.12. Each
multicurve is a product of reduced curves. Thus, Aq(Σ0,n) and Aq(R2

n) are generated by
reduced curves.

By [BKPW16b, Proposition 2.2], any reduced loop class is generated by reduced arc
classes. For the reader’s convenience, we describe an example of the recursive relation in
Figure 3.2. Indeed, in [BKPW16b, Proposition 2.2], the authors proved the statement for
Σ0,n only. However, their proof only relies on the fact that every loop in Σ0,n divides the
surface into two components. Thus, the same proof works for R2

n.
Now, we show that every reduced arc class is generated by {βij}1≤i<j≤n. Take a circleD,

which properly contains C (Figure 3.1). Any multicurve in R2
n or Σ0,n is regular isotopic

to a multicurve in D. To show this statement, we will apply skein relations in D. Thus,
the proof will be identical in the case of R2

n and Σ0,n. So from now on, we will focus on
the R2

n case.
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vi vj
= vivj − q − q−1 −

FIGURE 3.2. Generating a loop class by arc classes

Let R := P ∪
⋃n
i=1 Ri, where Ri is a ray emanating from each vertex vi toward the outer

direction so that these rays are disjoint (Figure 3.1).
For each reduced arc α, we define i(α,R) as the number of intersection points of the

planar diagram of α and R, excluding intersections at vertices v1, v2, · · · , vn. Now, the
intersection number i(α,R) is defined as

i(α,R) := min {i(α′, R) | α′ is regular isotopic to α}.

We show the statement by induction on i(α,R). If i(α,R) = 0, then α is regular isotopic
to a reduced arc in P . Thus, α is regular isotopic to one of the βij’s.

Suppose that i(α,R) > 0. In this case, α intersects one of Ri’s. Otherwise, α lies in
a simply connected region R2 \

⋃n
i=1Ri and the entire curve α can be contracted to the

interior of P . Thus, i(α,R) must be zero. We may assume that α intersects Ri. Take the
closest strand of α to vi, and apply the Puncture-Skein relation at vi. Then α = q

1
2viγ1γ2−qδ

as in Figure 3.3. Now i(γ1, R), i(γ2, R), i(δ, R) are all strictly smaller than i(α,R). By our
induction hypothesis, we obtain the desired result. �

q−
1
2

α
Ri Ri+1

= vi

Ri Ri+1

γ2

γ1

− q
1
2

Ri Ri+1

δ

FIGURE 3.3. Intersection number reduction

4. RELATIONS

In this section, we present several geometric relations among curve classes on R2
n and

Σ0,n. The first two types of relations are valid for Aq(Σ0,n) and Aq(R2
n). The remaining

relations are valid only for Aq(Σ0,n).

Definition 4.1 (Ptolemy relations). Take a 4-subset I = {i, j, k, `} ⊂ [n] and assume that
the four elements are listed in clockwise cyclic order. The Ptolemy relation for I is

(4.1) βikβj` = qβi`βjk + q−1βijβk`.

Note that this is a special case of the Skein relation in Definition 2.2.
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Definition 4.2 (Quantum commutation relations). For any 4-subset I = {i, j, k, `} ⊂ [n]

that is listed in clockwise cyclic order, the first Quantum commutation relation for I is

(4.2) βijβk` = βk`βij.

For any 3-subset I = {i, j, k} ⊂ [n] in clockwise cyclic order, the second Quantum commu-
tation relation for I is

(4.3) βjkβij = qβijβjk + (q−
1
2 − q

3
2 )v−1

j βik.

The second Quantum commutation relation follows from the comparison of the βijβjk
and βjkβij after applying the Puncture-Skein relation at vj .

The below relations are valid only for Aq(Σ0,n).

Definition 4.3 (γ-relations). Fix i, j ∈ [n]. Let γ+
ij (resp. γ−ij ) be the reduced arc class outside

P in Figure 3.1, starting from vi, moving clockwise (resp. counterclockwise) and ending
at vj (Figure 4.1). It is clear that if i 6= j, γ+

ij = γ−ji . When i = j, γ+
ii is the arc moving around

P while γ−ii = ωi in Example 2.3. The γ-relation is

(4.4) γ+
ij = γ−ij .

