BIRATIONAL GEOMETRY OF THE MODULI SPACE OF PURE SHEAVES ON QUADRIC SURFACE

KIRYONG CHUNG AND HAN-BOM MOON

ABSTRACT. We study birational geometry of the moduli space of stable sheaves on a quadric surface with Hilbert polynomial $5m + 1$ and $c_1 = (2, 3)$. We describe a birational map between the moduli space and a projective bundle over a Grassmannian as a composition of smooth blow-ups/downs.

1. INTRODUCTION

The geometry of the moduli space of sheaves on a del Pezzo surface has been studied in various viewpoints, for instance curve counting, the strange duality conjecture, and birational geometry via Bridgeland stability. For a detailed description of the motivation, see [CM15] and references therein. In this paper we continue the study of birational geometry of the moduli space of torsion sheaves on a del Pezzo surface, which was initiated in [CM15]. More precisely, here we construct a flip between the moduli space of sheaves and a projective bundle, and show that their common blown-up space is the moduli space of stable pairs ([LP93]), in the case of a quadric surface.

Let $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ be a smooth quadric surface in \mathbb{P}^3 with a very ample polarization $L := \mathcal{O}_Q(1, 1)$. For the convenience of the reader, we start with a list of relevant moduli spaces.

Definition 1.1. (1) Let $M := M_L(Q, (2, 3), 5m + 1)$ be the moduli space of stable sheaves F on Q with $c_1(F) = c_1(\mathcal{O}_Q(2, 3))$ and $\chi(F(m)) = 5m + 1$.

(2) Let $M^\alpha := M^\alpha_L(Q, (2, 3), 5m + 1)$ be the moduli space of α-stable pairs (s, F) with $c_1(F) = c_1(\mathcal{O}_Q(2, 3))$ and $\chi(F(m)) = 5m + 1$ ([LP93] and [He98, Theorem 2.6]).

(3) Let $G = \text{Gr}(2, 4)$ and let G_1 be the blow-up of G along \mathbb{P}^1 (Section 2.1).

(4) Let $P := \mathbb{P}(\mathcal{U})$ and $P^- := \mathbb{P}(\mathcal{U}^-)$, where \mathcal{U} (resp. \mathcal{U}^-) is a rank 10 vector bundle over G (resp. G_1) defined in (2) in Section 2.1 (resp. Section 3.3).

The aim of this paper is to explain and justify the following commutative diagram between moduli spaces.

\[
\begin{array}{ccccccc}
M^+ & \longrightarrow & P^- & \longrightarrow & \mathbb{P}(\mathcal{U}^-) & \longrightarrow & \mathbb{P}(u^*\mathcal{U}) = G_1 \times_G P & \longrightarrow & P = \mathbb{P}(\mathcal{U}) \\
\downarrow r & & \downarrow & & \downarrow & & \downarrow & & \\
M & \longrightarrow & G_1 & \longrightarrow & G
\end{array}
\]

We have to explain two flips (dashed arrows) on the diagram.

One of key ingredients is the elementary modification of vector bundles ([Mar73]), sheaves ([HL10, Section 2.B]), and pairs ([CC16, Section 2.2]). It has been widely used in the study of sheaves on...
a smooth projective variety. Let \(F \) be a vector bundle on a smooth projective variety \(X \) and \(Q \) be a vector bundle on a smooth divisor \(Z \subset X \) with a surjective map \(F|_Z \to Q \). The elementary modification of \(F \) along \(Z \) is the kernel of the composition

\[
\text{elm}_Z(F) := \ker(F \to F|_Z \to Q).
\]

A similar definition is valid for sheaves and pairs, too.

On \(G_1 \), let \(U^- := \text{elm}_{Y_{10}}(u^*U) \) be the elementary transformation of \(u^*U \) along a smooth divisor \(Y_{10} \) (Section 2.1).

Proposition 1.2. Let \(P^- = \mathbb{P}(U^-) \). The flip \(P^- \dashrightarrow \mathbb{P}(u^*U) = G_1 \times_G \mathbb{P}(U) \) is a composition of a blow-up and a blow-down. The blow-up center in \(P^- \) (resp. \(\mathbb{P}(u^*U) \)) is a \(\mathbb{P}^1 \) (resp. \(\mathbb{P}^7 \))-bundle over \(Y_{10} \).

Theorem 1.3. There is a flip between \(M \) and \(P^- \) which is a blow-up followed by a blow-down, and the master space is \(M^+ \), the moduli space of \(+\)-stable pairs.

