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ABSTRACT. Poonen and Gabber independently showed that any smooth geometrically ir-
reducible projective scheme over a finite field has a smooth space filling curve, that is, a
smooth curve defined over the field and passes through all points over the field. However,
except the case of projective plane, no concrete example was found in literature. In this
note, we construct explicit examples of algebraic space filling curves in three dimensional
projective space, in particular the ones with minimum degree.

1. INTRODUCTION

Since Peano’s construction [Pea90] in the late 19-th century, there have been many ex-
amples of curves passing through every point of higher dimensional manifolds. In anal-
ysis, a space filling curve of a manifold M (possibly with boundaries) is a continuous sur-
jective map f : [0, 1] → M . By Hahn-Mazurkiewicz theorem, any connected compact
manifold admits a space filling curve.

As one may expect, a space filling curve cannot have simple geometric structure. If
dimM ≥ 2, it is not injective (otherwise it will give a homeomorphism between M and
[0, 1]), it is not differentiable and has fractal nature.

In algebraic geometry, we may explore vast new geometric spaces beyond topological
manifolds over real or complex numbers. Many constructions and geometric intuitions
for manifolds can be extended to schemes over arbitrary fields, including finite fields. On
this generality, we can see new fascinating geometric phenomena. One of them is the
existence of a smooth space filling curve that is embedded in a given smooth scheme over a
finite field.

Let Fq be a finite field of order q = pr, where p is a prime number. Let X be a projective
smooth scheme defined over Fq. We denote the set of Fq-rational points by X(Fq). Then
X(Fq) is a finite set. We say a curve C ⊂ X is a space filling curve over Fq if C(Fq) = X(Fq).

In [Kat99], Katz constructed a smooth space filling curve for an affine space An over
Fq. His construction crucially depends on the existence of a high degree étale map A1 →
A1, which cannot be extended to the projective case. So he asked if one can construct
a smooth space filling curve for any smooth geometrically integral projective schemes
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over Fq. Gabber and Poonen gave an affirmative answer independently [Gab01, Poo04].
See the precise statement in Theorem 2.1. However, their proofs do not provide concrete
examples, but show the existence. Furthermore, finding examples with low complexity
(such as degree) is also an interesting question.

In this paper, we focus on the question constructing explicit examples of space filling
curves of a projective space. The simplest non trivial case is P2. In [HK13], Homma and
Kim constructed a smooth space filling curve C ⊂ P2 for every Fq. Indeed, they verified
that Tallini’s example of an irreducible plane filling curve [Tal61] is indeed smooth. Note
that in this case, the space filling curve is a hypersurface, hence it is sufficient to find one
equation.

The main result of this paper is providing examples of smooth space filling curves of
P3 over Fq with small order q.

Theorem 1.1. Over Fq with q ≤ 7, there is a complete intersection smooth space filling curve in
P3 of degree (q + 1)(q + 2).

In Corollary 3.5, we show that (q + 1)(q + 2) is the smallest possible degree of a com-
plete intersection space filling curve. Thus, at least among complete intersections, our
examples are optimal.

Unfortunately, we were unable to prove the existence of such a minimal degree space
filling curve for arbitrary Fq. However, we expect that such a curve always exist. We leave
our attempt to prove it, and encountered challenge, in Section 5.

Question 1.2. Can we always find a smooth space filling curve in P3 over Fq of degree
(q + 1)(q + 2)?

This paper is organized as follows. In Section 2, we give a precise definition of a space
filling curve and known example for P2. We describe our basis strategy in Section 3.
As a first step, it is important to study space filling surfaces. The section is a study of
them. In Section 4, using a random construction with a computer algebra system, we give
examples of space filling curves with low degree, and complete the proof of Theorem 1.1.
Finally, in the last section, we describe our attempt to answer Question 1.2.

2. SCHEMES OVER FINITE FIELDS AND SPACE FILLING CURVES

In this section, we review basic facts on algebraic geometry over finite fields and space
filling curves.

