TORIC METHODS FOR HYPERQUOTIENT SINGULARITIES III

JIE WANG, HAN-BOM MOON

Recall the notation.
$Y \subset \mathbb{A}^{n+1}$ is a hypersurface $f=0$ which is possibly singular. μ_{r} acts on \mathbb{A}^{n+1} which preserves Y. For a generator $\epsilon \in \mu_{r}$,

$$
\epsilon \cdot\left(x_{0}, \cdots, x_{n}\right)=\left(\epsilon^{a_{0}} x_{0}, \cdots, \epsilon^{a_{n}} x_{n}\right)
$$

and $\epsilon \cdot f=\epsilon^{e} f . \frac{1}{r}\left(a_{0}, \cdots, a_{n}, e\right)$ is the type of the hyperquotient singularity. Set $X=$ $Y / \mu_{r} \subset \mathbb{A}^{n+1} / \mu_{r}$.

Two special cases.
(1) $r=1$ (no action): hypersurface singularities.
(2) Y smooth $\left(Y=\left\{x_{0}=0\right\}\right)$: cyclic quotient, $X=\mathbb{A}^{n} / \mu_{r}$.

Question 0.1. When is $X=Y / \mu_{r} \subset \mathbb{A}^{n+1} / \mu_{r}$ terminal/canonical?
If Y is already not normal, then there is almost no hope about the normality of X. So assume that Y and μ_{r}-action are reasonable.

Let's fix the notation for lattices. Let $\bar{M}=\mathbb{Z}^{n+1}$ be the lattice of monomials. Let $\bar{N}=\operatorname{Hom}(\bar{M}, \mathbb{Z})$ be the space of 1 parameter subgroups of $\left(\mathbb{C}^{*}\right)^{n+1}$. Let $N=\bar{N}+$ $\mathbb{Z} \frac{1}{r}\left(a_{0}, \cdots, a_{r}\right) \cong \mathbb{Z}^{n+1}$ and $M=\operatorname{Hom}(N, \mathbb{Z})$. Then $\bar{N} \subset N$ and $M \subset \bar{M}$.

Last time, we learned that

$$
X \subset \mathbb{A}^{n+1} / \mu_{r} \cong \operatorname{Spec}\left(\mathbb{C}\left[M \cap \sigma^{\vee}\right]\right)
$$

Example 0.2. Consider a special case of (2), $X=\mathbb{A}^{2} / \mu_{3}$, an $\frac{1}{3}(1,2)$-singularity. $N=\bar{N}+$ $\mathbb{Z} \frac{1}{3}(1,2)$ and generated by two elements $(1 / 3,2 / 3),(0,1) . M=\{(m \in \bar{M} \mid m \cdot N \in \mathbb{Z}\}=$ $\left\{\left(m_{1}, m_{2}\right) \in \bar{M} \mid m_{1}+2 m_{2} \equiv 0 \bmod 3\right\}$. The lattice M is spanned by $(1,1),(0,3)$, and the semigroup $M \cap \sigma^{\vee}$ is generated by $(1,1),(0,3),(3,0)$.

$$
\text { Spec } \mathbb{C}\left[M \cap \sigma^{\vee}\right]=\operatorname{Spec} \mathbb{C}\left[x^{3}, y^{3}, x y\right]=\operatorname{Spec} \mathbb{C}[u, v, w] /<u v-w^{3}>
$$

Theorem 0.3. A necessary condition for X to be terminal (canonical) is that

$$
\begin{equation*}
\alpha\left(x_{0} \cdots x_{n}\right)>(\geq) \alpha(f)+1 \tag{1}
\end{equation*}
$$

for every primitive vector $\alpha \in N \cap \sigma$.
Let $\alpha \in N \cap \sigma . \alpha=\left(b_{0}, \cdots, b_{n}\right) \in N \cap \sigma$. Thank of α is a weighting on monomials.
(1) $\alpha \in N$ means $\alpha \equiv \frac{1}{r}\left(j a_{0}, \cdots, j a_{n}\right) \bmod \bar{N}$ for some j.
(2) $\alpha \in \sigma$ means $b_{i} \geq 0$.

We can define a weighting α by $\alpha\left(x_{i}\right)=b_{i}$ and $\alpha\left(x_{0}^{m_{0}} \cdots x_{n}^{x_{n}}\right)=\sum m_{i} b_{i}$. We say $x^{m}=$ $x_{0}^{m_{0}} \cdots x_{n}^{m_{n}} \in f$ if x^{m} appears in f with non-zero coefficients. Define $\alpha(f):=\left\{\min x^{m} \mid x^{m} \in\right.$ $f\}$.

Example 0.4. $f=x+y+z, \alpha=(1,1,1) . \alpha(f)=1, \alpha(x y z)=3$.
But if $\alpha=(1,0,0)$. Then $\alpha(f)=0, \alpha(x y z)=1$. So it does not satisfy (1) in the theorem. Maybe we need to modify the statement as α is in the interior of $M \cap \sigma$?

Example 0.5. Consider \mathbb{A}^{2} / μ_{r}, take $\alpha=\frac{1}{3}(1,2) \in N \cap \sigma . \alpha(x y)=1$ so \mathbb{A}^{2} / μ_{3} is not terminal. (In fact, it is canonical)

Example 0.6. Consider $\frac{1}{3}(1,1)$ singularity. $N=\bar{N}+\mathbb{Z} \frac{1}{3}(1,1)$. Take $\alpha=\frac{1}{3}(1,1) . \alpha(x y)=\frac{2}{3}$. So X is not canonical. Indeed, $X=\operatorname{Spec} \mathbb{C}\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]$, so it is a cone over rational normal curve of degree 3 . We know this singularity is not canonical.

Example 0.7. Consider $X=Y \subset \mathbb{A}^{n+1}$ a hypersurface singularity. Y is terminal (canonical) \Rightarrow

$$
\alpha\left(x_{0} \cdots x_{n}\right)>(\geq) \alpha(f)+1 \stackrel{(\alpha=(1, \cdots, 1))}{\Rightarrow} n+1>(\geq) \operatorname{mult}_{p}(f)+1 \Rightarrow \operatorname{mult}_{p} f<n .
$$

What happens if $n=1$? Need to understand it.