As applications, we compute the Poincaré polynomial of \(M \) and show the rationality of \(M \) (Corollary 3.8) which were obtained by Maican by different methods ([Mai16]). Since each step of the birational transform is described in terms of blow-ups/downs along explicit subvarieties, in principle the cohomology ring and the Chow ring of \(M \) can be obtained from that of \(G \). Also one may aim for the completion of Mori’s program for \(M \). We will carry on these projects in forthcoming papers.

2. Relevant moduli spaces

In this section we give definitions and basic properties of some relevant moduli spaces.

2.1. Grassmannian as a moduli space of Kronecker quiver representations

The moduli space of representations of a Kronecker quiver parametrizes the isomorphism classes of stable sheaf homomorphisms

\[
O_Q(0, 1) \longrightarrow O_Q(1, 2)^{\oplus 2}
\]

up to the natural action of the automorphism group \(\mathbb{C}^* \times GL_2/\mathbb{C}^* \cong GL_2 \). For two vector spaces \(E \) and \(F \) of dimension 1 and 2 respectively and \(V^* := H^0(Q, L) \), the moduli space is constructed as \(G := \text{Hom}(F, V^* \otimes E)/GL_2 \cong V^* \otimes E \otimes F^*/GL_2 \) with an appropriate linearization ([Kin94]). Note that the GL_2 acts as a row operation on the space of \(2 \times 4 \) matrices, \(G \cong \text{Gr}(2, 4) \).

Let \(H(n) := \text{Hilb}^n(Q) \), the Hilbert scheme of \(n \) points on \(Q \). \(H(2) \) is birational to \(G \) because a general \(Z \in H(2) \), \(I_Z(2, 3) \) has a resolution of the form (1). For any \(Z \in H(2) \), let \(\ell_Z \) be the unique line in \(\mathbb{P}^3 \supset Q \) containing \(Z \). Then either \(\ell_Z \cap Q = Z \) or \(\ell_Z \subset Q \). In the second case, the class of \(\ell_Z \) is of the type \((1, 0)\) or \((0, 1)\). Let \(Y_{10} \) (resp. \(Y_{01} \)) be the locus of subschemes such that \(\ell_Z \) is a line of the type \((1, 0)\) (resp. \((0, 1)\)). Then \(Y_{10} \) and \(Y_{01} \) are two disjoint subvarieties which are isomorphic to a \(\mathbb{P}^2 \)-bundle over \(\mathbb{P}^1 \).

Proposition 2.1 ([BC13, Example 6.1]). There exists a morphism \(t : H(2) \longrightarrow G_1 \xrightarrow{u} G \). The first (resp. the second) map contracts the divisor \(Y_{01} \) (resp. \(Y_{10} \)) to \(\mathbb{P}^1 \). If \(\ell_Z \cap Q = Z \), then \(t(Z) = I_Z(2, 3) \).

If \(Z \in Y_{10} \), then \(t(Z) = E_{10} \in \mathbb{P}(\text{Ext}^1(O_Q(1, 3), O_{\ell_2}(1))) = \{\text{pt}\} \). If \(Z \in Y_{01} \), then \(t(Z) = E_{01} \in \mathbb{P}(\text{Ext}^1(O_Q(2, 2), O_{\ell_2})) = \{\text{pt}\} \).
There is a universal morphism \(\phi : p_1^* \mathcal{F} \otimes p_2^* \mathcal{O}_Q(0,1) \to p_1^* \mathcal{E} \otimes p_2^* \mathcal{O}_Q(1,2) \) where \(p_1 : G \times Q \to G \) and \(p_2 : G \times Q \to Q \) are two projections ([Kin94]). Let \(\mathcal{U} \) be the cokernel of \(p_{1*} \phi \). On the stable locus, \(p_{1*} \phi \) is injective. Thus we have an exact sequence
\[
0 \to \mathcal{F} \otimes H^0(\mathcal{O}_Q(0,1)) \to \mathcal{E} \otimes H^0(\mathcal{O}_Q(1,2)) \to \mathcal{U} \to 0
\]
and \(\mathcal{U} \) is a rank 10 vector bundle. Let \(\mathbb{P} := \mathbb{P}(\mathcal{U}) \).

2.2. Moduli space \(M \) of stable sheaves. Recall that \(M := M_L(Q, (2,3), 5m + 1) \) is the moduli space of stable sheaves \(F \) on \(Q \) with \(c_1(F) = c_1(\mathcal{O}_Q(2,3)) \) and \(\chi(F(m)) = 5m + 1 \). There are four types of points in \(M \) ([Mai16, Theorem 1.1]). Let \(C \in |\mathcal{O}_Q(2,3)| \).