2.1. Schemes over finite fields. Let Fq be the finite field of order q = pr, for some prime
number p. A projective Fq-scheme is a common zero set of finitely many homogeneous
polynomials f1, f2, · · · , fk ∈ Fq[x0, · · · , xn]. We denote it by V (f1, · · · , fk), and we have an
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embedding V (f1, · · · , fk) ⊂ Pn. Using not necessarily homogeneous polynomials, we can
define an affine Fq-scheme in the same way, and we retain the same notation if there is no
chance of confusion.

If we denote the ideal generated by f1, · · · , fk by I , then the associated scheme depends
only on the ideal I , hence we use the notation X = V (I). Conversely, for a scheme
X ⊂ Pn, we denote its associate ideal as I(X).

The distinction between the scheme and the set of points is important on algebraic
geometry over finite fields. Let X = V (f1, · · · , fk) be a projective Fq-scheme. A point
p ∈ X is a point in the homogeneous coordinate (p0 : p1 : · · · : pn) such that

(1) fi(p0, p1, · · · , pn) = 0 for all 1 ≤ i ≤ k;
(2) all entries are in an extension field K of Fq.

In this case, we say that p is a K-rational point (or simply K-point) of X . The set of K-
rational points in X are denoted by X(K).

Because we are working over a finite field Fq, the set of all Fq-points in Pn is a finite set,
therefore, for any projective variety X , |X(Fq)| < ∞. Note that, however, if dimX > 0,
the set of all points over X is infinite, as over the algebraic closure Fq, |X(Fq)| = ∞.

Finally, for two projective schemes X = V (I), Y = V (J) in Pn over Fq, we say X is a
subscheme of Y (or X ⊂ Y ) if J ⊂ I . This implies X(K) ⊂ Y (K) for all extension field K

of Fq. Note that, however, X(K) ⊂ Y (K) for all K does not imply X ⊂ Y .

2.2. Existence of space filling curves. In [Poo04], by applying his celebrated Bertini the-
orem over finite fields, Poonen proved the following result.

Theorem 2.1 ([Poo04, Corollary 3.5]). Let X be a smooth, projective, geometrically integral
scheme of dimension m ≥ 1 over Fq. Then there exists a smooth, projective, geometrically integral
curve C ⊂ X such that C(Fq) = X(Fq).

In other words, the curve C passes through all Fq-points in X , no matter how large the
dimension of X is!

Here we explain a few scheme theoretic terminologies in the statement of Theorem 2.1.
For a scheme X defined over Fq, XFq

is the scheme defined by the same set of polynomials,
but understood as polynomials in Fq[x0, · · · , xn]. A scheme X over Fq is geometrically
integral if XFq

is integral, that is, irreducible and reduced. A scheme X ⊂ Pn of dimension
d defined over Fq is smooth if for every point x ∈ X , the Jacobian matrix obtained by local
equations is of rank n− d. For the details, see [Poo17, Definition 3.5.12].

Remark 2.2. Based on his approach, we can show that such C can be constructed as a
complete intersection in X – if X ⊂ Pn and dimX = m, then one can find m− 1 homoge-
neous polynomials f1, · · · , fm−1 ∈ Fq[x0, · · · , xn] such that C = V (f1, · · · fm−1) ∩X .
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Poonen’s approach does not provide any explicit example. Here we focus on the con-
struction of concrete examples of space filling curves. Before going further, here we fix
our terminology.

Definition 2.3. Fix a base field Fq. We say a curve C ⊂ Pn is a space filling curve for Pn if C
is a projective geometrically irreducible curve such that C(Fq) = Pn(Fq). Additionally, if
C is smooth, we say C is a smooth space filling curve.

Lemma 2.4. Let Pn = Proj Fq[x0, · · · , xn], in other words, let (x0 : · · · : xn) be the homogeneous
coordinates of Pn. The ideal of the set of all Fq-rational points Pn(Fq) is

(1) J = (xq
ixj − xix

q
j)0≤i ̸=j≤n.

