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I am an algebraic geometer with broad interests. My main research area is the geometry, topology
and combinatorics of moduli spaces. A moduli space is a family of mathematical objects of one particular
type where in addition, the family enjoys a desired geometric structure. One of the simplest examples
of a moduli space is the Grassmannian, which is the moduli space of sub-vector spaces of a fixed vector
space.

I have been focused on the study of explicit geometric structure of many concrete examples of mod-
uli spaces, using the framework of birational geometry and geometric invariant theory (GIT). Examples of
moduli spaces that I am interested in include moduli spaces of abstract and embedded varieties, vector
bundles, and sheaves.

I'have organized my past research into three themes (1) Topology of moduli spaces, (2) Mori’s program
of moduli spaces, and (3) Compactifications of moduli spaces. I briefly discuss these projects in Sections
1,2, and 3 respectively, and present my future research plan in Section 4.

1. TOPOLOGY OF MODULI SPACES ([7, 8, 19, 20, 26])

A promising strategy, from the perspective of birational geometry, of the study of the geometric struc-
ture of a given variety X is as follows: 1) construct a new variety X' (a so-called birational model), which
shares an open dense subset with X but has simpler geometric properties, 2) study the structure of X’,
and 3) measure the difference of X and X’. Even for a highly nontrivial variety, by applying this strategy
several times, sometimes we may reach a very simple variety.

When X is a moduli space, often a birational model is also a moduli space parametrizing a slightly
different collection of objects. This property enables us to keep track of the difference of two models,
while for general higher dimensional varieties this is an extremely difficult task.

In some other cases, such a simpler birational model can be obtained by taking an algebraic quotient
space (or GIT quotient) of an elementary variety. In this case its topological structure is able to be un-
derstood in-depth, and the structure is described in a combinatorial manner. Thus one can see and use
interesting interactions among algebra, combinatorics, and geometry.

1.1. Moduli spaces of genus zero curves and algebraic quotients. Here is a typical example showing
the general idea of the strategy, in the case of moduli of curves of genus zero. One way to define a genus
zero curve C in P7 is to consider it as the image of amap f = (fo: f1: - : f) : P! = P". So a general
(r + 1)-tuple of homogeneous degree d polynomials with two variables defines a degree d genus zero
curve C = f(P!), and composing with a coordinate change of P! does not affect C C P". Thus roughly,
we have a correspondence
CCP«— (fo:fi:i:fr)/~

and the SLy-quotient of the space of (r + 1)-tuples of degree d homogeneous polynomials P(Sym?C? @
C"*1)//SLy is a birational model of the space of genus zero curves in P".

Results 1 ([19]). Let My(P", d) be Kontsevich’s compactification of the space of degree d genus zero
curves in P" ([24]). When d = 3, we obtained My(P", d) from P(Sym?C? ® C"*')//SL, by five explicit
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algebro-geometric surgeries (so-called blow-ups/downs). As an application, we computed the Poincaré
polynomial of My (P", d) for d < 3.

A recurring theme in my research is the moduli space My, of stable n-pointed genus zero curves,
which is a canonical compactification of the moduli space of n-pointed P!’s. Since configurations of
n-points on P! (up to coordinate changes) can also be parametrized by the SLay-quotient (P!)"//SLs, the
spaces My ,, and (PP!)"//SLy are birational.

Results 2 ([20, 26]). We described the birational map between My ,, and (PY)" //SLy in terms of explicit bi-
rational morphisms, and showed that all intermediate spaces are moduli spaces M 4 of weighted pointed
stable rational curves ([16]) with some weight data .A. As a byproduct, we gave a recursive formula for
the Poincaré polynomial of My 4 for arbitrary A.

1.2. Moduli spaces of sheaves. Sometimes there is an unexpected connection among moduli spaces
which seem to be unrelated. During a conversation with Chung, we discovered that three following
moduli spaces are indeed birational. Note that they parametrize objects on different ambient spaces.

(1) Moduli space of sheaves on a quadric surface with ¢; = (2,2) and x = 2;
(2) Moduli space of sheaves on P with Hilbert polynomial m? + 3m + 2;
(3) Moduli space of conics in the Grassmannian Gr(2, 4).