1. \(F = \mathcal{O}_C(p + q) \), where the line \((p, q) \) is not contained in \(Q \);
2. \(F = \mathcal{O}_C(p + q) \), where the line \((p, q) \) in \(Q \) is of type \((1,0)\);
3. \(F = \mathcal{O}_C(0,1) \);
4. \(F \) fits into a non-split extension \(0 \to \mathcal{O}_E \to F \to \mathcal{O}_\ell \to 0 \) where \(E \) is a \((2,2)\)-curve and \(\ell \) is a \((0,1)\)-line.

Let \(M_i \) be the locus of sheaves of the form \((i)\). Then \(M_i \) is a subvariety of codimension \(i\). \(M_1 \) is a \(\mathbb{P}^3 \)-bundle over \(\mathbb{P}^2 \times \mathbb{P}^1 \). \(M_2 \) is isomorphic to \(|\mathcal{O}_Q(2,3)| \). Finally, \(M_3 \) is a \(\mathbb{P}^1 \)-bundle over \(|\mathcal{O}_Q(2,2)| \times |\mathcal{O}_Q(0,1)| \). \(M_1 \cap M_2 = M_1 \cap M_3 = \emptyset \), but \(M_{23} := M_2 \cap M_3 \cong |\mathcal{O}_Q(2,2)| \times |\mathcal{O}_Q(0,1)| \) ([Mai16, Theorem 1.1]). Note that \(\dim H^0(F) = 1 \) in general, but \(M_2 \) parametrizes sheaves that \(\dim H^0(F) = 2 \).

2.3. Moduli spaces of stable pairs. A pair \((s, F)\) consists of \(F \in \text{Coh}(Q) \) and a section \(\mathcal{O}_Q \xrightarrow{\delta} F \). Fix \(\alpha \in \mathbb{Q}_{>0} \). A pair \((s, F)\) is called \(\alpha \)-semistable (resp. \(\alpha \)-stable) if \(F \) is pure and for any proper subsheaf \(F' \subset F \), the inequality
\[
\frac{P(F')(m) + \delta \cdot \alpha}{r(F')} \leq \left(\frac{P(F)(m) + \alpha}{r(F)}\right)
\]
holds for \(m \gg 0 \). Here \(\delta = 1 \) if the section \(s \) factors through \(F' \) and \(\delta = 0 \) otherwise. Let \(M^\alpha := M^\alpha_L(Q, (2,3), 5m + 1) \) be the moduli space of \(S \)-equivalence classes of \(\alpha \)-semistable pairs whose support have a class \(c_1(\mathcal{O}_Q(2,3)) \) ([LP93, Theorem 4.12] and [He98, Theorem 2.6]). The extremal case that \(\alpha \) is sufficiently large (resp. small) is denoted by \(\alpha = \infty \) (resp. \(\alpha = + \)). The deformation theory of pairs is studied in [He98, Corollary 1.6 and Corollary 3.6].

Proposition 2.2.

1. There exists a natural forgetful map \(r : M^+ \to M \) which maps \((s, F)\) to \(F \).
2. ([He98, Section 4.4]) The moduli space \(M^\infty \) of \(\infty \)-stable pairs is isomorphic to the relative Hilbert scheme of two points on the complete linear system \(|\mathcal{O}_Q(2,3)|\).

The birational map \(M^\infty \dashrightarrow M^+ \) is analyzed in [Mai16, Theorem 5.7]. It turns out that this is a single flip over \(M^4 \) and is a composition of a smooth blow-up and a smooth blow-down. The blow-up center \(M^*_3 \) is isomorphic to a \(\mathbb{P}^2 \)-bundle over \(|\mathcal{O}_Q(2,2)| \times |\mathcal{O}_Q(0,1)| \) where a fiber \(\mathbb{P}^2 \) parameterizes two points lying on a \((0,1)\)-line. After the flip, the flipped locus on \(M^+ \) is \(M^+_3 \).

For the forgetful map \(r : M^+ \to M \), we define \(M^+_i := r^{-1}(M_i) \) if \(i \neq 3 \) and \(M^+_3 \) is the proper transform of \(M_3 \). It contracts \(M^+_3 \), which is a \(\mathbb{P}^1 \)-bundle over \(M_2 \) and \(M^+ \setminus M^+_3 \cong M \setminus M_2 \). Maican proved that \(r \) is a smooth blow-up along the Brill-Noether locus \(M_2 \) ([Mai16, Proposition 5.8]).
3. Decomposition of the birational map between M and P

In this section we prove Proposition 1.2 and Theorem 1.3 by describing the birational map between M and P.