Proof. Since every a ∈ Fq satisfies aq = a, it is routine to check that any generator of J
vanishes at Pn(Fq). So we have Pn(Fq) ⊂ V (J).

Conversely, pick a point p = (p0 : · · · : pn) ∈ V (J). We may assume that p0 = 1. Take a
standard affine open neighborhood x0 ̸= 0. Because p is a point in V (J)∩An(Fq), it is zero
for all dehomogenizations of xq

ix0−xix
q
0, which is xq

i −xi. In particular, its i-th coordinate
is in Fq for all 1 ≤ i ≤ n. Hence p ∈ Pn(Fq). Therefore, set theoretically, V (J) = Pn(Fq).

It remains to show that they have the same scheme structures. Because Pn(Fq) is a
finite set of reduced points, it is sufficient to show that V (J) is also reduced at each point.
Essentially, it follows from the fact that xq

i − xi =
∏

a∈Fq
(xi − a) and the right hand side

has no multiple factor. Take p = (p0 : · · · : pn) ∈ V (J) with p0 = 1 as before. On the affine
chart V (J) ∩ An(Fq) given by p0 = 1, take a localization along the union of hyperplanes
of type xj − a which do not pass p. Then each defining equation xq

i − xi is a unit times
xi−pi. Therefore, after the localization, the ideal of V (J)∩An(Fq) is (x1−p1, · · · , xn−pn),
hence reduced at p. □

Corollary 2.5. Suppose that C ⊂ Pn is a space filling curve over Fq. Then any defining equation
of C must be in the ideal J in (1). In particular, every defining equation of C is of degree at least
q + 1.

Proof. If there is a space filling curve C, then from C(Fq) = Pn(Fq), Pn(Fq) ⊂ C as a
scheme. This implies I(C) ⊂ I(Pn(Fq)) = J .

The last assertion follows from the fact that every generator of J has degree q + 1. □

Moreover, the degree of C has to be large as well.

Proposition 2.6. Let C ⊂ Pn be a smooth space filling curve over Fq. Then degC ≥ (qn −
1)/(q − 1) + 1.

Proof. Pick an Fq-point p ∈ C(Fq). Since C is defined by polynomials with Fq-coefficients,
its tangent line ℓ at p is also defined over Fq, because its directional vector is in the kernel
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of an Fq-matrix generated by the gradient vectors of the defining equations of C. Hence
we may find an Fq-hyperplane H that contains ℓ. By definition, degC is the number of
intersection points in H ∩ C counted with multiplicity. Since C is a space filling curve,
(H ∩ C)(Fq) = H(Fq). Moreover, H and C are tangent to each other at p, hence the
multiplicity is at least two. Therefore,

degC ≥ |(H ∩ C)(Fq)|+ 1 = |H(Fq)|+ 1 =
qn − 1

q − 1
+ 1.

□

For P3, the inequality is specialized to degC ≥ q2 + q + 2.

2.3. Plane filling curves. Perhaps the simplest non-trivial case is that X = P2. Homma
and Kim showed that a classical example of Tallini [Tal61] is indeed an example of a
smooth plane filling curve of minimal degree by showing it is smooth [HK13].

Let P2 be the projective plane over Fq. We set P2 = Proj Fq[x, y, z]. Homma and Kim
showed that any curve of the form

(2) fA := (x, y, z)A(yqz − yzq, zqx− zxq, xqy − xyq)t

for A ∈ GL3(Fq), defines a smooth space filling curve V (fA), if and only if A has the
characteristic polynomial that is irreducible over Fq [HK13, Theorem 3.2].

From the definition of fA, it is clear that fA is in the ideal generated by {yqz− yzq, zqx−
zxq, xqy − xyq}. In particular, by Lemma 2.4, V (fA) is a space filling curve.

For our curve to be smooth, we need each gradient vector to be non-zero for every
point in V (fA). Since we need to consider all points over any extension field of Fq, this
is already a non-trivial task. Homma and Kim performed an explicit calculation of the
partial derivatives and showed that there is no singular point on V (fA). Finally, because
V (fA) is connected, the smoothness implies the irreducibility [Har77, II.8.Ex.4.].

