TORIC METHODS FOR HYPERQUOTIENT SINGULARITIES

PATRICK MCFADDIN, HAN-BOM MOON

Hyperquotient singularities.
Let μ_{r} denote the group of r-th roots of unity. For a choice of primitive root ϵ, we have an isomorphism $\mu_{r} \rightarrow \mathbb{Z} / r$ given by $\epsilon \mapsto 1$. We want to think of elements in $a \in \mathbb{Z} / r$ as characters of μ_{r}. For $a \in \mathbb{Z} / r$,

$$
\begin{aligned}
c_{a}: \mu & \rightarrow \mu \\
\epsilon & \mapsto \epsilon^{a}
\end{aligned}
$$

For a k-vector space V, the action of μ_{r} will break V into 1-dimensional eigenspaces. After finding them, we can say for standard basis $b_{i}, 1 \leq i \leq n$,

$$
\epsilon \cdot b_{i}=e^{a_{i}} b_{i}
$$

for some $a_{i} \in \mathbb{Z} / r$.
Let $Y:\{f=0\} \subset \mathbb{A}^{n+1}$ be a hypersurface and $Q \in Y$ be a hypersurface singularity. And assume Y has a μ_{r}-action. Let $P \in X=Y / \mu_{r}$ be the image of Q.

Question 0.1. When is P terminal? canonical?
We want to answer in terms of μ_{r}-action and the Newton polyhedron of f.
Definition 0.2. Let $f=\sum a_{u} x^{u}$ (sum taken over finitely many points in \mathbb{Z}^{n+1}).

$$
\operatorname{Newt}(f)=\operatorname{Conv}\left\{u \in \mathbb{Z}^{n+1} \mid a_{u} \neq 0\right\}
$$

Example 0.3.

$$
\begin{gathered}
f(x, y, z)=a x y+b x^{5}+c y^{2} \\
\operatorname{Newt}(f)=\operatorname{Conv}\{(1,1),(5,0),(0,2)\}
\end{gathered}
$$

The convex hull in this situation is not usual one. The correct picture is the following. Pick given integral points on \mathbb{R}^{n+1} and plot all exponents of monomials with nonzero coefficient. At each integral point p, we can draw a first quadrant with origin at p. Newt (f) is the convex hull of the union of such first quadrants.

Any cyclic quotient singularity is of the form $X=\mathbb{A}^{n} / \mu_{r} . \mu_{r}$-action breaks up k^{n} into 1-dimensional eigenspaces

$$
\epsilon \in \mu_{r}, \quad \epsilon:\left(X_{1}, \cdots, X_{n}\right) \mapsto\left(\epsilon^{a_{i}} X_{1}, \cdots, \epsilon^{a_{n}} X_{n}\right), a_{i} \in \mathbb{Z} / r
$$

Singularity is determined by this information.
Definition 0.4. X as above. Then the type of X is denoted by

$$
\frac{1}{r}\left(a_{1}, \cdots, a_{n}\right) .
$$

Back to $Y:\{f=0\}$. Choose analytic coordinates, then we can extend μ_{r}-action to \mathbb{A}^{n+1} (since μ_{r} acts on $T_{Y, Q}$).

$$
\epsilon:\left(X_{0}, \cdots, X_{n}\right) \mapsto\left(\epsilon^{a_{0}} X_{0}, \cdots, \epsilon^{a_{n}} X_{n}\right)
$$

Y is fixed by μ_{r}-action. So $\epsilon: f \mapsto \epsilon^{e} f$ for some e. Then we say

$$
\frac{1}{r}\left(a_{0}, \cdots, a_{n} ; e\right)
$$

is the type of hyperquotient singularity $P \in X$.
We want to see the μ_{r}-action on the generator of ω_{Y}

$$
s=\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{\partial f / \partial x_{0}}=\operatorname{Res}_{Y} \frac{d x_{0} \wedge \cdots \wedge d x_{n}}{f} .
$$

The weight on s is $\left(a_{1}+\cdots, a_{n}\right)-\left(e-a_{0}\right)=\sum a_{i}-e$.
Remark 0.5. Need explanation about residue. Locally we can take the coordinate f, x_{1}, \cdots, x_{n} because $\partial f / \partial x_{0} \neq 0$. Formally, the residue have a property

$$
\operatorname{Res}_{Y}\left(\frac{f}{d f} \wedge \beta\right)=\beta
$$

Because $d f=\sum \partial f / \partial x_{i} d x_{i}$,

$$
\begin{gathered}
\operatorname{Res}_{Y}\left(\frac{d x_{0} \wedge \cdots \wedge x_{n}}{f}\right)=\operatorname{Res}_{Y}\left(\frac{\frac{d f-\partial f / \partial x_{1} d x_{1}-\cdots-\partial f / \partial x_{n} d x_{n}}{\partial f / \partial x_{0}} \wedge d x_{1} \wedge \cdots \wedge d x_{n}}{f}\right) \\
=\operatorname{Res}_{Y}\left(\frac{d f \wedge d x_{1} \wedge \cdots \wedge d x_{n}}{f \partial f / \partial x_{0}}\right)=\frac{d x_{1} \wedge \cdots \wedge d x_{n}}{\partial f / \partial x_{0}}
\end{gathered}
$$