One can see that on Σ0,n, γ+
ij and γ−ij are regular isotopic. Note that γ−ii = ωi = (q

1
2 −

q
5
2 )v−1

i ∈ Rq,n. If j = i+ 1, then γ+
i,i+1 = βi,i+1.

v1

v3

γ13
+

=

v1

v3

γ31
+

v1

γ11
+

=
v1
ω1

FIGURE 4.1. The γ-relations

Definition 4.4 (Big circle relation). Let δ be the reduced loop class of the circle D in Figure
3.1. The Big circle relation is

(4.5) δ = −q2 − q−2.

The Big circle relation is a special case of the Framing relation in Definition 2.2.
By using skein relations, one may find explicit expressions for the relations above in

terms of βij classes.
We introduce some new notations. Let Cn be the cyclic graph with n vertices 1, 2, · · · , n

arranged clockwise. For any two elements i, j ∈ [n], let (i, j) be the set of vertices in the
path starting from i+1, moving clockwise, and ending at j−1. Note that (i, i) = [n]\{i} 6=
∅. We may give a total order on (i, j) as i+1 is the smallest and j−1 is the largest element.
Then for any I ⊂ (i, j), we have an induced order.
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Lemma 4.5. For any I ⊂ (i, j), let ik be the k-th element of I . Set i0 = i and i|I|+1 = j. Then in
Aq(Σ0,n) or Aq(R2

n),

(4.6) γ+
ij = γ−ji =

∑
I⊂(i,j)

(−1)|(i,j)\I|q|(i,j)|−
|I|
2

 |I|∏
k=1

vik

 |I|∏
k=0

βikik+1

 .

For γ+
ii , we set βii = ωi (Example 2.4).

The product µI :=
∏|I|

k=0 βikik+1
is the ordered product of all edges on the clockwise path

from i to j with intermediate vertex set I . The right hand side has a clear combinatorial
meaning if we set q = 1 and ignore all vertex classes. It is an alternating sum of all
clockwise paths from vi to vj .

Proof. For any k ∈ (i, j), let ηikj be the reduced arc class starting at vi, moving to the inside
of P , going outside of P between vk−1 and vk, moving clockwise, and arriving at vj (see
Figure 4.2). Note that ηi,i+1,j = γ+

ij . We set ηijj = βij , and ηiii = βii = ωi.

v3

v1 v3

v6

β13

γ36
+= η346

= q−
1
2

v1 v3

v6

η136
+ q

1
2

v1 v3

v6

η146

FIGURE 4.2. Recursive formula for γ-classes and η-classes

The Puncture-Skein relation at vk provides a recursive formula

ηikj = q
1
2vkβikηk,k+1,j − qηi,k+1,j

(Figure 4.2). By applying the formula to γ+
ij = ηi,i+1,j and using ηijj = βij , we obtain the

desired result. �

Lemma 4.6. For any I ⊂ [n], we denote the k-th element of I by ik and set i|I|+1 = i1. Then in
Aq(Σ0,n) or Aq(R2

n),

(4.7) δ = (−1)n−1(qn−2 + (q−1)n−2) +
∑
I⊂[n]

|I|≥2

(−1)n−|I|qn−2i1+1− |I|
2

(∏
i∈I

vi

) |I|∏
k=1

βikik+1

 .

Note that the product µI :=
∏|I|

k=1 βikik+1
is the ordered product of all edges of the convex

polygon with the vertex set I . The non-constant part of the right hand side is, after setting
q = 1 and ignoring vertices, the alternating sum of all convex polygons in P , including
bigons.
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Proof. Here we leave an outline of the proof. For any I ⊂ [n], let νI be the product of∏
i∈I vi and the configuration of curves {βikik+1

}1≤k≤|I| that is like ‘infinite stairs’ in Figure
4.3. Note that νI 6= µI because in νI , there is no lowest component. We set µ{i} = viωi,
ν{i} = viωi, and µ∅ = ν∅ = −q2 − q−2.

1

2

3

4

5

6

μI

1

2

3

4

5

6

vI

FIGURE 4.3. Example of µI and νI for I = {1, 3, 4, 5}.

For any k ≥ 1, let I≥k := {ik, ik+1, · · · , i|I|} ⊂ I . Applying the Puncture-Skein relation,
we get a recursive formula νI = q−1µI + (q

1
2 − q− 3

2 )µI≥2
. Solving the recursive equation,

we have

(4.8) νI = (q
1
2 − q−

3
2 )|I|−1ωi|I| +

|I|−1∑
j=1

q−1(q
1
2 − q−

3
2 )j−1µI≥j

.