Results 3 ([8]). We described birational maps between them in theoretical ways. The map from (1)
to (2) is a Fourier-Mukai transform, and the map from (3) to (2) is Kirwan’s desingularization. As an
application, we computed the virtual Poincaré polynomial of (1).

We have continued to study moduli spaces of sheaves on surfaces. Recently, the moduli spaces
Mpz(dm + 1) of one-dimensional sheaves on P? have attracted attention because they are used to de-
fine and evaluate Gopakumar-Vafa invariant of a local Calabi-Yau threefold. By using moduli spaces
of pairs and Bridgeland stable objects, we were able to compute topological invariants of the first non-
trivial case.

Results 4 ([7]). We computed the cohomology ring and the Chow ring of Mpz(4m + 1).

2. MORI’'S PROGRAM FOR MODULI SPACES ([9, 27, 28, 29, 30, 32, 33, 34])

When studying the birational geometry of a given variety X, one may aim to classify all birational
models of X - an ambitious goal. If X is a Mori dream space ([18]) and if we restrict ourselves to
birational models which are equivalent or less complicated than X, then at least theoretically a complete
classification is possible. Mori’s program provides such a theoretical framework to the classification. It
consists of three steps:

(1) Study the space of all numerical classes of divisors (codimension one subvarieties) of X;
(2) For a given divisor D of X, compute the associated model
(1) X(D) :=Proj HH°(X,0(kD))
k>0

which is a projective variety;
(3) Study the difference of X and X (D).
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One can apply this framework to moduli spaces, and it has been one of the most active directions in
the study of moduli spaces in the last decade (for instance [4, 5, 17]). For moduli spaces, one may add
an extra step to the program:

(4) Give a geometric or moduli theoretic interpretation of X (D).

However, even in simple cases, the completion of Mori’s program is very difficult and despite of many
results, there are few completed examples. I have carried out several projects for moduli spaces of curves
and sheaves.

2.1. The space of divisors and the space of curves of My ,. The first step toward Mori’s program for
a variety X is to understand the space of divisors, or dually, the space of curves, which has a convex
cone structure. In the case of My ,,, the famous F-conjecture gives an explicit set of generators (so-called
F-curves) of the cone of curves, but the conjecture is open for n > 8. Recently it was shown that My, is
not a Mori dream space if n is large ([6]). This implies that birational geometric properties of My, are
too complicate to be fully analyzed if n is large. However, it is believed that the S,-invariant geometry
of My, behaves well.

Results 5 ([33]). With Swinarski, we found a combinatorial/computational statement which implies
(and strictly stronger than) the S,,-invariant F-conjecture and proved it for n < 19.

On the other hand, since the conjectural cone structure is extremely complicate, it is even not easy
to determine whether a given curve class is indeed contained in the cone generated by F-curves. With
Swinarski, we studied computational aspects of curve classes on My .

Results 6 ([32]). We provided an effective algorithm to compute curve classes on My ,,, by using a toric
approximation of My ,,. By applying this algorithm, we gave an effective computation of curve classes
which are G-fixed loci for a subgroup G' < S,,.

2.2. Mori’s program for moduli spaces of curves. Ifound and generalized a universal formula describ-
ing all moduli spaces M, 4 of weighted pointed stable curves ([16]) as birational models of M ,,. This
result supplements and generalizes many results about log canonical models of M, ,, including [11, 37].

Results 7 ([27, 29]). Let A = (a1, - - ,ay) be a weight datum. Then

) Mn(Exg, | + 1A+ aihy) = M 4.
=1

where M, 4 is the moduli space of A-stable curves ([16]). Here \,1); are divisors defined using the
moduli theoretic meaning of ﬂgm.

Result 7 and many results on Mori’s program for M, ,, describe birational models associated to di-
visors in a small region of the cone of divisors of ﬂgm. However, outside this region, few results are
known. For instance, there are many flips (roughly, a flip of X is a modification of X along a small sub-
variety) of My ,,, but their moduli theoretic interpretations are not clear. As an initial step toward this
direction, I studied birational models associated to S,,-invariant divisors on M[)’n.