3. SPACE FILLING SURFACES

In this section, we describe the properties of a space filling surface and how its con-
struction relate to finding a smooth space filling curve.

Let Fq be a finite field of order q = pr. Let P3 = Proj Fq[x, y, z, w].

3.1. Basic strategy. We seek our curve C that is a complete intersection in P3 (The exis-
tence follows from the proof of Theorem 2.1). Thus, C = V (f1, f2) ⊂ P3. Moreover, since
V (f1, f2) = V (f1)∩V (f2), each V (fi) ⊂ P3 must also satisfy V (fi)(Fq) = P3(Fq). Therefore,
we need to find two space filling surfaces such that V (f1) ∩ V (f2) is a smooth space filling
curve.
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3.2. First example.

Definition 3.1. Let
φxy := xqy − xyq.

Similarly we can define φxz, φxw, · · · . Note that φyx = −φxy.

In this case, Lemma 2.4 is interpreted as the following: The ideal J in (1) is

J = (φxy, φxz, φxw, φyz, φyw, φzw).

Lemma 3.2. Let g := φxy + φzw. Then V (g) is a space filling surface of minimal degree q + 1.

Proof. Note that ∇g = (−yq, xq,−wq, zq). Thus, this vector is nonzero at every point (not
only Fq-rational points!). Therefore, V (g) is a smooth variety. Because V (g) is connected
by [Har77, II.8.Ex.4.], the smoothness implies the irreducibility. Since the minimal degree
of elements in J is q + 1, V (g) is a space filling surface with minimal degree. □

Remark 3.3. The same proof shows that for any odd dimensional projective space Pn,
there is a smooth space filling hypersurface of degree q + 1. Indeed, one can take

g =
∑

0≤i≤n,2|i

φxixi+1
,

and the same proof shows that V (g) ⊂ Pn is a smooth space filling hypersurface.

The same construction does not work for an even dimensional projective space. Indeed,
Tallini showed that any irreducible degree q + 1 space filling curve in P2 has a unique
singular point.

3.3. Higher degree examples. Now we need to find another space filling surface to find
a space filling curve. One may ask if we can find another surface of degree q + 1 and take
the intersection of them. Indeed, this is not possible.

In [Hom12], improving the Serre-Weil bound

|C(Fq)| ≤ q + 1 + 2g
√
q,

(here g is the genus of C), Homma showed the following bound of the number of Fq-
rational points on C.

Theorem 3.4 ([Hom12, Theorem 3.2]). Let C be a non-degenerate irreducible curve of degree d
in P3 over Fq. Then

(3) |C(Fq)| ≤
(q − 1)|P3(Fq)|
q3 + q2 + q − 3

d.

Corollary 3.5. The degree of a smooth complete intersection space filling curve in P3 is at least
(q + 1)(q + 2).
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Proof. Suppose that C is a smooth complete intersection space filling curve in P3. Any
space filling curve is non-degenerate. By Theorem 3.4,

(4) |P3(Fq)| = |C(Fq)| ≤
(q − 1)|P3(Fq)|
q3 + q2 + q − 3

d.

Since C = V (f1, f2), d = deg f1 · deg f2 by Bézout’s theorem [Ful98, Proposition 8.4].
Moreover, deg fi ≥ q+1 by Corollary 2.5. One can see that deg f1 = deg f2 = q+1 violates
(4). □

Question 3.6. Can we find a smooth space filling curve C of degree (q + 1)(q + 2)?

Let f ∈ Fq[x, y, z, w] be the homogeneous polynomial defining the second surface V (f).
We require that:

(1) f ∈ J by Corollary 2.5;
(2) deg f ≥ q + 2;
(3) V (g, f) ⊂ P3 is smooth.

If we find such f ∈ Fq[x, y, z, w], then C := V (g, f) is a space filling curve of degree
(q + 1) deg f . Here g is the degree q + 1 polynomial in Lemma 3.2.