On the other hand, let δI be the loop class properly containing the convex hull generated
by {vi}i∈I . So, δ = δ[n]. Applying the Puncture-Skein relation at all vertices, we obtain
νI =

∑
J⊂I q

|I|
2
−|J |δJ . Using the Möbius inversion formula ([Sta12, Section 3.7]), we get

(4.9) δI =
∑
J⊂I

(−1)|I|−|J |q
|J|
2
−|I|νJ .

Combining (4.8) and (4.9), we may describe δ = δ[n] as a linear combination of µJ ’s and
ωi’s. By calculating each coefficient, we obtain the formula. �

Remark 4.7. A careful reader may wonder if we require an extra relation γ+
ii = γ−ii . This

extra relation follows from γ+
ii = γ−ii by applying the conjugation map, which is an anti-

involution. It can be also obtained by combining the γ-relations, the Big circle relation,
the Puncture-Skein relation, and the computation in Example 2.4, as follows:

γ+
ii = qγ+

ii + (q−
1
2 − q

3
2 )v−1

i δ = qωi + (q−
1
2 − q

3
2 )v−1

i (−q2 − q−2) = ωi = γ−ii .

5. PRESENTATION OF Aq(R2
n)

From now on, we assume that n ≥ 3. In this section, we find a presentation of Aq(R2
n).

This computation is not only interesting but is also a crucial step for the calculation of
Aq(Σ0,n) because of the existence of functorial morphisms.

Since R2 ∼= S2 \ {p}, there is a natural inclusion map ι : R2
n → Σ0,n which maps the i-th

vertex to the i-th vertex. It induces an Rq,n-algebra homomorphism

(5.1) ι# : Aq(R2
n)→ Aq(Σ0,n),
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which is specialized to ι# : C(R2
n) → C(Σ0,n). To avoid any unnecessary complication of

notations, we will use the same symbol ι# for the classical case and for the map after the
coefficient extension.

We may also regard p ∈ S2 as the (n+ 1)-st puncture on S2. There is another morphism
j : R2

n → Σ0,n+1 that maps the i-th vertex to the i-th vertex for 1 ≤ i ≤ n. Then we obtain
an Rq,n-algebra homomorphism

(5.2) j# : Aq(R2
n)→ Aq(Σ0,n+1).

Definition 5.1. Let Sq,n be the non-commutative Rq,n-algebra generated by βij classes
modulo the ideal generated by relations in Definitions 4.1 and 4.2.

Consider the ‘classical limit’ Sq,n/(q
1
2 − 1) of Sq,n. Then the quantum commutation

relations specialize to ordinary commutation relations, and one can check that

(5.3) Sq,n/(q
1
2 − 1) ∼= Rn ⊗Z S,

where Rn = Z[v±1 , v
±
2 , · · · , v±n ] and S is a commutative algebra with the presentation

(5.4) S := Z[βij]/(βikβj` − βijβk` − βi`βjk)

where {i, j, k, `} ⊂ [n] is cyclic.

Remark 5.2. The commutative ring S in (5.4) has appeared in many different contexts.

(1) The algebra C ⊗Z S is the homogeneous coordinate ring of the Grassmannian
Gr(2, n) ([GH94, Chapter I.5]).

(2) In classical invariant theory, S is the SL2(Z)-invariant subring of the algebra of
the polynomial ring with 2n variables. It is also called the graphical algebra [MS19,
Section 2]).

(3) The algebra S is also a cluster algebra of type An−3 ([FZ03, Section 12]).
(4) The tropicalization of C ⊗Z S is the space of phylogenetic trees in computational

biology ([MS15, Sec 4.3]).

In particular, it is well-known that C⊗ZS is an integral domain of dimension dim Gr(2, n)+

1 = 2n− 3. Thus, dimC⊗Z Rn ⊗Z S = 3n− 3.

Remark 5.3. We say that a monomial
∏
β
mij

ij is non-crossing if no two βij and βk` with
mij,mk` > 0 intersect except at one of the endpoints. The ring S is a free Z-module with
a basis consisting of non-crossing monomials with respect to the βij’s (Straightening law,
[Stu08, Corollary 3.1.9]). Since the freeness is preserved by the base ring extension,Rn⊗ZS

is a free Rn-module with the same basis.
We will extend this freeness result to the quantum setup. Fix any total order on the

set {βij}. Let B be the set of non-crossing monomials with respect to βij in Sq,n, such
that the product is taken in non-decreasing order. By the non-decreasing property, there
is no duplication of the commutative version of monomials in B. Thus, B can be also
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understood as a basis of S and Rn⊗Z S. In Proposition 5.9, we will show that Sq,n is a free
Rq,n module with a basis B.

