DEFINITIONS AND EASY EXAMPLES III

XIAOYAN HU, HAN-BOM MOON

Let's begin with the definition of canonical singularities.
Definition 0.1. Let X be a variety. X has canonical singularities if
(1) $r K_{X}$ is Cartier for some integer $r>0$;
(2) If $f: Y \rightarrow X$ is a resolution,

$$
r K_{Y}=f^{*}\left(r K_{X}\right)+\sum a_{i} E_{i}, \quad \text { with } a_{i} \geq 0
$$

In the following example, we will compute the discrepancy.
Example 0.2. Let $X=\{f=0\} \subset \mathbb{A}^{n+1}$ be a hypersurface with an isolated singularity at $p \in X$. Assume that the projectivized normal cone at p is nonsingular. Maybe $f=x_{0}^{k}+$ $\cdots+x_{n}^{k}$ is a nice example. Then the single blow-up at p gives a resolution of singularities.

We've seen that $\omega_{X} \cong \mathcal{O}_{X}$ and ω_{X} is generated by a differential form locally represented by

$$
s=\frac{d x_{1} \wedge \cdots d x_{n}}{\partial f / \partial x_{0}}
$$

To compute the discrepancy, let's compute the blow-up concretely.
On an affine chart of $b l_{p} \mathbb{A}^{n+1}$, we can find a coordinate system $\left\{y_{0}, \cdots, y_{n}\right\}$ and

$$
x_{i}=y_{i} y_{n} \text { for } i \leq n-1 \text { and } x_{n}=y_{n} .
$$

Then for $\sigma: Y=b l_{p} X \rightarrow X$,

$$
\sigma^{*} f=f\left(y_{0} y_{n}, \cdots, y_{n}\right)=y_{n}^{k}\left(y_{0}^{k}+\cdots+y_{n-1}^{k}+1\right)
$$

Now

$$
\begin{aligned}
\sigma^{*} s & =\frac{d\left(y_{n} y_{1}\right) \wedge \cdots \wedge d\left(y_{n} y_{n-1}\right) \wedge d y_{n}}{k x_{0}^{k-1}} \\
& =\frac{y_{n}^{n-1} d y_{1} \wedge \cdots \wedge d y_{n}}{k y_{0}^{k-1} y_{n}^{k-1}}=y_{n}^{n-k} \frac{d y_{1} \wedge \cdots d y_{n}}{\partial g / \partial y_{0}}
\end{aligned}
$$

where g is the equation for the proper transform.
Therefore in this case, the index is 1 and $K_{Y}=\sigma^{*}\left(K_{X}\right)+(n-k) E$. So if $n-k \geq 0$, it is a canonical singularity and if $n-k<0$ it is not.

We can compute this example with adjunction formulas. Let $S=\mathbb{A}^{n+1}$ and $\hat{S}=b l_{p} \mathbb{A}^{n+1}$. Then

$$
\begin{aligned}
K_{Y} & =\left.\left(K_{\hat{S}}+Y\right)\right|_{Y}=\left.\left(\sigma^{*}\left(K_{S}\right)+n E+\sigma^{*}(X)-k E\right)\right|_{Y}=\left.\sigma^{*}\left(K_{S}+X\right)\right|_{Y}+\left.(n-k) E\right|_{Y} \\
& =K_{Y}+\left.(n-k) E\right|_{Y}
\end{aligned}
$$

Remark 0.3. We can translate the canonical singularity in the following way: If we take a regular form s on X (that means, it is regular on the smooth locus) and take the pull-back to Y, then it has no pole along exceptional divisors.

Example 0.4. Consider $X=\mathbb{A}^{2} / \mu_{3}$ where μ_{3} is the group of cubic roots of $1 . \mu_{3}$ acts as

$$
e \cdot(x, y)=(e x, e y)
$$

We have the quotient map $\pi: \mathbb{A}^{2} \rightarrow X$ and

$$
X=\operatorname{Spec} k\left[x^{3}, x^{2} y, x y^{2}, y^{3}\right]=\operatorname{Spec} k\left[u_{0}, u_{1}, u_{2}, u_{3}\right] /\left(u_{0} u_{3}-u_{1} u_{2}, u_{0} u_{2}-u_{1}^{2}, u_{1} u_{3}-u_{2}^{2}\right)
$$

In the last seminar, we've seen $3 K_{X}$ is Cartier and

$$
s=\frac{\left(d u_{0} \wedge d u_{1}\right)^{3}}{u_{0}^{4}} \in\left(\Omega_{k(X)}^{2}\right)^{3}
$$

gives a section.
Let's compute the discrepancy using local computation. If $\sigma: Y \rightarrow X$ is the blow-up, for an affine chart, the functions u_{0}, \cdots, u_{3} is pulled back to $v_{0}, v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}$ respectively.

So the equations of X is pulled back to the equations

$$
u_{0} u_{3}-u_{1} u_{2}=v_{0}^{2}\left(v_{3}-v_{1} v_{2}\right), u_{0} u_{2}-u_{1}^{2}=v_{0}^{2}\left(v_{2}-v_{1}^{2}\right), u_{1} u_{3}-u_{2}^{2}=v_{0}^{2}\left(v_{1} v_{3}-v_{2}^{2}\right),
$$

thus the proper transform of X is defined by

$$
v_{3}-v_{1} v_{2}, v_{2}-v_{1}^{2}, v_{1} v_{3}-v_{2}^{2} .
$$

Therefore it is easy to see that locally $\left\{v_{0}, v_{1}\right\}$ can be a coordinate system of Y.
Now

$$
\sigma^{*}(s)=\frac{\left(d v_{0} \wedge d\left(v_{0} v_{1}\right)\right)^{3}}{v_{0}^{4}}=\frac{\left(v_{0} d v_{0} \wedge d v_{1}\right)^{3}}{v_{0}^{4}}=\frac{\left(d v_{0} \wedge d v_{1}\right)^{3}}{v_{0}}
$$

so it has a poll on the exceptional divisor. Therefore X has non canonical singularity.

REFERENCES