Results 8 ([28, 30]). For n < 7 and for every S,-invariant divisor D, we described My ,,(D).
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On the other hand, for the moduli space of genus zero curves in a projective variety, by extending the
result in [8], Chung and I obtained the following result.

Results 9 ([9]). We completed Mori’s program for the moduli space of conics in Grassmannian Gr(2, 7).

2.3. Mori’s program for moduli spaces of parabolic bundles via conformal blocks. Among algebraic
geometers working on moduli spaces of (parabolic) principal G-bundles, conformal blocks are known
as generalized theta functions. They are natural divisors on the moduli space of bundles. With Yoo, by
studying GIT and the combinatorics of sl;-conformal blocks, we obtain the following result.

Results 10 ([34]). We completed Mori’s program of the moduli space of rank 2, degree 0 parabolic bun-
dles on PL. The cone of divisors is an (n + 1)-dimensional polyhedral cone generated by 2"~! extremal
rays. For any divisor, the associated birational model is also a moduli space of parabolic bundles with
some degree and some parabolic weights.

These two results [9, 34] are rare examples of a completed Mori’s program with Picard number > 3.

3. COMPACTIFICATIONS OF MODULI SPACES ([12, 13, 31])

Many moduli spaces, such as the moduli space of smooth curves, are not compact. By compactify-
ing them, we can use powerful tools from algebraic geometry, like intersection theory, to study them.
One interesting feature in moduli theory is that it is often possible to construct many compactifications
having different moduli theoretic interpretations. Understanding the relationships between different
compactifications helps us to obtain geometric information of compactifications. My research involves
constructing and classifying different compactifications of the moduli space of pointed curves to learn
about its geometric/topological properties.

3.1. Compactifications of M ,, GIT, and conformal blocks ([12, 13]). One standard way to obtain a
moduli space of abstract curves is to consider a moduli space of embedded curves in a fixed projective
space P? and take the quotient by the automorphism group of P4. If U, is the incidence subvariety in
Chowy 4(P?) x (P?)" of (possibly singular) genus zero curves of degree d in P and n points on them, by
taking the SL4-GIT quotient, we get a compactification of My ,,, the moduli space of smooth n-pointed
genus zero curves. Here the GIT quotient depends on (n + 1) parameters a so-called linearization. In
joint work with Giansiracusa, Gibney, Jensen and Swinarski, we proved that:

Results 11 ([12, 13]). For each linearization L, the GIT quotient Uy, //1,.SL4+1 has an explicit moduli the-
oretic meaning. All previously known projective alternative modular compactifications of M ,, are real-
ized in this way, and there are many new examples. We computed the numerical class of the canonical
ample divisor for each quotient. As an application, we gave moduli theoretic descriptions of birational
models naturally obtained from sl-conformal blocks with symmetric weight data.

3.2. Combinatorics of extremal assignments. The other known family of alternative compactifications
of My, is obtained from the stack theoretic viewpoint. In [38], Smyth constructed a family of alternative
compactifications My ,,(Z) indexed by extremal assignments Z, which are combinatorial data described in
terms of labeled graphs. With my undergraduate students, we investigated combinatorics of extremal
assignments and translated the result in terms of birational geometry of My j,.
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Results 12 ([31]). Every extremal assignment Z and the associated M ,,(Z) can be described in terms of
a collection of set partitions. Furthermore we have three bijections between:

(1) The set of smooth My ,(Z)’s and the set of simple intersecting families in hypergraph theory;
(2) The set of toric M ,(Z)’s and the set of complete multipartite graphs;
(3) The set of S,-invariant My ,,(Z)’s and the set of special families of integer partitions.

4. CURRENT AND FUTURE RESEARCH

In this section I describe my research plan.

4.1. Topology of moduli spaces of embedded curves and sheaves. Since the moduli space of stable
maps was introduced by Kontsevich as a standard compactification of the moduli space of embedded
curves in a projective variety, several alternative compactifications have been constructed. Examples
include the moduli space of logarithmic stable maps ([21]), of quasi-maps ([10]), of stable quotients
([25]), and of unramified stable maps ([22]). They have played important roles in the virtual curve
counting theory, but their global geometric properties are not well-known.

