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I am an algebraic geometer with broad interests. My main research area is geometry, topology and
combinatorics of moduli spaces with emphasis on their birational geometry.

In mathematics, one effective way to study an object is to consider it as a member of a family of objects
and analyze possible degenerations within this family. A moduli space is a family of mathematical
objects of one particular type where in addition, the family enjoys a desired geometric structure. By
analyzing the geometry of moduli spaces, we can understand the nature of parameterized objects such
as algebraic varieties or vector bundles.

Furthermore, these days moduli spaces play a central role in many other branches of mathematics
such as topology and mathematical physics. For example, in the superstring theory, one of the key
ingredients is Gromov-Witten invariant which virtually enumerates curves in a projective variety sat-
isfying prescribed conditions. A successful mathematical definition of Gromov-Witten invariant, due
to Kontsevich-Manin, Behrend-Fantechi and Li-Tian ([KM94, BF97, LT98]), was obtained by using the
virtual intersection theory on the moduli space of stable maps, which is a compactification of the mod-
uli space of curves of fixed numerical type in a projective variety. Also Gromov-Witten invariant is
used to define a topological invariant the so-called quantum cohomology, which is a generalization of
the ordinary cohomology ring of an algebraic variety.

On the other hand, the origin of birational geometry dates back to the beginning of algebraic ge-
ometry. From the late 19th century, it has been well-known that two birationally equivalent varieties
(varieties share an isomorphic open dense subvariety) have many common properties. For each bira-
tional equivalence class, we can do more concrete work. If we can describe the relation between two
birational varieties in terms of explicit blow-ups/downs, then we can catch many concrete geometric
data of one of them from data of the other. Thus studying the birational map explicitly is a crucial
step in understanding the geometry and topology of a given variety by using simpler or well-known
varieties.

My research has been focused on the application of the framework of birational geometry to the
study of various moduli spaces. I have organized my research into four themes (1) Topology of moduli
spaces [KM10, KM11, Moo11, CM14, CM15], (2) Compactifications of moduli spaces of curves [GJM13,
MSvAX15], (3) Mori’s program of moduli spaces [Moo13, Moo15a, Moo15b, Moo14, MS15], and (4)
Conformal blocks and their connection with birational geometry [GJMS13, MY15]. I briefly discuss
these projects in Sections 1, 2, 3, and 4 respectively.

1. TOPOLOGY OF MODULI SPACES ([KM10, KM11, Moo11, CM14, CM15])

A promising strategy of the computation of topological invariants of a given algebraic variety X is
follows: 1) construct a new algebraic variety X ′ (a so-called birational model), which is birational to
X but has simpler geometric properties, 2) study the topological structure of X ′, and 3) measure the
difference of X and X ′. Even for highly nontrivial moduli spaces, by applying this strategy several
times, sometimes we may reach a very simple variety.
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When X is a moduli space, in many cases, a birational model is also a moduli space parametrizing
a slightly different collection of objects. In some other cases, such a variety can be obtained by taking
an algebraic quotient (or GIT quotient [MFK94]) of an elementary variety. By analyzing the relation
among moduli spaces and birational models from GIT, we can obtain geometric information of the
initial moduli space.

1.1. Past research - Comparison of moduli spaces and algebraic quotients.

1.1.1. Moduli spaces of genus-zero curves and algebraic quotients. With my advisor Kiem, I studied moduli
spaces of rational curves (genus-zero curves).

Theorem 1. [KM10] Let M0(Pr, d) be the moduli space of genus-zero stable maps ([KM94]), a compact-
ification of the moduli space of rational curves in Pr of degree d. Let

ψ : M0(Pr, d) 99K P(SymdC2 ⊗ Cr+1)//SL2.

be the birational map between M0(Pr, d) and a GIT quotient.

(1) When d = 3, ψ is a composition of three blow-ups and two blow-downs with explicit centers.
(2) We compute topological invariants of M0(Pr, d), for instance the Poincaré polynomial, the inte-

gral Picard group and (in some cases) the cohomology ring of M0(Pr, d) when d = 2, 3.

A recurring theme in my research is the moduli space M0,n of stable n-pointed rational curves.

Theorem 2. [KM11, Moo11]

(1) The birational morphism πL : M0,n → (P1)n//LSL2 for any effective linearization L ([Kap93]) is
decomposed into a sequence of smooth blow-ups and Kirwan’s desingularizations ([Kir85]).
All intermediate spaces are moduli spaces M0,A of weighted pointed stable rational curves
([Has03]) with some weight data A, and all M0,A are obtained in this way.

