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I am an algebraic geometer with broad interests. My main research area is geometry, topology and
combinatorics of moduli spaces. A moduli space is a family of mathematical objects of one particular
type where in addition, the family enjoys a desired geometric structure. My research has been focused
on the application of the framework of birational geometry to the study of geometric/topological prop-
erties of various moduli spaces.

I have organized my research into four themes (1) Topology of moduli spaces, (2) Compactifications
of moduli spaces of curves, (3) Mori’s program of moduli spaces, and (4) Conformal blocks and their
connection with birational geometry. I briefly discuss these projects in Sections 1, 2, 3, and 4 respec-
tively.

1. TOPOLOGY OF MODULI SPACES ([KM10, KM11, Moo11, CM14, CM15])

A promising strategy of the computation of topological invariants of a given algebraic variety X is
as follows: 1) construct a new algebraic variety X ′ (a so-called birational model), which shares an open
dense subset withX but has simpler geometric properties, 2) study the topological structure ofX ′, and
3) measure the difference of X and X ′. Even for a highly nontrivial space, by applying this strategy
several times, sometimes we may reach a very simple variety.

When X is a moduli space, in many cases, a birational model is also a moduli space parametrizing a
slightly different collection of objects. In some other cases, such a variety can be obtained by taking an
algebraic quotient (or GIT quotient) of an elementary variety. By analyzing the relation among moduli
spaces and birational models from GIT, we can obtain geometric information of the initial moduli
space.

1.1. Past research - Comparison of moduli spaces and algebraic quotients.

1.1.1. Moduli spaces of genus-zero curves and algebraic quotients. With my advisor Kiem, I studied moduli
spaces of genus-zero curves in a projective space Pr. One way to define a genus-zero curve in Pr is
to consider it as the image of a map f = (f0 : f1 : · · · : fr) : P1 → Pr. So a general (r + 1)-tuple
of homogeneous degree d polynomials with two variables defines a degree d genus-zero curve, up to
coordinate changes of P1. Thus roughly, we have a correspondence

C ⊂ Pr ←→ (f0 : f1 : · · · : fr).

Results 1 ([KM10]). Let M0(Pr, d) be Kontsevich’s compactification of the space of degree d maps from
P1 to Pr. Let Pr

d := P(SymdC2 ⊗ Cr+1)//SL2 be the SL2-quotient of the space of (r + 1)-tuples of
degree d polynomials. We show that when d = 3, M0(Pr, d) is obtained from Pr

d by taking five explicit
algebro-geometric surgeries (so-called blow-ups/downs). As an application, we compute the Poincaré
polynomial and (in some cases) the cohomology ring of M0(Pr, d) for d = 2, 3.

A recurring theme in my research is the moduli space M0,n of stable n-pointed genus-zero curves
without regarding embedding. It is a canonical compactification of the moduli space of smooth n-
pointed P1’s. Since configurations of n-points on P1 (up to coordinate changes) can be parametrized by
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the SL2-quotient (P1)n//SL2, M0,n and (P1)n//SL2 are birational. In this case, the GIT quotient depends
on extra data, a so-called linearization L. Thus we have various birational models (P1)n//LSL2.

Results 2 ([KM11, Moo11]). We describe the birational map between M0,n and (P1)n//LSL2 in terms of
blow-ups and Kirwan’s desingularizations. All intermediate spaces between them are moduli spaces
M0,A of weighted pointed stable rational curves ([Has03]) with some weight dataA, and conversely all
M0,A are obtained in this way. As a byproduct, we give a recursive formula for the Poincaré polynomial
of M0,A for arbitrary weight data.

1.1.2. Moduli spaces of sheaves. Sometimes there is an unexpected connection among moduli spaces
which seem to be unrelated. During a conversation with Chung, we discovered that three following
moduli spaces are indeed birational ([CM14]).

(1) Moduli space of sheaves on a quadric surface with c1 = (2, 2) and χ = 2;
(2) Moduli space of sheaves on P3 with Hilbert polynomial m2 + 3m+ 2;
(3) Moduli space of conics in the Grassmannian Gr(2, 4).

Results 3 ([CM14]). We describe birational maps between them in theoretical ways. The map from (1)
to (2) is a Fourier-Mukai transform, and the map from (3) to (2) is Kirwan’s desingularization. As an
application, we compute the virtual Poincaré polynomial of (1).