The last assertion can be checked as the following. At a point p ∈ C = V (g, f), p is a
singular point if and only if the gradient vectors ∇g(p) and ∇f(p) are linearly dependent.
Thus, if we set the 2× 4 matrix

(5) M(p) :=

[
∇g(p)

∇f(p)

]
and let Dij(p) be the determinant of the 2× 2 minor of M(p) obtained by taking i-th and
j-th columns, then C is smooth if and only if V (g, f,Dij) = ∅, or equivalently, (g, f,Dij) =

Fq[x, y, z, w].

4. NUMERICAL EXAMPLES

By using random constructions with Macaulay2, we are able to identify multiple low
degree space filling curves for Fq with small q, and thus, to prove Theorem 1.1. The code
used to randomly generate such curves is as follows:

needsPackage("SpaceCurves");

p = 3;

r = 1;

q = p^r;

K = GF(q, Variable => a);

d = 1;

S = K[x, y, z, w];
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g = x^q*y-x*y^q+z^q*w-z*w^q;

J = ideal(x^q*y-x*y^q, x^q*z-x*z^q, x^q*w-x*w^q,

y^q*z-y*z^q, y^q*w-y*w^q, z^q*w-z*w^q);

found = false;

counter = 0;

while not found do

{

f = random(q+1+d, J);

I = ideal(f, g);

if isSmooth(I) and dim I == 2 then

{

print f;

print counter;

found = true;

}

else counter = counter + 1;

}

In the above code, for a randomly chosen polynomial f in the ideal J , we compute the
ideal I generated by f and g. We check if C = V (f, g) = V (I) is smooth, and it is of
dimension one. Since dim I is the affine dimension, dim I = dimC + 1.

Table 1 shows examples of polynomials f ∈ Fq[x, y, z, w] such that C = V (g, f) ⊂ P3 is
a space filling curve over Fq.

q f

2 (x+ z)φxz + (y + z + w)φxw + (x+ y + z + w)φyz + (z + w)φyw + yφzw

3 (−x)φxy + (x+ y)φxz + (x+ y − z)φxw

+(x− y − z)φyz + (x− w)φyw + (−x− y − z − w)φzw

4 (ax+ y + (a+ 1)z + w)φxy + (ax+ z + aw)φxz + (ax+ y + (a+ 1)z + aw)φxw

+(ax+ y + z + aw)φyz + (y + (a+ 1)z + w)φyw + (x+ y + az)φzw

5 (−x+ 2y + 2z)φxy + (x+ 3z − 2w)φxz + (−x+ w)φxw

+(−2x− y − 2z − w)φyz + (−2x+ y + w)φyw + (2x+ 2y + z + w)φzw

7 (−x− y − z − 3w)φxy + (z − 2w)φxz + (−x− 2y + z + w)φxw

+(3x+ y)φyz + (−x− 2y + z − w)φyw + zφzw

TABLE 1. Examples of polynomials defining space filling curves. For a field
of non-prime order, a is a cyclic generator of F∗

q .

Remark 4.1. As one may guess, the polynomials that induce space filling curves are very
rare. For q = 2, approximately only 0.264% of random sample polynomials define space
filling curves. We obtained examples in Table 1 after many failed attempts. The example
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for q = 3 was obtained after 1, 482 tries, and the q = 7 examples was obtained after 29, 923
tries. For q = 8, 100, 000 tries did not make an example.

Remark 4.2. The similar random construction method can be used to construct a smooth
complete intersection space filling curve with larger degree. Numerically, we observed
that, at least for small q, we obtained examples of a smooth space filling curve faster.

5. TOWARD THE EXISTENCE OF SPACE FILLING CURVES OF LOW DEGREE

Unfortunately, we were unable to answer Question 3.6 completely. In this section, we
leave our approach and challenge, and why we expect such a low degree space filling
curve exists.