(2) We give a recursive formula for the Poincaré polynomial of M0,A for arbitrary weight data.

1.1.2. Moduli spaces of sheaves. Sometimes there is an unexpected connection among moduli spaces
which seem to be unrelated. The following result, which was proved in a joint work with Chung,
turned my attention to moduli spaces of sheaves.

Theorem 3. [CM14] Let MQ((2, 2), 2) be the moduli space of semistable sheaves on a smooth quadric
surfaceQwith c1 = (2, 2) and χ = 2. Let MP3(m2+3m+2) be the moduli space of semistable sheaves on
P3 with Hilbert polynomial m2 + 3m+ 2. Finally let M0(Gr(2, 4), 2) be the moduli space of genus zero,
degree two stable maps to the Grassmannian Gr(2, 4). Then there are two birational regular morphisms

MQ((2, 2), 2)
p→ MP3(m2 + 3m+ 2)

q← M0(Gr(2, 4), 2),

where p is a Fourier-Mukai transform ([Huy06]), and q is Kirwan’s desingularization ([Kir85]). In
particular, MQ((2, 2), 2) is a rational variety. We also compute the virtual Poincaré polynomial of
MQ((2, 2), 2).

We have continued to study moduli spaces of sheaves on surfaces. By using the Bridgeland wall-
crossing ([BM14b, BM14a]) and the wall-crossing of pairs ([He98]), we obtained the following result.
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Theorem 4. [CM15] Let MP2(4m+1) be the moduli space of stable sheaves on P2 with Hilbert polyno-
mial 4m+ 1. We compute its cohomology ring, Chow ring, and the total Chern class.

The moduli spaces MP2(dm+1) are used to define Gopakumar-Vafa invariants of a local CY threefold
([Kat08]), and d = 4 is the first nontrivial case.

1.2. Current and future research - Variations of moduli spaces of stable maps. In past ten years,
several alternative compactifications of the moduli space of embedded curves have been constructed.
Examples include the moduli space of logarithmic stable maps ([Kim10]), of quasi-maps ([CFK10]), of
stable quotients ([MOP11]), and of unramified stable maps ([KKO14]). They have played important
roles in the virtual curve counting theory.

Problem 5. Compute topological invariants of various moduli spaces of maps.

With Chung, I will also continue to study topological properties of moduli spaces of sheaves.

2. COMPACTIFICATIONS OF MODULI SPACES ([GJM13, MSvAX15])

Many moduli spaces, such as the moduli space of smooth curves, are not compact. By compactifying
them, we can use powerful tools from algebraic geometry, like intersection theory, to study them. Com-
pactifications that are moduli spaces themselves, are the most desirable. It is often possible to construct
many compactifications having different modular interpretations. Often there is a “best” or preferred
compactification, but understanding the relationships between different compactifications helps us to
obtain geometric information of compactifications. My research involves constructing different com-
pactifications of a given moduli space in order to learn about its geometric/topological properties.

2.1. Past research - alternative compactifications of M0,n.

2.1.1. GIT and compactifications of M0,n ([GJM13]). One possible way to obtain a moduli space of abstract
curves is to consider a moduli space of embedded curves in a fixed projective space Pd and taking the
quotient by the automorphism group of Pd. If Ud,n is the incident subvariety in Chow1,d(Pd) × (Pd)n

of (possibly singular) rational curves of degree d in Pd and n points on them, by taking the SLd+1-GIT
quotient, we get a compactification of M0,n, the moduli space of smooth n pointed rational curves.

In a joint work with Giansiracusa and Jensen, we proved that:

Theorem 6. [GJM13] For each effective linearization L on Ud,n, the GIT quotient Ud,n//LSLd+1 has a
modular meaning and there is a birational morphism πL : M0,n → Ud,n//LSLd+1. Many of known
alternative compactifications of M0,n such as Hassett’s spaces M0,A ([Has03]) are realized in this way.

2.1.2. Combinatorics of extremal assignments. Currently, there are two large families of alternative com-
pactifications of M0,n. One family is obtained from GIT quotients as in Section 2.1.1. The other family
is obtained from the stack theoretic viewpoint. In [Smy13], Smyth constructed a family of alternative
compactifications M0,n(Z) indexed by extremal assignments Z, which are combinatorial data described
in terms of labeled graphs. With my undergraduate students, we investigated combinatorics of ex-
tremal assignments and translated the result in terms of birational geometry of M0,n.
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Theorem 7. [MSvAX15] Every extremal assignment Z and the associated alternative compactification
M0,n(Z) can be described in terms of a collection of set partitions with easily checked conditions. If we
specialize in three important subfamilies, we have three bijections:

(1) The set of smooth M0,n(Z) and the set of simple intersecting families in hypergraph theory;
(2) The set of toric M0,n(Z) and the set of complete multipartite graphs;
(3) The set of Sn-invariant M0,n(Z) and the set of special families of integer partitions.

