DEFINITIONS AND EASY EXAMPLES

JOE TENINI, HAN-BOM MOON

The basic assumption of this paper is

- All varieties are quasi-projective, normal and over algebraically closed field of characteristic 0.
- 'Normal' means singularities are in codimension greater than 1 and a pole of regular function has codimension 1.

Definition 0.1. Let *X* be a variety. *X* has **canonical singularities** if

- (1) rK_X is Cartier for some integer r > 0;
- (2) If $f : Y \to X$ is a resolution,

$$rK_Y = f^*(rK_X) + \sum a_i E_i, \quad \text{with } a_i \ge 0.$$

Why do we care about canonical singularities? The canonical model of a variety of general type will have canonical singularities. The canonical model is $\operatorname{Proj} R(X)$, where

$$R(X) := \sum_{r=0}^{\infty} H^0(X, \omega_X^r).$$

In recent paper [BCHM10], it was proved that for a variety of general type with mild singularities, R(X) is always finitely generated so $\operatorname{Proj} R(X)$ is a projective variety.

Definition 0.2. For a singular point $p \in X$, the smallest r for which rK_X is Cartier in a neighborhood of X is called the **index of singularity**.

Definition 0.3. Set $\Delta = \frac{1}{r} \sum a_i E_i$. Then we can write formally

$$K_Y = f^*(K_X) + \Delta$$

 Δ is called the **discrepancy** of *f*.

Let V be a smooth variety of dimension n. $\omega_V = \mathcal{O}_V(K_V) = \Omega_V^n$. For a point $p \in V$, take local coordinate x_1, \dots, x_n . Then ω_V has a local basis $dx_1 \wedge \dots \wedge dx_n$. So we say $s \in H^0(V, \omega_V^n)$ is called a **global** *n*-differentials.

Here are several important properties of canonical divisors.

• If ω_V is (very) ample, we have a canonical embedding $V \hookrightarrow \mathbb{P}^N$.

Date: August 24, 2012.

- Serre duality.
 - If X is Cohen-Macaulay, there is a sheaf

$$H^{i}(X,F) = H^{n-i}(X,F^{*} \otimes \omega^{o})^{*}$$

when *F* is locally free. If *X* is projective and nonsingular, $\omega^0 = \omega_X$.

Birational nature of *ω_X*.
If *V* and *W* are birational non-singular varieties, then

$$H^0(V, \omega_V^n) \cong H^0(W, \omega_W^n).$$

Example 0.4. Consider a quadratic cone $V(xz-y^2) \subset \mathbb{A}^3$. The origin is the unique singular point. Take the blow-up *Y* of the origin. Then the exceptional divisor *E* is a quadric in \mathbb{P}^2 . The canonical divisor formula is

(1)
$$rK_Y = f^*(rK_X) + aE$$

for some r and a.

E is isomorphic to \mathbb{P}^1 because it is a quadric on \mathbb{P}^2 . The self intersection E^2 , which is the degree of the normal bundle in *Y* is isomorphic to $\mathcal{O}(-2)$. Indeed, the normal bundle is the restriction of $\mathcal{O}_{\mathbb{P}^2}(-1)$ to \mathbb{P}^2 . because the normal bundle of the exceptional divisor \mathbb{P}^2 in $bl_0\mathbb{A}^3$ is $\mathcal{O}_{\mathbb{P}^2}(-1)$ and the blow-up of *X* is the restriction of $bl_0\mathbb{A}^3$. Since *E* is a degree two curve in \mathbb{P}^2 , the restriction of $\mathcal{O}_{\mathbb{P}^2}(-1)$ is degree -2 and it is $\mathcal{O}(-2)$.

Now by adjunction formula,

$$-2 = \deg K_E = (K_Y + E) \cdot E = K_Y \cdot E + E^2 = K_Y \cdot E - 2.$$

Thus $K_Y \cdot E = 0$. From the canonical divisor formula (1), after taking intersection with E, we obtain

$$0 = rK_Y \cdot E = (f^*(rK_X) + aE) \cdot E = f^*(rK_X) \cdot E - 2a = -2a$$

and a = 0. Therefore X has a canonical singularities.

Remark 0.5. By a similar computation, it can be shown that a degree *d* cone *X* over a smooth curve has a non-canonical singularity if $d \ge 3$.

REFERENCES

2

[[]BCHM10] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010. 1