In Lemma 3.2, we showed that g := φxy + φzw defines a space filling surface V (g) of
degree q + 1. We need to show that there is a space filling surface V (f) of degree q + 2

such that C := V (f, g) is smooth curve. Since V (f, g) is a complete intersection, it is
connected [Har77, II.8.Ex.4], hence the irreducibility follows.

Such an f must be a degree p + 2 polynomial in J . Thus, there are linear polynomials
ℓxy, · · · , ℓzw ∈ Fq[x, y, z, w]1 such that

f = ℓxyϕxy + ℓxzϕxz + · · ·+ ℓzwϕzw.

Let ℓxy = axyx+ bxyy+ cxyz+dxyw, and so on. Then we can understand f as an element of

Fq[a
xy, bxy, · · · , dzw, x, y, z, w].

Furthermore, if we divide the set of variables into two sets {axy, · · · , dzw}⊔{x, y, z, w}, g is
a bihomogeneous of degree (1, q+2). Thus, f defines a hypersurface of bidegree (1, q+2)

in P23 × P3, where P23 is a projective space with homogeneous coordinates (axy : bxy : · · · :
dzw) and P3 is a projective space with homogeneous coordinates (x : y : z : w). We may
understand g as a bihomogeneous polynomial of bidegree (0, q + 1).

Take the gradient vectors ∇f and ∇g of f and g, with respect to (x, y, z, w). Let M be a
2 × 4 matrix in (5) and Dij be the determinant of 2 × 2 minors of i-th and j-th columns.
Then Dij is also a bihomogeneous polynomial of degree (1, 2q + 1).

For any point (not necessarily an Fq-rational point) v = (axy : · · · : dzw) ∈ P23, let
fv ∈ Fq[x, y, z, w] be a polynomial obtained by evaluating v, that is, fv(x, y, z, w) :=

f(v, x, y, z, w). Let U = V (f, g,Dij) ⊂ P23 × P3 be a biprojective scheme defined by f , g,
and Dij . For the projection π : P23×P3 → P23 to the first factor, let W := π(U) ⊂ P23. Then
U and W have the following geometric interpretation. First of all, we may interpret P23 as
a parameter space of surfaces of degree q+2 that interpolates all points in P3(Fq), as every
point v = (axy, · · · , dzw) ∈ P23 defines such a surface V (fv) ⊂ P3 over some extension field
K of Fq. (We do not use the word space filling surface here, because it requires that every
coefficient of the defining equations must be in Fq.) Thus, for v := (axy, · · · , dzw) ∈ W , its
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fiber π−1(v) is naturally identified with V (fv, g,Dij) ⊂ P3, which is precisely the singular
locus of V (fv, g). In other words, v ∈ W = π(U) if and only if the scheme V (fv, g) is sin-
gular. So there is a nonsingular space filling curve V (fv, g), defined over Fq, if and only if
W (Fq) ̸= P23(Fq). In other words, if W is not a space filling scheme!

From the Jacobian computation, one can check that codim U = 7 (The number of equa-
tions is 8, but {Dij} are not algebraically independent – there is one Plücker relation be-
tween them). Since there is a complete intersection V (fv, g) with one isolated singularity,
the map π : U → W is a birational map. Therefore, W is a proper subscheme of P23 of
codimension 4.

As we may guess, space filling schemes are very rare. The probability that we have a
smooth space filling complete intersections were evaluated in [Poo04, Theorem 1.2] and
[BK12, Corollary 1.3] and its formula involves the zeta function of the ambient projective
space. The only non asymptotic example we are aware of is the case of 0-dimensional
scheme in A1. In [JMW23], the probability distribution of number of Fq-points of a ran-
dom polynomial f is achieved. As a consequence, we can show that the probability that
a randomly chosen scheme V (f) defined by a degree d ≥ q polynomial is a space filling
scheme is 1/qq. See also Remark 4.1. So we may expect, though we do not have a rigorous
proof, that W is not a space filling scheme and there is an example of a space filling curve
of minimal degree.