2.2. Current and future research.

2.2.1. Moduli theoretic interpretations of flips of M0,n. Recent studies on modular compactifications of
M0,n ([GJM13, Smy13, MSvAX15]) show that current descriptions of modular compactifications give
only a small amount of information on the birational geometry of M0,n. For instance, there are many
flips (roughly, a flip of X is a birational model of X with essentially equivalent data) of M0,n, but their
moduli theoretic interpretations are not clear (see [Moo14] for an attempt when n = 7).

Problem 8. Find moduli theoretic interpretations of flips of M0,n.

2.2.2. GIT and birational models ofM7. For moduli spacesMg of stable curves with genus g ≤ 6, explicit
birational models have been constructed as GIT quotients of elementary varieties. For g = 7, Mukai
gave a beautiful idea to construct a birational model (the so-called Mukai model) ofM7 as a GIT quotient
of a homogeneous variety ([Muk95]). I am studying geometry of the GIT quotient.

Problem 9. Study the geometric/moduli theoretic properties of Mukai model.

3. MORI’S PROGRAM FOR MODULI SPACES ([Moo13, Moo15a, Moo15b, Moo14, MS15])

A central problem in the birational algebraic geometry when studying a variety X is to determine
all birational models of X . If we restrict ourselves to birational models which are equivalent or less
complicate thanX in some sense, then under some assumptions (for instance being a Mori dream space
([HK00])) a complete classification is possible. Mori’s program provides such a theoretical framework
to the classification. It consists of 1) Study the cone of divisors (or dually, that of curves) of X ; 2) For a
given divisor D of X , compute the associated model

(1) X(D) := Proj
⊕
k≥0

H0(X,O(kD)),

3) Study the difference of X and X(D). Many results in modern birational geometry within the last
several decades are concerned with overcoming technical problems along this line, and recently there
have been staggeringly positive results [BCHM10].

We can apply this tack to moduli spaces. For example, the Hassett-Keel program is a systematic ap-
proach to find the canonical model Mg(KMg

) of Mg ([HH09, HH13]). I have carried out a similar
program forMg,n, the moduli space of pointed stable curves.

3.1. Past research - Mori’s program for moduli spaces of pointed curves.
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3.1.1. A universal formula for log canonical models ofMg,n ([Moo13, Moo15a]). I found and generalized
a universal formula describing all of moduli spaces Mg,A of weighted pointed stable curves ([Has03])
as log canonical models of Mg,n. This theorem supplements and generalizes many results about log
canonical models ofMg,n for instance [Smy11, FS11, AS12].

Theorem 10. [Moo13, Moo15a] Let A = (a1, · · · , an) be a weight datum. Then

(2) Mg,n(KMg,n
+ 11λ+

n∑
i=1

aiψi) ∼= Mg,A.

where Mg,A is the coarse moduli space of the moduli space of A-stable curves ([Has03]). Here λ, ψi are
tautological divisors defined using the modular meaning ofMg,n.

3.1.2. Mori’s program for M0,n with symmetric divisors. Theorem 10 and many results on Mori’s program
forMg,n describe birational models associated to divisors in a small region of the cone of divisors of
Mg,n well. However, on the outside of the region, few results are known. As an initial step toward this
direction, I studied birational models associated to Sn-invariant divisors on M0,n.

Theorem 11. [Moo14, Moo15b] For n ≤ 7 and for every Sn-invariant effective divisor D, M0,n(D) is
described. M0,n/Sn is a Mori dream space when n = 7.

3.1.3. Effective computation of curve classes on M0,n. The first step toward Mori’s program for a variety
X is to understand the cone of divisors, or dually, the cone of curves. The famous F-conjecture gives
an explicit set of generators (so-called F-curves) of the cone of curves, but it is widely open for n ≥ 8.
Since the conjectural cone structure is extremely complicate, it is even not easy to determine whether a
given curve class is indeed contained in the cone generated by F-curves.