We have continued to study moduli spaces of sheaves on surfaces. Recently, the moduli spaces
MP2(dm + 1) of one-dimensional sheaves on P2 have attracted attention because they can be used to
define and evaluate Gopakumar-Vafa invariant of a local Calabi-Yau threefold. In general, these spaces
have very complicate structure. But we were able to compute topological invariants of the first non-
trivial case.

Results 4 ([CM15]). We computed the cohomology ring and the total Chern class of MP2(4m+ 1).

1.2. Current and future research - Variations of moduli spaces of stable maps. In past ten years,
several alternative compactifications of the moduli space of embedded curves have been constructed.
Examples include the moduli space of logarithmic stable maps ([Kim10]), of quasi-maps ([CFK10]), of
stable quotients ([MOP11]), and of unramified stable maps ([KKO14]). They have played important
roles in the virtual curve counting theory.

Problem 1. Compute topological invariants of various moduli spaces of maps.

With Chung, we will also continue to study moduli spaces of sheaves.

Problem 2. Compute topological invariants of moduli spaces of one-dimensional sheaves on surfaces.

2. COMPACTIFICATIONS OF MODULI SPACES ([GJM13, MSvAX15])

Many moduli spaces, such as the moduli space of smooth curves, are not compact. By compactifying
them, we can use powerful tools from algebraic geometry, like intersection theory, to study them. Com-
pactifications that are moduli spaces themselves, are the most desirable. It is often possible to construct
many compactifications having different modular interpretations. Often there is a “best” or preferred
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compactification, but understanding the relationships between different compactifications helps us to
obtain geometric information of compactifications. My research involves constructing different com-
pactifications of a given moduli space in order to learn about its geometric/topological properties.

2.1. Past research - alternative compactifications of M0,n.

2.1.1. GIT and compactifications of M0,n ([GJM13]). One possible way to obtain a moduli space of abstract
curves is to consider a moduli space of embedded curves in a fixed projective space Pd and taking the
quotient by the automorphism group of Pd. If Ud,n is the incidence subvariety in Chow1,d(Pd)×(Pd)n of
(possibly singular) genus-zero curves of degree d in Pd and n points on them, by taking the SLd+1-GIT
quotient, we get a compactification of M0,n, the moduli space of smooth n pointed rational curves.

In a joint work with Giansiracusa and Jensen, we proved that:

Results 5 ([GJM13]). For each effective linearization L on Ud,n, the GIT quotient Ud,n//LSLd+1 has an
explicit moduli theoretic meaning. All of previously known projective alternative modular compacti-
fications of M0,n are realized in this way, and there are many new examples.

2.1.2. Combinatorics of extremal assignments. Currently, there are two large families of alternative com-
pactifications of M0,n. One family is obtained from GIT quotients as in Section 2.1.1. The other family
is obtained from the stack theoretic viewpoint. In [Smy13], Smyth constructed a family of alternative
compactifications M0,n(Z) indexed by extremal assignments Z, which are combinatorial data described
in terms of labeled graphs. With my undergraduate students, we investigated combinatorics of ex-
tremal assignments and translated the result in terms of birational geometry of M0,n.

Results 6 ([MSvAX15]). Every extremal assignment Z and the associated alternative compactification
M0,n(Z) can be described in terms of a collection of set partitions with easily checked conditions. If we
specialize in three important subfamilies of compactifications, we have three bijections:

(1) The set of smooth M0,n(Z)’s and the set of simple intersecting families in hypergraph theory;
(2) The set of toric M0,n(Z)’s and the set of complete multipartite graphs;
(3) The set of Sn-invariant M0,n(Z)’s and the set of special families of integer partitions.

We also found some compactifications which are even not projective varieties.

2.2. Current and future research. For moduli spacesMg of stable curves with genus g ≤ 6, explicit
simple birational models have been constructed as GIT quotients of elementary varieties. For g = 7,
Mukai gave a beautiful idea to construct a birational model (the so-called Mukai model) ofM7 as a GIT
quotient of a homogeneous variety. With Deopurkar, we are studying geometry of the GIT quotient.

Problem 3. Study the geometric/moduli theoretic properties of Mukai model.