Problem 1. Compute topological invariants of various moduli spaces of embedded genus zero curves.

With Chung, we are investigating the geometry of moduli spaces of sheaves and moduli of curves on
Fano varieties.

Problem 2. Compute topological invariants of moduli spaces of one-dimensional sheaves on surfaces.
Study the Mori’s program for moduli spaces of genus zero curves on projective spaces and Grassman-
nian.

4.2. S,-invariant F-conjecture. The S, -invariant F-conjecture is one of the biggest open problems in
the birational geometry of ﬂg, the moduli space of stable curves, since it was shown that assuming the
Sp-invariant F-conjecture for MO,n we obtain the cone of curves of Mg ([14]). With Swinarski we are
working on this problem by refining a computational approach we developed in [33].

Problem 3 (5,-invariant F-conjecture). Show that the curve cone of Mo,n /Sy, is generated by F-curves.

4.3. Mori’s program for moduli spaces of higher rank parabolic bundles. With Yoo we continue to
study moduli spaces of parabolic bundles.

Problem 4. Generalize the result in Section 2.3 to moduli spaces of higher rank parabolic bundles.

4.4. Computational aspects of the GIT quotient. In the last century, a standard approach to construct
a moduli space was GIT. Whenever one studies the GIT quotient of an algebraic variety X equipped
with a reductive group G-action, the first inevitable step is the computation of semi-stable locus X *°, or
equivalently, a finite list of one-parameter subgroups of GG, which is usually very delicate combinatorial
computation. Algebraic geometers have spent a tremendous amount of time, energy, and journal pages
to perform the same kind of numerical/combinatorial computations by bare hand. With Swinarski,
we are studying an effective algorithm to compute the list of one-parameter subgroups, and have a
plan to make a computer program which is open to public. It will let people skip the tedious stability
computation and enjoy delightful investigation of geometry of quotient spaces.
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Problem 5. Find an effective algorithm to find the semistable locus and implement the algorithm into a
computer program.

The above result immediately can be applied to the study of many moduli problems. For moduli
spaces M, of stable curves with genus g < 6, explicit simple birational models have been constructed
by GIT. For 7 < g < 9, Mukai ([35, 36]) gave a beautiful idea to construct a birational model (the so-called
Mukai model) of M, as a GIT quotient of a homogeneous variety. With Swinarski, by using a version of
the algorithm, we are investigating the geometry of the GIT quotient.

Problem 6. Study the geometric/moduli theoretic properties of Mukai model.

4.5. Moduli spaces of higher dimensional varieties. In many cases, moduli spaces of (abstract or em-
bedded) curves have good geometric properties such as smoothness and irreducibility. However, for
higher dimensional varieties, their compactified moduli spaces have very complicated geometric struc-
ture. Even the definition of the moduli space has many subtle technical difficulties, so although the
rigorous definition was suggested in late 80’s ([1, 23]), the construction was completed very recently.

It seems that the study of geometric properties of general cases is out of reach. But in special cases
of 1) varieties equipped with group actions ([2]); 2) varieties with combinatorial structures such as line
configurations on del Pezzo surfaces or hyperplane arrangements ([3, 15]), the study of their geometric
properties is approachable. One of my long-term research plans is to study moduli spaces of higher
dimensional varieties.

Problem 7. Study the geometric/topological properties of moduli spaces of higher dimensional varieties
with combinatorial structure.

4.6. Finite dimensional description of conformal block bundles. Most of the recent studies about con-
nections between conformal blocks and birational geometry of My ,, have focused on numerical proper-
ties of them. In spite of many beautiful results, the geometric explanation of them along the boundary
of My, is not fully satisfactory. On the locus of singular curves, the standard construction of conformal
blocks is to use the representation theory of infinite dimensional affine Lie algebras, while on the locus
of smooth curves, they can be defined as generalized theta functions on the moduli space of parabolic
principal bundles.

Problem 8. Find a definition of conformal blocks vector bundles on MO,n in terms of finite dimensional
algebraic geometry using relative moduli spaces of parabolic bundles and their appropriate degenera-
tions.
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