Theorem 12. [MS15] We provide an effective algorithm to compute curve classes on M0,n, by using the
geometry of a toric approximation of M0,n. By applying this algorithm, we give an effective computa-
tion of curve classes which are G-fixed loci for a subgroup G ≤ Sn.

3.2. Current and future research.

3.2.1. Sn-invariant F-conjecture. Recently, it was shown that M0,n is not a Mori dream space if n ≥
134 ([CT15]). This implies that birational geometric properties of M0,n are too complicate to be fully
analyzed. However, it is believed that Sn-invariant geometry of M0,n is well-behaved. I am trying
to translate the Sn-invariant F-conjecture into purely combinatorial statements in terms of graphical
algebras and finite graphs.

Problem 13 (Sn-invariant F-conjecture). Show that the curve cone of M0,n/Sn is generated by F-curves.

Currently, it is known for n ≤ 24 due to Gibney ([Gib09]). The Sn-invariant F-conjecture for M0,n

implies the F-conjecture forMg ([GKM02]).

3.2.2. Theoretical explanation of Theorem 10. It is well-known that for any weight datum A, there is a
reduction morphism ϕA :Mg,n → Mg,A. For a stable curve (C, x1, · · · , xn), its image ϕA(C) is given
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by the log canonical model

(3) C(ωC +
n∑

i=1

aixi) := Proj
⊕
k≥0

H0(C, k(ωC +
n∑

i=1

aixi)).

Theorem 10 means the same weight datum determines the log canonical model of parameterized curves
and that of the parameter space itself. So far, there is no known theoretical explanation of Theorem 10.
I want to figure out the reason of this phenomenon and find some more supporting examples.

Problem 14. (1) Find the theoretical reason of the similarity between (2) and (3).
(2) Generalize Theorem 10 to moduli spaces of stable maps ([KM94]) and Fulton-MacPherson

spaces ([FM94]).

4. CONFORMAL BLOCKS AND THEIR CONNECTION WITH BIRATIONAL GEOMETRY

Recent results on the birational geometry of M0,n have focused attention on vector bundles of con-
formal blocks ([Fak12, GG12, Gia13, AGS14, BGM15]). Each such vector bundle V(g, `, λ) depends on
1) a simple Lie algebra g, 2) a nonnegative integer `, and 3) an n-tuple λ = (λ1, · · · , λn) of dominant
integral weights of g of length ≤ `, and can be constructed using the representation theory of affine
Lie algebras. We call its first Chern class D(g, `, λ) := c1(V(g, `, λ)) a conformal block divisor. The divi-
sors D(g, `, λ) are base-point-free for any choice of data and thus induce a morphism from M0,n to a
projective variety. Many birational models of M0,n arise in this way.

4.1. Past research - birational geometry of moduli of curves and bundles via conformal blocks.

4.1.1. Birational models come from conformal blocks divisors. With a research group consisting of Gibney,
Jensen, and Swinarski, I have studied the birational models for sl2-conformal block divisors on M0,n.
We gave a complete description of birational models in the case of sl2, and symmetric weight data
ωn
1 = (ω1, · · · , ω1). It generalizes a partial result in [AGS14].

Theorem 15. [GJMS13] If D(sl2, `, ωn
1 ) is nontrivial, the birational model M0,n(D(sl2, `, ωn

1 )) (see (1) in
Section 3 for the definition) is isomorphic to a GIT compactificationUg+1−`,n//LSLg+2−` with an explicit
linearization L (Section 2.1.1).

4.1.2. Conformal blocks and birational geometry of moduli spaces of parabolic bundles. Among algebraic ge-
ometers working on moduli spaces of (parabolic) principal G-bundles, conformal blocks also known
as generalized theta functions ([Pau96, LS97]). They are natural effective divisors on the moduli space
of bundles.

By studying the combinatorics of sl2-conformal blocks, we are able to obtain the following result on
the birational geometry of the moduli space of parabolic bundles.

Theorem 16. [MY15] LetM(2, 0,~a) be the moduli space of rank 2, degree 0 parabolic bundles on P1

with n parabolic points x1, · · · , xn with weight ~a. Suppose that M(2, 0,~a) has the maximal Picard
number n+ 1.

(1) The cone of divisors ofM(2, 0,~a) is generated by level 1 conformal blocks V(sl2, 1, λ)|(P1,x1,··· ,xn).
Thus it is a polyhedral cone generated by 2n−1 extremal rays.
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(2) Every model of M(2, 0,~a) appearing in Mori’s program is M(2, d,~b) for some weight ~b and
some degree d.