Since the non-commutative polynomial algebra is a free object in the category of alge-
bras, there is a unique homomorphism

f : Rq,n〈βij〉 → Aq(R2
n)

which maps each βij to βij ∈ Aq(R2
n). Note that Ptolemy relations and Quantum commu-

tation relations are special cases of Skein relations and Puncture-Skein relations, respec-
tively. Thus, there is a well-defined quotient homomorphism

(5.5) f̄ : Sq,n → Aq(R2
n).

By Proposition 3.2, f̄ is surjective. When q
1
2 = 1, this map is specialized to (by abuse of

notation, we use the same letter) a surjective homomorphism

(5.6) f̄ : Rn ⊗Z S → C(R2
n).

The main result of this section is the following.

Theorem 5.4. The Rq,n-algebra homomorphism f̄ : Sq,n → Aq(R2
n) in (5.5) is an isomorphism.

We prove the classical case first.

Theorem 5.5. The Rn-algebra homomorphism f̄ : Rn⊗Z S → C(R2
n) in (5.6) is an isomorphism.

Remark 5.6. Theorem 5.5 provides a skein theoretic interpretation of S.

Proof of Theorem 5.5. It is sufficient to show the injectivity of f̄ . We need the fact that
dimC ⊗Z C(R2

n) = 3n − 3. This will be shown in Proposition 5.7 below. By assuming
it here, we will prove the injectivity. Suppose that f̄ is not injective. Then, there is an
isomorphism Rn ⊗Z S/ ker f̄ ∼= C(R2

n).
Note that for any integral domain A and an indeterminate v, A[v±] is also an integral

domain. Since S is an integral domain, we can conclude that Rn ⊗Z S ∼= S[v±1 , v
±
2 , · · · , v±n ]

is an integral domain too. Now every nonzero element in ker f̄ is not a zero divisor. Thus

3n− 3 = dimC⊗Z Rn ⊗Z S > dimC⊗Z Rn ⊗Z S/ ker f̄ = dimC⊗Z C(R2
n) = 3n− 3,

which is a contradiction. �

The next proposition fills the missing step of dimension computation.

Proposition 5.7. The dimension of C⊗Z C(R2
n) is 3n− 3.

Proof. Since there is a surjective homomorphism f : C⊗ZRn⊗ZS → C⊗ZC(R2
n), we know

that dimC⊗Z C(R2
n) ≤ dimC⊗Z Rn ⊗Z S = 3n− 3 by Remark 5.2.

Consider the map j# : C⊗ZC(R2
n)→ C⊗ZC(Σ0,n+1) which comes from j# in (5.2) by the

coefficient extension. Let M be the image of j#. The homomorphism j# is not injective.
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Indeed, the loop class δ enclosing the polygon P (the isotopy class of the circleD in Figure
3.1) is also isotopic to the punctured circle at vn+1 on Σ0,n+1. In other words, δ−2 ∈ ker j#.
Thus, there are well-defined surjective homomorphisms

C⊗Z C(R2
n)→ C⊗Z C(R2

n)/(δ − 2)→M.

Therefore, dimC ⊗Z C(R2
n) ≥ dimC ⊗Z C(R2

n)/(δ − 2) ≥ dimM . The first inequality is an
equality only if δ − 2 is a zero divisor in C⊗Z C(R2

n).
Suppose that (δ − 2)h = 0 for some nonzero h ∈ C ⊗Z C(R2

n). By Proposition 2.12, we
may represent h uniquely as a linear combination of reduced multicurves. Furthermore,
we may find representatives of those reduced multicurves that are contained in D. So
all of them are disjoint from δ. Thus, 0 = (δ − 2)h is a nontrivial linear combination of
reduced multicurves, which violates the freeness of C(R2

n) (Proposition 2.12). Therefore,
δ − 2 is not a zero divisor in C⊗Z C(R2

n). Thus, dimC⊗Z C(R2
n) > dimM .