3.1. Construction of a birational map $M^+ \rightarrow P$.

Lemma 3.1. There exists a surjective morphism $w : M^+ \rightarrow G$ which maps $(s, \mathcal{O}_C(p + q)) \in M^+_0$ to $I_{\{p,q\}}(2,3)$, maps $(s, \mathcal{O}_C(p + q)) \in M^+_1$ to the line (p, q) of the type $(1, 0)$, maps $(s, F) \in M^+_2$ to a $(0, 1)$-line determined by a section, and maps $(s, F) \in M^+_3$ to ℓ (see Section 2.2 for the notation), a $(0, 1)$-line.

Proof. By Proposition 2.2, M^∞ is the relative Hilbert scheme of 2 points on the universal $(2, 3)$-curves, which is a \mathbb{P}^9-bundle over $H(2)$ ([CC16, Lemma 2.3]). By composing with $t : H(2) \rightarrow G$ in Proposition 2.1, we have a morphism $M^\infty \rightarrow G$. On the other hand, since the flip $M^\infty \rightarrow M^+$ is the composition of a single blow-up/down, the blown-up space \widetilde{M}^∞ admits two morphisms to M^∞ and M^+, and the flipped locus is M^+_3. Note that each point in M^+_3 can be regarded as a collection of data (E, ℓ, e) where E is a $(2, 2)$-curve, ℓ is a $(0, 1)$-line, and $e \in \mathbb{P}^1 \mathcal{E}xt^1(\mathcal{O}_E, \mathcal{O}_E)$. The fiber $\widetilde{M}^\infty \rightarrow M^+$ over the point in the blow-up center M^+_3 is a \mathbb{P}^2 which parameterizes two points on ℓ. The composition map $\widetilde{M}^\infty \rightarrow M^\infty \rightarrow G$ is constant along the \mathbb{P}^2, because G does not remember points on the line $\ell \subset Q$. By the rigidity lemma, $\widetilde{M}^\infty \rightarrow G$ factors through M^+ and we obtain a map $w : M^+ \rightarrow G$. \hfill \Box

Note that $M^+_1 \cong M_1$ is a \mathbb{P}^9-bundle over $\mathbb{P}^2 \times \mathbb{P}^1$ and M^+_2 is a \mathbb{P}^1-bundle over $|\mathcal{O}_Q(2, 3)| \cong \mathbb{P}^{11}$. They are disjoint divisors on M^+.

Proposition 3.2. There is a birational morphism $q : M^+ \setminus M^+_1 \rightarrow P = \mathbb{P}(U)$ such that $p \circ q : M^+ \setminus M^+_1 \rightarrow P \rightarrow G$ coincides with $w|_{M^+ \setminus M^+_1}$ in Lemma 3.1. Furthermore, q is the smooth blow-down along M^+_2.

The proof consists of several steps. Since $P = \mathbb{P}(U)$ is a projective bundle over G, it is sufficient to construct a surjective homomorphism $w^*U^* \rightarrow L \rightarrow 0$ over $M^+ \setminus M^+_1$ for some $L \in \text{Pic}(M^+ \setminus M^+_1)$, or equivalently, a bundle morphism $0 \rightarrow L^* \rightarrow w^*U$.