4.2. Current and future research.

4.2.1. Generalization toward higher rank parabolic bundles. In the proof of Theorem 16, two key ingredi-
ents are 1) a concrete description of slr-conformal blocks [FSV95] and 2) an explicit study of elementary
GIT quotients (P1)n//LSL2 and linear systems on them.

Problem 17. Generalize Theorem 16 for moduli spaces of higher rank parabolic bundles.

I expect that the right generalization of (P1)n in this context is a product of flag varieties.

4.2.2. Finite dimensional description of conformal block bundles. Most of the recent studies ([GG12, GJMS13,
Gia13, AGS14, BGM15]) about conformal block divisors are focused on numerical properties of them.
In spite of many beautiful results, there is no satisfactory geometric explanation of them so far. One
main reason of this shortage is that there is no geometric definition of conformal block bundles. On the
locus of singular curves, the only known construction of conformal blocks is to use the representation
theory of infinite dimensional affine Lie algebras.

As we discussed before, for a smooth pointed curve, a conformal block is a generalized theta function
on the moduli space of parabolic bundles. But still it is not completely understood how to extend this
interpretation to the boundary of M0,n.

Problem 18. Find a definition of conformal blocks vector bundles on M0,n in terms of finite dimensional
algebraic geometry.

A natural approach is to relativize the problem. If π :M(r, d, λ) → M0,n is the relative moduli space
of parabolic vector bundles and their degenerations, and if L is the correct extension of the generalized
theta function, then the conformal block vector bundle V(slr, `, λ) must be π∗(L). However, it is very
difficult to construct a degeneration of a given moduli space with desired properties.

As a first step, I am studying the sl2 case. From the proof of Theorem 16, we know that for a pointed
smooth curve (P1, x1, · · · , xn), the moduli spaceM(2, 0,~a) is an explicit modification of (P1)n//LSL2.
The moduli space M0,n is also another explicit modification of (P1)n//LSL2 (Theorem 2). We expect that
the relative moduli spaceM(~a) can be constructed as an SL2×SL2-quotient of an explicit modification
of (P1)n × (P1)n, by combining Theorems 2 and 16.
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[HH09] Brendan Hassett and Donghoon Hyeon. Log canonical models for the moduli space of curves: the first divisorial

contraction. Trans. Amer. Math. Soc., 361(8):4471–4489, 2009.
[HH13] Brendan Hassett and Donghoon Hyeon. Log minimal model program for the moduli space of stable curves: the

first flip. Ann. of Math. (2), 177(3):911–968, 2013.
[HK00] Yi Hu and Sean Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000. Dedicated to William

Fulton on the occasion of his 60th birthday.
[Huy06] D. Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Monographs. The Clarendon

Press Oxford University Press, Oxford, 2006.
[Kap93] M. M. Kapranov. Veronese curves and Grothendieck-Knudsen moduli space M0,n. J. Algebraic Geom., 2(2):239–

262, 1993.
[Kat08] Sheldon Katz. Genus zero Gopakumar-Vafa invariants of contractible curves. J. Differential Geom., 79(2):185–195,

2008.
[Kim10] Bumsig Kim. Logarithmic stable maps. In New developments in algebraic geometry, integrable systems and mirror

symmetry (RIMS, Kyoto, 2008), volume 59 of Adv. Stud. Pure Math., pages 167–200. Math. Soc. Japan, Tokyo, 2010.
[Kir85] Frances Clare Kirwan. Partial desingularisations of quotients of nonsingular varieties and their Betti numbers.

Ann. of Math. (2), 122(1):41–85, 1985.

8



Research Statement Han-Bom Moon Page 9 of 9

[KKO14] Bumsig Kim, Andrew Kresch, and Yong-Geun Oh. A compactification of the space of maps from curves. Trans.
Amer. Math. Soc., 366(1):51–74, 2014.

[KM94] M. Kontsevich and Yu. Manin. Gromov-Witten classes, quantum cohomology, and enumerative geometry.
Comm. Math. Phys., 164(3):525–562, 1994.

[KM10] Young-Hoon Kiem and Han-Bom Moon. Moduli space of stable maps to projective space via GIT. Internat. J.
Math., 21(5):639–664, 2010.

[KM11] Young-Hoon Kiem and Han-Bom Moon. Moduli spaces of weighted pointed stable rational curves via GIT.
Osaka J. Math., 48(4):1115–1140, 2011.

[LS97] Yves Laszlo and Christoph Sorger. The line bundles on the moduli of parabolic G-bundles over curves and their
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