Since C ⊗Z C(Σ0,n+1) is an integral domain by Theorem 2.8, M is also an integral do-
main. So dimM is equal to the transcendental degree of the field of fractions Q(M). Let
Q(M)(vn+1) be an extension field of Q(M) by the vertex class vn+1. We claim that Q(C⊗Z

C(Σ0,n+1)) is a finite extension of Q(M)(vn+1). By Proposition 2.10, Q(C ⊗Z C(Σ0,n+1)) is
generated by the curve classes for edges in a triangulation of Σ0,n+1.

Fix a triangulation T ′ of P . By adding n rays ei that each connect vi and vn+1, we can
make a triangulation T of S2 with n + 1 vertices. We use it to construct a transcendental
basis of Q(C⊗Z C(Σ0,n+1)). Note that all edges from T ′ are already in Q(M).

For each vi, consider an arc class αi that starts from vi, moves around vn+1 clockwise,
and comes back to vi as in Figure 5.1. Then, αi ∈ im j# = M . By applying the Puncture-
Skein relation at vn+1 and utilizing the fact that ωi = 0 when q

1
2 = 1 (Example 2.3), we

obtain αi = vn+1e
2
i . Thus, e2

i ∈ Q(M)(vn+1) and ei is in the finite extension of Q(M)(vn+1).
Therefore, Q(C⊗Z C(Σ0,n+1)) is a finite extension of Q(M)(vn+1).

vi-1

vn+1

P vi+1

vi

FIGURE 5.1. The curve class αi

Since a finite extension does not change the transcendental degree,

dimC⊗Z C(Σ0,n+1) = tr.deg Q(C⊗Z C(Σ0,n+1)) = tr.deg Q(M)(vn+1)

≤ tr.deg Q(M) + 1 = dimM + 1.

Thus, 3n−4 ≤ dimM < dimC⊗Z C(R2
n) ≤ 3n−3. Therefore, dimC⊗Z C(R2

n) = 3n−3. �
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Now consider the quantum case. Note that there is a commutative diagram

(5.7) Sq,n
f̄
//

π=/(q
1
2−1)

��

Aq(R2
n)

ρ=/(q
1
2−1)

��

Rn ⊗Z S
f̄
// C(R2

n).

Lemma 5.8. If g ∈ Sq,n is nonzero, then (q
1
2 − 1)kg 6= 0 for all k > 0.

Proof. Suppose that (q
1
2 − 1)kg = 0. Since f̄ : Sq,n → Aq(R2

n) is an Rq,n module homomor-
phism, f̄((q

1
2−1)kg) = (q

1
2−1)kf̄(g) = 0. Since C(R2

n) ∼= Rn⊗ZS is an integral domain (The-
orem 5.5), by Theorem 2.7, Aq(R2

n) is also a domain. Thus f̄(g) = 0 and g ∈ ker f̄ (It also
follows from the freeness in Proposition 2.12.). Then g ∈ kerπ, as (f̄ ◦π)(g) = (ρ◦ f̄)(g) = 0

and f̄ : Rn ⊗Z S → C(R2
n) is an isomorphism.

By applying Ptolemy relations, we know that every element in Sq,n can be written as
a Rq,n-linear combination of non-crossing monomials. By the Quantum commutation
relations and induction on the total degree, every element can be written as an Rq,n-linear
combination of monomials in B. In particular, we may write g =

∑
cIβI as a linear

combination of monomials in B. Then 0 = π(g) =
∑
c̄IβI , where c̄I is the image of cI by

the map Rq,n → Rn sending q
1
2 to one. Since Rn ⊗Z S is a free Rn-module with a basis

B, c̄I = 0 for all I . In other words, cI is a multiple of q
1
2 − 1. Therefore, g =

∑
cIβI =∑

(q
1
2 − 1)c′IβI = (q

1
2 − 1)g′ for some g′ ∈ Sq,n. But now (q

1
2 − 1)k+1g′ = (q

1
2 − 1)kg = 0,

so by the same argument we can continue to factor g′. However, this procedure must
be terminated as Aq(R2

n) is a free Rq,n-module, so it is not divisible. Thus, we have a
contradiction. �

Proposition 5.9. The algebra Sq,n is a free Rq,n-module with a basis B.