To show that W is not a space filling scheme, we have tried several approaches. First of
all, note that any space filling hypersurface must be of degree at least q+1 by Lemma 2.4.
Thus, an affirmative answer to the following question implies the existence of a space
filling curve of degree (q + 1)(q + 2).

Question 5.1. Can we find any degree d ≤ q homogeneous polynomial h ∈ Fq[a
xy, · · · , dzw]

such that W ⊂ V (h)?

If W is a space filling scheme and L is an Fq-linear subspace of 4-dimensional subspace
of P23 that intersects W properly (But we do not know such a subspace exists!), degW ≥
|(L ∩ W )(Fq)| = |L(Fq)| = (q5 − 1)/(q − 1). Since W = π(U) and the map π : U → W

is birational, we may compute the degree of W from the multidegrees of U . This is not
entirely obvious because U is not a complete intersection in P23 × P3. But we expect that
the degree is larger than (q5−1)/(q−1), from the degree formula of complete intersections
in a biprojective space [Ful98, Example 8.4.2], so this approach might be inconclusive.

Question 5.2. Another possible approach is to find a formula of f that works for arbitrary
field Fq. Can we find such a nice formula?
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bres Bordeaux 24 (2012), no. 3, 541–556. 10



ON ALGEBRAIC SPACE FILLING CURVES 11

[Ful98] W. Fulton, Intersection theory. Ergeb. Math. Grenzgeb. (3), 2[Results in Mathematics and Related
Areas. 3rd Series. A Series of Modern Surveys in Mathematics] Springer-Verlag, Berlin, 1998,
xiv+470 pp. 7, 10

[Gab01] O. Gabber, On space filling curves and Albanese varieties. Geom. Funct. Anal. 11 (2001), no. 6,
1192–1200. 2

[Har77] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New
York-Heidelberg, 1977. 5, 6, 9

[Hom12] M. Homma, A bound on the number of points of a curve in a projective space over a finite field.
Theory and applications of finite fields, 103–0110. Contemp. Math., 579 American Mathematical So-
ciety, Providence, RI, 2012. 6

[HK13] M. Homma and S.-J. Kim, Nonsingular plane filling curves of minimum degree over a finite field
and their automorphism groups: supplements to a work of Tallini. Linear Algebra Appl. 438 (2013),
no. 3, 969–985. 2, 5

[JMW23] R. Jain, H.-B. Moon, and P. Wu, Distribution of the number of zeros of polynomials over a finite
field. preprint. 10

[Kat99] N. Katz, Space filling curves over finite fields. Math. Res. Lett. 6 (1999), no. 5-6, 613–624. 1
[Pea90] G. Peano, Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36 (1890), no. 1, 157–160. 1
[Poo04] B. Poonen, Bertini theorems over finite fields. Ann. Math. 160 (2) (2004) 1099–1127. 2, 3, 10
[Poo17] B. Poonen, Rational points on varieties. Grad. Stud. Math., 186 American Mathematical Society,

Providence, RI, 2017, xv+337 pp. 3
[Tal61] G. Tallini, Sulle ipersuperficie irriducibili d’ordine minimo che contengono tutti i punti di uno

spazio di Galois Sr,q . , Rend. Mat. e Appl. 20 (5) (1961) 431–479. 2, 5

ALANA CAMPBELL, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: acampbell50@fordham.edu

FLORA DEDVUKAJ, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: fdedvukaj@fordham.edu

DONALD MCCORMICK III, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY
10023

Email address: dmccormick12@fordham.edu

HAN-BOM MOON, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: hmoon8@fordham.edu

JOSHUA MORALES, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: jmorales77@fordham.edu


	1. Introduction
	2. Schemes over finite fields and Space filling curves
	2.1. Schemes over finite fields
	2.2. Existence of space filling curves
	2.3. Plane filling curves

	3. Space filling surfaces
	3.1. Basic strategy
	3.2. First example
	3.3. Higher degree examples

	4. Numerical examples
	5. Toward the existence of space filling curves of low degree
	References