3. MORI’S PROGRAM FOR MODULI SPACES ([Moo13, Moo15a, Moo15b, Moo14, MS15])

A central problem in the birational algebraic geometry when studying a variety X is to determine
all birational models of X . If we restrict ourselves to birational models which are equivalent or less
complicate than X in some sense, then under some assumptions (for instance being a Mori dream
space ([HK00])) a complete classification is possible at least in simple cases. Mori’s program provides
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such a theoretical framework to the classification. It consists of 1) Study the cone of divisors (or dually,
that of curves) of X ; 2) For a given divisor D of X , compute the associated model

(1) X(D) := Proj
⊕
k≥0

H0(X,O(kD)),

and study the difference ofX andX(D); 3) Give a geometric or modular interpretation ofX(D). Many
results in modern birational geometry within the last several decades are concerned with overcoming
technical problems along this line, and recently there have been staggeringly positive results including
[BCHM10].

We can apply this tack to moduli spaces. For example, the Hassett-Keel program is a systematic ap-
proach to find the canonical model Mg(KMg

) of Mg ([HH09, HH13]). I have carried out a similar
program forMg,n, the moduli space of pointed stable curves.

3.1. Past research - Mori’s program for moduli spaces of pointed curves.

3.1.1. A universal formula for log canonical models ofMg,n. I found and generalized a universal formula
describing all of moduli spaces Mg,A of weighted pointed stable curves ([Has03]) as log canonical models
ofMg,n. This result supplements and generalizes many results about log canonical models ofMg,n for
instance [Smy11, FS11, AS12].

Results 7 ([Moo13, Moo15a]). Let A = (a1, · · · , an) be a weight datum. Then

(2) Mg,n(KMg,n
+ 11λ+

n∑
i=1

aiψi) ∼= Mg,A.

where Mg,A is the coarse moduli space of the moduli space of A-stable curves ([Has03]). Here λ, ψi are
tautological divisors defined using the moduli theoretic meaning ofMg,n.

3.1.2. Mori’s program for M0,n with symmetric divisors. Result 7 and many results on Mori’s program
forMg,n describe birational models associated to divisors in a small region of the cone of divisors of
Mg,n. However, on the outside of the region, few results are known. For instance, there are many
flips (roughly, a flip of X is a birational model of X with essentially equivalent data) of M0,n, but
their moduli theoretic interpretations are not clear. As an initial step toward this direction, I studied
birational models associated to Sn-invariant divisors on M0,n.

Results 8 ([Moo14, Moo15b]). For n ≤ 7 and for every Sn-invariant divisor D, M0,n(D) is described.
We give a moduli theoretic interpretation of the first flip of M0,7, which was not appeared in literature.

3.1.3. Effective computation of curve classes on M0,n. The first step toward Mori’s program for a variety
X is to understand the cone of divisors, or dually, the cone of curves. The famous F-conjecture gives
an explicit set of generators (so-called F-curves) of the cone of curves, but it is widely open for n ≥ 8.
Since the conjectural cone structure is extremely complicate, it is even not easy to determine whether a
given curve class is indeed contained in the cone generated by F-curves. With Swinarski, we studied
computational aspects of curve classes on M0,n.
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Results 9. [MS15] We provide an effective algorithm to compute curve classes on M0,n, by using the ge-
ometry of a toric approximation of M0,n. By applying this algorithm, we give an effective computation
of curve classes which are G-fixed loci for a subgroup G ≤ Sn.

3.2. Current and future research.

3.2.1. Sn-invariant F-conjecture. Recently, it was shown that M0,n is not a Mori dream space if n ≥ 13

([CT15, GK14]). This implies that birational geometric properties of M0,n are too complicate to be fully
analyzed if n is large. However, it is believed that Sn-invariant geometry of M0,n is well-behaved. I
am trying to translate the Sn-invariant F-conjecture into purely combinatorial statements in terms of
graphical algebras and finite graphs.

Problem 4 (Sn-invariant F-conjecture). Show that the curve cone of M0,n/Sn is generated by F-curves.

Currently, it is known for n ≤ 24 due to Gibney ([Gib09]). The Sn-invariant F-conjecture for M0,n

implies the F-conjecture forMg ([GKM02]).

3.2.2. Modular interpretation of flips. Except Result 8, there is no known moduli theoretic description of
flips of M0,n in general. I am trying to understand a broader picture.

Problem 5. Find moduli theoretic interpretations of flips of M0,n.

3.2.3. Theoretical explanation of Result 7. For any weight datum A, there is a reduction morphism ϕA :

Mg,n →Mg,A. For a stable curve (C, x1, · · · , xn), its image ϕA(C) is given by the log canonical model

(3) C(ωC +
n∑

i=1

aixi) := Proj
⊕
k≥0

H0(C, k(ωC +
n∑

i=1

aixi)).