Proof. As before, every element can be written as anRq,n-linear combination of monomials
in B. Suppose there is a nontrivial relation

∑
cIβI = 0 where βI ∈ B. If all of cI has q

1
2 − 1

as a common factor, then we may write
∑
cIβI = (q

1
2 − 1)

∑
c′IβI . Then

∑
c′IβI = 0 due to

Lemma 5.8. By dividing the relation by an appropriate power of q
1
2 − 1, we may assume

that the coefficients of
∑
ciβI do not have q

1
2 − 1 as a common factor. Then, by setting

q
1
2 = 1, we obtain a relation

∑
c̄IβI = 0 in Rn ⊗Z S. Because one of the cI ’s does not have

q
1
2 − 1 as a factor, c̄I is nonzero, violating the freeness of Rn ⊗Z S. �

Proof of Theorem 5.4. Pick a nonzero g ∈ ker f̄ for f̄ : Sq,n → Aq(R2
n). Since Sq,n is a free

Rq,n-module (Proposition 5.9), we may express g =
∑
cIβI as an Rq,n-linear combination

of monomials in B uniquely. As in the proof of Proposition 5.9, after dividing g by an
appropriate power of q

1
2 − 1, we may assume that ḡ is nonzero in Rn ⊗Z S. But from

f̄(ḡ) = 0 and the injectivity in the classical case, we obtain a contradiction. �
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6. PRESENTATION OF Aq(Σ0,n)

Now we restate our main theorem and give the proof.

Theorem 6.1. Let J be the ideal generated by the Ptolemy relations, the Quantum commutation
relations, the γ-relations, and the Big circle relation in Section 4. Then

Aq(Σ0,n) ∼= Rq,n〈βij〉/J.

Proof. By Theorem 5.4, it is sufficient to show that Aq(R2
n)/K ∼= Aq(Σ0,n), where K is the

ideal generated by the γ-relations and the Big circle relation in Definitions 4.3 and 4.4.
Recall that there is a functorial morphism ι# : Aq(R2

n) → Aq(Σ0,n). This map is sur-
jective because any regular isotopy class of a multicurve in Σ0,n can be represented by a
multicurve in R2

n by avoiding the point p ∈ S2 \ R2. Thus, it is sufficient to show that
ker ι# = K. It is clear that K ⊂ ker ι#.

To find the extra relations, we use an argument imitating the ‘handle slide lemma’ in
[Prz99, Proposition 2.2.(5)] (see also [BLF05, Section 3]). Observe that two non-isotopic
curves α1 and α2 in R2

n can be isotopic in Σ0,n (i.e., ι#(α1) = ι#(α2)) because in Σ0,n, some
strands of α1 can freely cross p ∈ S2 \R2. Indeed, this is the only reason for the difference
in the regular isotopy classes in these two surfaces. This is because if we fix two points on
the dashed boundary circle in Figure 6.1, then there are only two regular isotopy classes
of embedded arcs in the dashed circle minus pwith two fixed boundary points. Therefore,
ker ι# is generated by the relations in Figure 6.1. Note that except the difference near p,
the remaining part of the multicurves are the same.

P − P

FIGURE 6.1. Generators of ker ι#

Therefore, to complete the proof, it is sufficient to show that each relation in Figure 6.1
is in K. This is proved in Proposition 6.2. �

Proposition 6.2. Every element in Figure 6.1 is in K.

Proof. In this proof, we mainly use multicurves instead of their regular isotopy classes.
Whenever we want to describe their regular isotopy classes, we will explicitly mention it.

Suppose that there is a multicurve α with a strand sufficiently close to p. Let αc be a
new multicurve that is obtained by crossing p. In other words, α − αc is the relation in
Figure 6.1.

Step 1. Reduction to curves without crossings.
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The Skein relations, the Puncture-Skein relations, and the ‘crossing p’ relations are com-
pletely local. For any multicurve α, by applying Puncture-Skein relations and Skein re-
lations repeatedly, we may obtain an Rq,n-linear combination α =

∑
cIαI of multicurves

without any crossings (but the multicurves may have some trivial loops and punctured
loops – so this may not be a linear combination of reduced multicurves). For each αI ,
there is a unique connected component that contains the strand crossing p, and αcI is ob-
tained by applying this crossing operation for the connected component. Thus, if we
know that α = αc ∈ Aq(R2

n)/K for any curves without crossings, then
∑
cIαI =

∑
cIα

c
I

in Aq(R2
n)/K. After that, we may apply all of the Skein relations and Puncture-Skein

relations backward to get αc. Thus, α− αc ∈ K.
Step 2. Reduction to reduced arcs.
Now, suppose that α is a curve without intersection. Then, by using the Puncture-

Skein relations only (see Figure 3.2 or [BKPW16b, Proposition 2.2]), we may describe α as
a polynomial with respect to (1) reduced arcs, (2) regular isotopy classes of waterdrops ωi
and ωi, and (3) the regular isotopy class of the trivial loop. If α is a curve isotopic to the
trivial loop, then α− αc = −(δ + q2 + q−2) ∈ K follows from the Big circle relation. If α is
a curve isotopic to a waterdrop ωi (Example 2.3), then α− αc = −(γ+

ii − ωi) ∈ K. The case
of ωi is also obtained by Remark 4.7. Therefore, by a similar argument to that in Step 1, it
is now sufficient to prove the statement for reduced arcs.

