BRIEF INTRODUCTION TO GLOBAL CANONICAL VARIETIES III

JOE TENINI, HAN-BOM MOON

Recall: In the last week, we discussed a degree 14 hypersurface

$$
X_{14} \subset \mathbb{P}(1,1,2,2,7)
$$

in a weighted projective space.
Example 0.1. Let

$$
X_{6,6,6} \subset \mathbb{P}\left(2^{4}, 3^{3}\right)
$$

be a general complete intersection of three degree 6 weighted homogeneous hypersurfaces. Fix a homogeneous coordinates $x_{0}, \cdots, x_{3}, y_{0}, \cdots, y_{2}$. A monomial of weighted degree 6 in $x_{0}, \cdots, x_{3}, y_{0}, \cdots, y_{2}$ is either in $x_{i}{ }^{\prime}$ s or $y_{i}{ }^{\prime}$ s. Thus if we consider an embedding

$$
\mathbb{P}\left(2^{4}, 3^{3}\right) \xrightarrow{|\mathcal{O}(6)|} \mathbb{P}^{25},
$$

the image is a join of degree 3 Veronese embedding of \mathbb{P}^{3} and degree 2 Veronese embedding of \mathbb{P}^{2}. In this embedding, the pullback of a hyperplane is a degree 6 hypersurface in $\mathbb{P}\left(2^{4}, 3^{3}\right)$.

Observation 1. X has 27 Veronese cone singularities at its intersection with the 3dimensional strata $v_{3}\left(\mathbb{P}^{3}\right)$.

There are two singular locus on $X_{6,6,6}$: Two Veronese embeddings. One is three dimensional, and the other is two dimensional. Thus if we take three general hyperplanes, then the intersection with $v_{2}\left(\mathbb{P}^{2}\right)$ is empty by dimension reason, the intersection with $v_{3}\left(\mathbb{P}^{3}\right)$ is 27 points, because $\operatorname{deg}\left(v_{3}\left(\mathbb{P}^{3}\right)\right)=27$. They are Veronese cone singularities... Why?

Observation 2.

$$
K_{X_{6,6,6}}=\mathcal{O}(6+6+6-2-2-2-2-3-3-3)=\mathcal{O}(1) .
$$

Observation 3.

$$
\begin{gathered}
K_{X_{6,6,6}}^{3}=\frac{6 \cdot 6 \cdot 6}{2^{4} \cdot 3^{3}}=\frac{1}{2} . \\
H^{0}\left(K_{X_{6,6,6}}\right)=H^{0}(\mathcal{O}(1))=0 \Rightarrow p_{g}=0 .
\end{gathered}
$$

So it is another canonical variety without smooth canonical minimal model.

Example 0.2. We don't fully understand the following.
For the same example, look at 2-dimensional linear system

$$
F_{\lambda}=\lambda_{1} F_{1}+\lambda_{2} F_{2}+\lambda_{3} F_{3}
$$

where $\lambda \in \mathbb{P}^{2}, F_{i}$ are degree 6 polynomials vanishing on $X_{6,6,6}$. Note that

$$
F_{\lambda}=c_{\lambda}\left(x_{0}, \cdots, x_{3}\right)+q_{\lambda}\left(y_{0}, \cdots, y_{2}\right)
$$

for a cubic c_{λ} and a quadric q_{λ}. Here c_{λ} is a net of cubics in \mathbb{P}^{3} and q_{λ} is net of conics in \mathbb{P}^{2} parametrized by the same $\lambda \in \mathbb{P}^{2}$.

The conic $Q_{\lambda}=\left\{q_{\lambda}=0\right\}$ is union of two lines when $\lambda \in E$ where E is a discriminant curve. Let $S_{\lambda}=\left\{c_{\lambda}=0\right.$. For general λ, S_{λ} is a smooth cubic surface. Thus it contains 27 lines. Define

$$
B=\left\{(\ell, m) \mid \ell, m \text { lines, } \ell \subset Q_{\lambda}, m \subset S_{\lambda}\right\}
$$

Then there is $54: 1$ map $B \rightarrow E$. For each $(\ell, n) \in B$, we can construct their weighted join $\mathbb{P}(2,2,3,3)$ in F_{λ}.

It is written that this example is related to intermediate Jacobian and Abel-Jacobi map, but we don't understand it fully.

There is a (maybe not complete) list of canonical hypersurfaces in weighted projective spaces in [Rei87].

REFERENCES

[Rei87] Miles Reid. Young person's guide to canonical singularities. In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 345-414. Amer. Math. Soc., Providence, RI, 1987.2