Result 7 means the same weight datum determines the log canonical model of parameterized curves and
that of the parameter space itself. So far, there is no known theoretical explanation of Result 7. I want
to figure out the reason of this phenomenon and find some more supporting examples.

Problem 6. (1) Find the theoretical reason of the similarity between (2) and (3).
(2) Generalize Result 7 to moduli spaces of embedded genus-zero curves and Fulton-MacPherson

spaces of configurations of points.

4. CONFORMAL BLOCKS AND THEIR CONNECTION WITH BIRATIONAL GEOMETRY ([GJMS13, MY15])

Recent results on the birational geometry of M0,n have focused attention on vector bundles of con-
formal blocks ([Fak12, GG12, Gia13, AGS14, BGM15]). Each such vector bundle V(g, `, λ) depends on
1) a simple Lie algebra g, 2) a nonnegative integer `, and 3) an n-tuple λ = (λ1, · · · , λn) of dominant
integral weights of g of length ≤ `, and can be constructed using the representation theory of affine
Lie algebras. We call its first Chern class a conformal block divisor. It induces a morphism from M0,n to
a projective variety. Indeed, many birational models of M0,n are able to be described as the images of
such morphisms associated to conformal block divisors.

4.1. Past research - birational geometry of moduli of curves and bundles via conformal blocks.
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4.1.1. Birational models of M0,n come from conformal blocks divisors. With a research group consisting of
Gibney, Jensen, and Swinarski, I have studied sl2-conformal block divisors on M0,n.

Results 10 ([GJMS13]). We give a complete description of birational models in the case of sl2, and
symmetric weight data (ω1, · · · , ω1). All of the birational models are obtained by GIT compactifications
in Section 2.1.1.

4.1.2. Conformal blocks and birational geometry of moduli spaces of parabolic bundles. Among algebraic
geometers working on moduli spaces of (parabolic) principal G-bundles, conformal blocks are also
known as generalized theta functions. They are natural divisors on the moduli space of bundles. With
Yoo, by studying the combinatorics of sl2-conformal blocks, we obtain the following result.

Results 11 ([MY15]). We complete Mori’s program of the moduli space of rank 2, degree 0 parabolic
bundles on P1. (For the three steps of Mori’s program, see Section 3.) The cone of divisors is an (n+1)-
dimensional polyhedral cone generated by 2n−1 level one conformal blocks. For any divisor D, the
associated model is also a moduli space of parabolic bundles with some degree and parabolic points.

4.2. Current and future research.

4.2.1. Generalization toward higher rank parabolic bundles. We expect that we can obtain a similar result
for moduli space of higher rank parabolic bundles.

Problem 7. Generalize the result in Section 4.1.2 to moduli spaces of higher rank parabolic bundles.

In [MY15], two key ingredients are 1) a concrete description of slr-conformal blocks and 2) an explicit
study of elementary GIT quotients (P1)n//LSL2 and linear systems on them. I expect that the right
generalization of (P1)n in this context is a product of flag varieties.

4.2.2. Finite dimensional description of conformal block bundles. Most of the recent studies about conformal
block divisors are focused on numerical properties of them. In spite of many beautiful results, there is
no satisfactory geometric explanation of them so far. One main reason of this shortage is that there is
no geometric definition of conformal block bundles. On the locus of singular curves, the only known
construction of conformal blocks is to use the representation theory of infinite dimensional affine Lie
algebras.

Problem 8. Find a definition of conformal blocks vector bundles on M0,n in terms of finite dimensional
algebraic geometry.

As a first step, I am studying the sl2 case. In [MY15], we showed that for a fixed pointed smooth curve
(P1, x1, · · · , xn), the moduli space of rank 2 parabolic bundles is an explicit modification of (P1)n//LSL2.
The moduli space M0,n is also another explicit modification of (P1)n//LSL2 (Result 2). We expect that
we can construct a universal moduli spaceM of all parabolic bundles on arbitrary curves in M0,n as an
SL2 × SL2-quotient of an explicit modification of (P1)n × (P1)n, by combining Results 2 and 11. Then
the conformal block vector bundles will be able to be constructed by using line bundles onM.
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[GK14] José Luis González and Kalle Karu. Some non-finitely generated cox rings. arXiv:1407.6344, to appear in Com-

positio Mathematica, 2014.
[GKM02] Angela Gibney, Sean Keel, and Ian Morrison. Towards the ample cone of Mg,n. J. Amer. Math. Soc., 15(2):273–294,