Step 3. Complexity measure for reduced arcs.
Let α be a reduced arc connecting two vertices vi and vj . From the reducedness (Defi-

nition 2.11), the two end vertices are different, so vi 6= vj . We define w(α) as the number
of connected components of α ∩ int P . Each connected component σ of α ∩ int P divides
P into two components. Let e(σ) be the smaller number of vertices in one of the com-
ponents, not counting the end vertices of σ. We define e(α) = min {e(σ)}. If there is no
component in P , we set e(α) = 0. Finally, for each reduced arc α, we define its complexity
as c(α) = (w(α), e(α)) ∈ N2 (see Figure 6.2 for an example). Give the lexicographical order
on N2.

P α

FIGURE 6.2. A curve α with c(α) = (4, 2)

Step 4. Proof for the reduced arcs.
We use transfinite induction on the complexity of α. If w(α) = 0, then α is an arc on the

outside of P , and is regularly isotopic to γ+
ij or γ−ij . Thus, α− αc = ±(γ+

ij − γ−ij ) ∈ K. Note,
that in this case, c(α) = (0, 0) as there is no component inside P .
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Suppose that the statement is true for all reduced arcs with complexity less than (r, s)

and let α be a reduced arc with c(α) = (w(α), e(α)) = (r, s). Then, r ≥ 1, and there must
be a component σ of α ∩ int P such that e(σ) = e(α). If e(α) = e(σ) = 0, then α has a
turn-back near σ (Figure 6.3). By moving σ to the outside of P , we obtain a new reduced
arc α′, which is isotopic to α but c(α′) < c(α), as w(α′) = w(α)− 1. Then, by our induction
hypothesis, in Aq(R2

n)/K, α = α′ = α′c = αc.

⇒ ⇒

FIGURE 6.3. Two types of turn-backs and their removal

Suppose now that e(α) > 0. Pick a component σ of α ∩ int P such that e(σ) = e(α). We
deform σ toward the region which contains |e(σ)| vertices until one end of σ hits a vertex
(say vi). By the Puncture-Skein relation, we obtain α = q−

1
2viδ1δ2−q−1ε (Figure 6.4). Then,

c(δ1), c(δ2), and c(ε) are strictly less than c(α). Without loss of generality, we may assume
that δ2 is the curve containing the part that crosses p. By our induction hypothesis, in
Aq(Σ0,n)/K,

α = q−
1
2viδ1δ2 − q−1ε = q−

1
2viδ1δ

c
2 − q−1εc = αc.

Therefore, α− αc ∈ K. �

α
σ

vi

= q−
1
2vi

δ2
δ1 − q−1

ε

FIGURE 6.4. A complexity deduction α = q−
1
2viδ1δ2 − q−1ε

Remark 6.3. It is straightforward to verify the coincidence of our presentation in Theorem
6.1 with the one in [BKPW16b] for n ≤ 3. By a direct computation, we have

Aq(Σ0,2) ∼= Z[q±
1
2 , v±1 , v

±
2 , β12]/(v1v2β

2
12 − 2 + q2 + q−2),

Aq(Σ0,1) ∼= Z[q±
1
2 , v±1 ]/((q + q−1) + (q2 + q−2)) ∼= Z[q±

1
2 , v±1 ]/((q + q−1 − 1)(q + q−1 + 2)),

Aq(Σ0,0) ∼= Z[q±
1
2 ].

These presentations show the pathological behavior of Aq(Σ0,n) for small n. For n ≤
2, Aq(Σ0,2) is commutative. C(Σ0,2) ∼= Z[v±1 , v

±
2 , β12]/(β2

12) and Aq(Σ0,1) are not integral
domains, and Aq(Σ0,1) is not a free Z[q±

1
2 , v±1 ]-module anymore.
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