TORIC METHODS FOR HYPERQUOTIENT SINGULARITIES

PATRICK MCFADDIN, HAN-BOM MOON

Hyperquotient singularities.

Let μ_r denote the group of *r*-th roots of unity. For a choice of primitive root ϵ , we have an isomorphism $\mu_r \to \mathbb{Z}/r$ given by $\epsilon \mapsto 1$. We want to think of elements in $a \in \mathbb{Z}/r$ as characters of μ_r . For $a \in \mathbb{Z}/r$,

$$\begin{array}{rcl} c_a : \mu & \to & \mu \\ \\ \epsilon & \mapsto & \epsilon^a \end{array}$$

For a *k*-vector space *V*, the action of μ_r will break *V* into 1-dimensional eigenspaces. After finding them, we can say for standard basis b_i , $1 \le i \le n$,

$$\epsilon \cdot b_i = e^{a_i} b_i$$

for some $a_i \in \mathbb{Z}/r$.

Let $Y : \{f = 0\} \subset \mathbb{A}^{n+1}$ be a hypersurface and $Q \in Y$ be a hypersurface singularity. And assume Y has a μ_r -action. Let $P \in X = Y/\mu_r$ be the image of Q.

Question 0.1. When is *P* terminal? canonical?

We want to answer in terms of μ_r -action and the Newton polyhedron of f.

Definition 0.2. Let $f = \sum a_u x^u$ (sum taken over finitely many points in \mathbb{Z}^{n+1}).

$$Newt(f) = Conv\{u \in \mathbb{Z}^{n+1} | a_u \neq 0\}$$

Example 0.3.

$$f(x, y, z) = axy + bx^{5} + cy^{2}$$

Newt(f) = Conv{(1, 1), (5, 0), (0, 2)}

The convex hull in this situation is not usual one. The correct picture is the following. Pick given integral points on \mathbb{R}^{n+1} and plot all exponents of monomials with nonzero coefficient. At each integral point p, we can draw a first quadrant with origin at p. Newt(f) is the convex hull of the union of such first quadrants.

Any cyclic quotient singularity is of the form $X = \mathbb{A}^n / \mu_r$. μ_r -action breaks up k^n into 1-dimensional eigenspaces

 $\epsilon \in \mu_r, \quad \epsilon : (X_1, \cdots, X_n) \mapsto (\epsilon^{a_i} X_1, \cdots, \epsilon^{a_n} X_n), a_i \in \mathbb{Z}/r$

Date: October 5, 2012.

Singularity is determined by this information.

Definition 0.4. *X* as above. Then the type of *X* is denoted by

$$\frac{1}{r}(a_1,\cdots,a_n).$$

Back to $Y : \{f = 0\}$. Choose analytic coordinates, then we can extend μ_r -action to \mathbb{A}^{n+1} (since μ_r acts on $T_{Y,Q}$).

$$\epsilon: (X_0, \cdots, X_n) \mapsto (\epsilon^{a_0} X_0, \cdots, \epsilon^{a_n} X_n)$$

Y is fixed by μ_r -action. So $\epsilon : f \mapsto \epsilon^e f$ for some *e*. Then we say

$$\frac{1}{r}(a_0,\cdots,a_n;e)$$

is the type of hyperquotient singularity $P \in X$.

We want to see the μ_r -action on the generator of ω_Y

$$s = \frac{dx_1 \wedge \dots \wedge dx_n}{\partial f / \partial x_0} = \operatorname{Res}_Y \frac{dx_0 \wedge \dots \wedge dx_n}{f}.$$

The weight on s is $(a_1 + \cdots, a_n) - (e - a_0) = \sum a_i - e$.

Remark 0.5. Need explanation about residue. Locally we can take the coordinate f, x_1, \dots, x_n because $\partial f / \partial x_0 \neq 0$. Formally, the residue have a property

$$\operatorname{Res}_Y(\frac{f}{df} \wedge \beta) = \beta.$$

Because $df = \sum \partial f / \partial x_i dx_i$,

$$\operatorname{Res}_{Y}\left(\frac{dx_{0}\wedge\cdots\wedge x_{n}}{f}\right) = \operatorname{Res}_{Y}\left(\frac{\frac{df-\partial f/\partial x_{1}dx_{1}-\cdots-\partial f/\partial x_{n}dx_{n}}{\partial f/\partial x_{0}}\wedge dx_{1}\wedge\cdots\wedge dx_{n}}{f}\right)$$
$$= \operatorname{Res}_{Y}\left(\frac{df\wedge dx_{1}\wedge\cdots\wedge dx_{n}}{f\partial f/\partial x_{0}}\right) = \frac{dx_{1}\wedge\cdots\wedge dx_{n}}{\partial f/\partial x_{0}}.$$