2002.
[Has03] Brendan Hassett. Moduli spaces of weighted pointed stable curves. Adv. Math., 173(2):316–352, 2003.
[HH09] Brendan Hassett and Donghoon Hyeon. Log canonical models for the moduli space of curves: the first divisorial

contraction. Trans. Amer. Math. Soc., 361(8):4471–4489, 2009.
[HH13] Brendan Hassett and Donghoon Hyeon. Log minimal model program for the moduli space of stable curves: the

first flip. Ann. of Math. (2), 177(3):911–968, 2013.
[HK00] Yi Hu and Sean Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000. Dedicated to William

Fulton on the occasion of his 60th birthday.
[Kim10] Bumsig Kim. Logarithmic stable maps. In New developments in algebraic geometry, integrable systems and mirror

symmetry (RIMS, Kyoto, 2008), volume 59 of Adv. Stud. Pure Math., pages 167–200. Math. Soc. Japan, Tokyo, 2010.
[KKO14] Bumsig Kim, Andrew Kresch, and Yong-Geun Oh. A compactification of the space of maps from curves. Trans.

Amer. Math. Soc., 366(1):51–74, 2014.
[KM10] Young-Hoon Kiem and Han-Bom Moon. Moduli space of stable maps to projective space via GIT. Internat. J.

Math., 21(5):639–664, 2010.
[KM11] Young-Hoon Kiem and Han-Bom Moon. Moduli spaces of weighted pointed stable rational curves via GIT.

Osaka J. Math., 48(4):1115–1140, 2011.

7



Research Statement Han-Bom Moon Page 8 of 8

[Moo11] Han-Bom Moon. Birational geometry of moduli spaces of curves of genus zero. PhD thesis, Seoul National University,
2011.

[Moo13] Han-Bom Moon. Log canonical models for the moduli space of stable pointed rational curves. Proc. Amer. Math.
Soc., 141(11):3771–3785, 2013.

[Moo14] Han-Bom Moon. Mori’s program for M̄0,7 with symmetric divisors. arXiv:1403.7225, 2014.
[Moo15a] Han-Bom Moon. A family of divisors on Mg,n and their log canonical models. J. Pure Appl. Algebra, 219(10):4642–

4652, 2015.
[Moo15b] Han-Bom Moon. Mori’s program for M0,6 with symmetric divisors. Math. Nachr., 288(7):824–836, 2015.
[MOP11] Alina Marian, Dragos Oprea, and Rahul Pandharipande. The moduli space of stable quotients. Geom. Topol.,

15(3):1651–1706, 2011.
[MS15] Han-Bom Moon and David Swinarski. Effective curves on M0,n from group actions. Manuscripta Math., 147(1-

2):239–268, 2015.
[MSvAX15] Han-Bom Moon, Charles Summers, James von Albade, and Ranze Xie. Birational contractions of M0,n and

combinatorics of extremal assignments. arXiv:1508.03915, 2015.
[MY15] Han-Bom Moon and Sang-Bum Yoo. Birational geometry of the moduli space of rank 2 parabolic vector bundles

on a rational curve. Internat. Math. Res. Notices, 2015. doi:10.1093/imrn/rnv154.
[Smy11] David Ishii Smyth. Modular compactifications of the space of pointed elliptic curves II. Compos. Math.,

147(6):1843–1884, 2011.
[Smy13] David Ishii Smyth. Towards a classification of modular compactifications of Mg,n. Invent. Math., 192(2):459–503,

2013.

8


	1. Topology of moduli spaces (KM10, KM11, Moo11, CM14, CM15)
	1.1. Past research - Comparison of moduli spaces and algebraic quotients
	1.2. Current and future research - Variations of moduli spaces of stable maps

	2. Compactifications of moduli spaces (GJM13, MSVX15)
	2.1. Past research - alternative compactifications of M0,n
	2.2. Current and future research

	3. Mori's program for moduli spaces (Moo13, Moo15a, Moo15b, Moo14b, MS15)
	3.1. Past research - Mori's program for moduli spaces of pointed curves
	3.2. Current and future research

	4. Conformal blocks and their connection with birational geometry (GJMS13, MY15)
	4.1. Past research - birational geometry of moduli of curves and bundles via conformal blocks
	4.2. Current and future research

	References

