DEFINITIONS AND EASY EXAMPLES II

PATRICK MCFADDIN, HAN-BOM MOON

We want to define ω_{X} and $\mathcal{O}\left(m K_{X}\right)$ for a singular variety X.
Let X be an n-dimensional variety. Consider $\Omega_{k(X) / k}^{n} . \Omega_{k(X) / k}^{n}$ is a 1 dimensional vector space over $k(X)$ and has basis $d f_{1} \wedge d f_{2} \wedge \cdots \wedge d f_{n}$ if f_{1}, \cdots, f_{n} is a separable transcendental basis for $k(X) / k$.

Let X^{0} be the nonsingular locus of X and let $p \in X^{0}$. We can choose $\left\{x_{1}, \cdots, x_{n}\right\}$, local coordinates about p. For any $s \in \Omega_{k(X) / k}^{n}$ we can write

$$
s=f d x_{1} \wedge \cdots \wedge d x_{n}, \quad f \in k(X) .
$$

Definition 0.1. s is regular at p if f is regular at p.
Considering s as a section of differentials on X^{0}, s is regular at p if s is regular on some open U^{0} containing p and $U^{0} \subset X^{0}$. Now for any point $p \in X, s$ is regular at p if there exists an open subset $U \subset X$ containing p such that s is regular on $U^{0}=U \cap X^{0}$.

Define

$$
\omega_{X}(U)=\left\{s \in \Omega_{k(X) / k}^{n} \mid s \text { is regular on } U^{0}=U \cap X^{0}\right\}=j_{*}\left(\Omega_{X^{0}}^{n}\right)
$$

where $j: X^{0} \hookrightarrow X$.
Another description of ω_{X} is the double dual of Ω_{X}^{n}. One possible geometric reason is this: If X is singular, then Ω_{X}^{n} is not invertible and may have torsion at singular points. If we take double dual, then all torsions are removed. Moreover, if we take the double dual, then we can get a reflexive sheaf. It is known that a reflexive sheaf of rank 1 is corresponded to a Weil divisor. For more details, see for example [CLS11, Section 8.0].
0.1. The sheaves $\mathcal{O}_{X}\left(m K_{X}\right)$.

Definition 0.2.

$$
\mathcal{O}_{X}\left(m K_{X}\right)(U)=\left\{s \in\left(\Omega_{k(X) / k}^{n}\right)^{m} \mid s \text { is regular on } U^{0}\right\}=j_{*}\left(\left(\Omega_{k(X) / k}\right)^{m}\right)(U)
$$

Recall the definition of canonical singularities.
Definition 0.3. Let X be a variety. X has canonical singularities if
(1) $r K_{X}$ is Cartier for some integer $r>0$;
(2) If $f: Y \rightarrow X$ is a resolution,

$$
r K_{Y}=f^{*}\left(r K_{X}\right)+\sum a_{i} E_{i}, \quad \text { with } a_{i} \geq 0
$$

Example 0.4. Let $X=\{f=0\} \subset \mathbb{A}^{n+1}$ be a hypersurface and $p \in X$ is a normal hypersurface singularity. Consider

$$
s=\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{\partial f / \partial x_{0}} \in \Omega_{k(X)}^{n}
$$

where x_{0}, \cdots, x_{n} are local coordinates of \mathbb{A}^{n+1}. For any point $q \in X$ such that $\frac{\partial f}{\partial x_{0}}(q) \neq 0$, X is a manifold with local coordinates x_{1}, \cdots, x_{n} and $s=$ (unit) $d x_{1} \wedge \cdots \wedge d x_{n}$ is a local basis on Ω_{X}^{n}.

Now since $f=0$ on X,

$$
\frac{\partial f}{\partial x_{0}} d x_{0}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n}=0
$$

So if $\frac{\partial f}{\partial x_{1}} \neq 0$, then

$$
\begin{aligned}
& s=\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{\partial f / \partial x_{0}}=\frac{\frac{\partial f}{\partial x_{0}} d x_{0}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}}}{-\partial f / \partial x_{1}} \wedge d x_{2} \wedge \cdots \wedge d x_{n} \\
& \partial f / \partial x_{0} \\
&=\frac{\frac{\partial f}{\partial x_{0}} d x_{0} \wedge d x_{2} \wedge \cdots \wedge d x_{n}}{-\partial f / \partial x_{1} \partial f / \partial x_{0}}=-\frac{d x_{0} \wedge d x_{2} \wedge \cdots \wedge d x_{n}}{\partial f / \partial x_{1}} .
\end{aligned}
$$

So we can extend the local regular section s to the open subset such that $\partial f / \partial x_{1} \neq 0$. Since on the smooth part of X, at least one of $\partial f / \partial x_{i}$ is nonzero, s gives a section on X^{0}. By the definition of ω_{X}, s is a global section of ω_{X}. Since s is a basis of ω_{X} for every point $p \in X$, $\omega_{X} \cong \mathcal{O}_{X}$.

Example 0.5. Let $X=\mathbb{A}^{2} / \mu_{3}$, where μ_{3} is the group of cubic roots of $1 . \mu_{3}$ acts by

$$
e:(x, y) \mapsto(e x, e y)
$$

Let X be the spec of ring of invariants and let $\pi: \mathbb{A}^{2} \rightarrow X$ be the quotient map. Then $X=\operatorname{Spec} k\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]$ which is isomorphic to

$$
\operatorname{Spec} k\left[u_{0}, u_{1}, u_{2}, u_{3}\right] /\left(u_{0} u_{2}-u_{1}^{2}, u_{1} u_{3}-u_{2}^{2}, u_{0} u_{3}-u_{1} u_{2}\right) .
$$

Under the action μ_{3}, we notice that

$$
d x \wedge d y=e^{2}(d x \wedge d y)
$$

Thus $(d x \wedge d y)^{3} \mapsto(d x \wedge d y)^{3}$. Therefore, $(d x \wedge d y)^{3}$ is a pull-back of a section on X.
Set

$$
s=\frac{\left(d u_{0} \wedge d u_{1}\right)^{3}}{u_{0}^{4}} \in\left(\Omega_{k(X)}^{2}\right)^{3} .
$$

Then

$$
\pi^{*} s=\frac{\left(3 x^{2} d x \wedge\left(2 x y d x+x^{2} d y\right)\right)^{3}}{x^{12}}=27(d x \wedge d y)^{3}
$$

We can check that

$$
s=\frac{\left(d u_{0} \wedge d u_{1}\right)^{3}}{u_{0}^{4}}=\frac{\left(d u_{2} \wedge d u_{3}\right)^{3}}{u_{3}^{4}}
$$

So s is a basis of $\mathcal{O}_{X}\left(3 K_{X}\right)$ and $3 K_{X}$ is Cartier.

REFERENCES

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.1

