TORIC METHODS FOR HYPERQUOTIENT SINGULARITIES III

JIE WANG, HAN-BOM MOON

Recall the notation.

 $Y \subset \mathbb{A}^{n+1}$ is a hypersurface f = 0 which is possibly singular. μ_r acts on \mathbb{A}^{n+1} which preserves Y. For a generator $\epsilon \in \mu_r$,

$$\epsilon \cdot (x_0, \cdots, x_n) = (\epsilon^{a_0} x_0, \cdots, \epsilon^{a_n} x_n)$$

and $\epsilon \cdot f = \epsilon^e f$. $\frac{1}{r}(a_0, \cdots, a_n, e)$ is the type of the hyperquotient singularity. Set $X = Y/\mu_r \subset \mathbb{A}^{n+1}/\mu_r$.

Two special cases.

(1) r = 1 (no action): hypersurface singularities.

(2) Y smooth $(Y = \{x_0 = 0\})$: cyclic quotient, $X = \mathbb{A}^n / \mu_r$.

Question 0.1. When is $X = Y/\mu_r \subset \mathbb{A}^{n+1}/\mu_r$ terminal/canonical?

If *Y* is already not normal, then there is almost no hope about the normality of *X*. So assume that *Y* and μ_r -action are reasonable.

Let's fix the notation for lattices. Let $\overline{M} = \mathbb{Z}^{n+1}$ be the lattice of monomials. Let $\overline{N} = \operatorname{Hom}(\overline{M}, \mathbb{Z})$ be the space of 1 parameter subgroups of $(\mathbb{C}^*)^{n+1}$. Let $N = \overline{N} + \mathbb{Z}^{\frac{1}{r}}(a_0, \cdots, a_r) \cong \mathbb{Z}^{n+1}$ and $M = \operatorname{Hom}(N, \mathbb{Z})$. Then $\overline{N} \subset N$ and $M \subset \overline{M}$.

Last time, we learned that

$$X \subset \mathbb{A}^{n+1}/\mu_r \cong \text{Spec} \left(\mathbb{C}[M \cap \sigma^{\vee}]\right)$$

Example 0.2. Consider a special case of (2), $X = \mathbb{A}^2/\mu_3$, an $\frac{1}{3}(1,2)$ -singularity. $N = \overline{N} + \mathbb{Z}\frac{1}{3}(1,2)$ and generated by two elements (1/3, 2/3), (0,1). $M = \{(m \in \overline{M} | m \cdot N \in \mathbb{Z}\} = \{(m_1, m_2) \in \overline{M} | m_1 + 2m_2 \equiv 0 \mod 3\}$. The lattice M is spanned by (1,1), (0,3), and the semigroup $M \cap \sigma^{\vee}$ is generated by (1,1), (0,3), (3,0).

$$\operatorname{Spec} \mathbb{C}[M \cap \sigma^{\vee}] = \operatorname{Spec} \mathbb{C}[x^3, y^3, xy] = \operatorname{Spec} \mathbb{C}[u, v, w] / \langle uv - w^3 \rangle .$$

Theorem 0.3. A necessary condition for X to be terminal (canonical) is that

(1)
$$\alpha(x_0 \cdots x_n) > (\geq) \ \alpha(f) + 1$$

for every primitive vector $\alpha \in N \cap \sigma$.

Let $\alpha \in N \cap \sigma$. $\alpha = (b_0, \dots, b_n) \in N \cap \sigma$. Thank of α is a weighting on monomials.

Date: October 19, 2012.

- (1) $\alpha \in N$ means $\alpha \equiv \frac{1}{r}(ja_0, \cdots, ja_n) \mod \overline{N}$ for some j.
- (2) $\alpha \in \sigma$ means $b_i \geq 0$.

We can define a weighting α by $\alpha(x_i) = b_i$ and $\alpha(x_0^{m_0} \cdots x_n^{m_n}) = \sum m_i b_i$. We say $x^m = x_0^{m_0} \cdots x_n^{m_n} \in f$ if x^m appears in f with non-zero coefficients. Define $\alpha(f) := \{\min x^m | x^m \in f\}$.

Example 0.4. f = x + y + z, $\alpha = (1, 1, 1)$. $\alpha(f) = 1$, $\alpha(xyz) = 3$.

But if $\alpha = (1, 0, 0)$. Then $\alpha(f) = 0$, $\alpha(xyz) = 1$. So it does not satisfy (1) in the theorem. Maybe we need to modify the statement as α is in the interior of $M \cap \sigma$?

Example 0.5. Consider \mathbb{A}^2/μ_r , take $\alpha = \frac{1}{3}(1,2) \in N \cap \sigma$. $\alpha(xy) = 1$ so \mathbb{A}^2/μ_3 is not terminal. (In fact, it is canonical)

Example 0.6. Consider $\frac{1}{3}(1,1)$ singularity. $N = \overline{N} + \mathbb{Z}\frac{1}{3}(1,1)$. Take $\alpha = \frac{1}{3}(1,1)$. $\alpha(xy) = \frac{2}{3}$. So X is not canonical. Indeed, $X = \text{Spec } \mathbb{C}[x^3, x^2y, xy^2, y^3]$, so it is a cone over rational normal curve of degree 3. We know this singularity is not canonical.

Example 0.7. Consider $X = Y \subset \mathbb{A}^{n+1}$ a hypersurface singularity. *Y* is terminal (canonical) \Rightarrow

$$\alpha(x_0 \cdots x_n) > (\geq) \ \alpha(f) + 1 \stackrel{(\alpha = (1, \cdots, 1))}{\Rightarrow} n + 1 > (\geq) \ \operatorname{mult}_p(f) + 1 \Rightarrow \operatorname{mult}_p f < n.$$

What happens if n = 1? Need to understand it.