Recall that a family $(\mathcal{L}, \mathcal{F})$ of pairs on a scheme S is a collection of data $\mathcal{L} \in \text{Pic}(S), \mathcal{F} \in \text{Coh}(S \times Q)$, which is a flat family of pure sheaves, and a surjective morphism $\text{Ext}^2_{\pi}(\mathcal{F}, \omega_{\pi}) \rightarrow \mathcal{L}$ where $\pi : S \times Q \rightarrow S$ is the projection and ω_{π} is the relatively dualizing sheaf (See [LP93, Section 4.3] for the explanation why we take the dual.). Now let $(\mathcal{L}, \mathcal{F})$ be the universal pair ([He98, Theorem 4.8]) on $M^+ \times Q$. By applying $\text{Hom}(-, \mathcal{O})$ to $\text{Ext}^2_{\pi}(\mathcal{F}, \omega_{\pi}) \rightarrow \mathcal{L}$, we obtain $0 \rightarrow L^* \rightarrow \text{Hom}(\text{Ext}^2_{\pi}(\mathcal{F}, \omega_{\pi}), \mathcal{O})$. It can be shown that $\text{Hom}(\text{Ext}^2_{\pi}(\mathcal{F}, \omega_{\pi}), \mathcal{O}) \cong \text{Ext}^1_{\pi}(\text{Ext}^1_{\pi}(\mathcal{F}, \mathcal{O}), \mathcal{O})$ (see [CM15, Section 3.2]). So we have a non-zero element $e \in \text{Ext}^1_{\pi}(\text{Ext}^1_{\pi}(\mathcal{F}, \mathcal{O}), \mathcal{O}) \cong \text{Ext}^1(\mathcal{F}, \mathcal{O}, \pi^*\mathcal{L})$ ([CM15, Section 3.2]), which provides $0 \rightarrow \pi^*\mathcal{L} \rightarrow \mathcal{E} \rightarrow \text{Ext}^1(\mathcal{F}, \mathcal{O}) \rightarrow 0$ on $M^+ \times Q$. By taking $\text{Hom}_{\pi}(-, \omega_{\pi})$, we have $\text{Ext}^2_{\pi}(\mathcal{E}, \omega_{\pi}) \rightarrow \text{Ext}^2_{\pi}(\pi^*\mathcal{L}, \omega_{\pi}) \cong L^* \rightarrow 0$ because \mathcal{L} is a line bundle. This implies the existence of a flat family of pairs $(\mathcal{L}^*, \mathcal{E})$ on $M^+ \times Q$. We may explicitly describe this construction fiberwisely in the following way. Let $(s, F) \in M^+$. Let $F^D := \mathcal{E}xt^1(F, \omega_Q)$. For a non-zero section $s \in H^0(F) \cong H^1(F^D)^* \cong \text{Ext}^1(F^D(2, 2), (s^*) \otimes \mathcal{O}_Q)$, we
have a pair \((s^*, G)\) given by
\[
0 \to (s^*) \otimes \mathcal{O}_Q \to G \to F^D(2, 2) \to 0.
\]

Lemma 3.3. The map \((s, F) \mapsto (s^*, G)\) defines a dominant rational map \(M^+ \dashrightarrow P = \mathbb{P}(U)\), which is regular on \(M^+ \setminus (M^+_1 \sqcup M^+_2)\).

Proof. Since we have a relative construction of pairs, it suffices to describe the extension \((s^*, G)\) set theoretically. If \((s, F) \in M^+_1 \sqcup M^+_2\), then \(F \cong \mathcal{O}_C(p + q) \cong I_{Z,C}(0, -1)\) for some curve \(C\) and \(Z = \{p, q\} \in \mathbb{H}(2)\) such that the line \(\ell_Z\) containing \(Z\) is not in \(Q\) ([He98, Section 4.4]). Then \(F^D(2, 2) \cong I_{Z,C}(2, 3)\). Since \(\text{Ext}^1(F^D(2, 2), \mathcal{O}_Q) \cong H^1(F^D)* \cong H^0(F) \cong \mathbb{C}\), from \(0 \to \mathcal{O}_Q(-2, -3) \cong I_{C,Q} \to I_{Z,Q} \to I_{Z,C} \to 0\), we obtain \(G = I_{Z,Q}(2, 3)\). If \((s, F) \in M^+_1\), then we have an element \((s^*, G)\) in \(P\) because \(G\) has a resolution of the form \(\mathcal{O}_Q(0, 1) \to \mathcal{O}_Q(1, 2)^{\oplus 2}\). However, if \((s, F) \in M^+_1\), then we have \(0 \to I_{\ell_{Z,Q}(2, 3)} \to G = I_{Z,Q}(2, 3) \to I_{Z,C}(2, 3) \to 0\) and \(I_{\ell_{Z,Q}(2, 3)} = \mathcal{O}_Q(1, 3)\).

In particular, \(\text{Hom}(\mathcal{O}_Q(1, 3), G) \neq 0\) and \(G\) does not admit a resolution \(\mathcal{O}_Q(0, 1) \to \mathcal{O}_Q(1, 2)^{\oplus 2}\). So \(G \not\in G\).

Suppose that \((s, F) \in M^+_2 \setminus M^+_2\). Then \(F\) fits into a non-split extension \(0 \to \mathcal{O}_E \to F \to \mathcal{O}_\ell \to 0\). Apply \(\text{Hom}(-, \omega_Q)\), then we have \(0 \to \mathcal{O}_E(0, 1) \to F^D(2, 2) \to \mathcal{O}_E(2, 2) \to 0\). Since \(\text{Ext}^1(\mathcal{O}_E(2, 2), \mathcal{O}_Q) \cong \text{Ext}^1(F^D(2, 2), \mathcal{O}_Q) \cong \mathbb{C}\), the sheaf \(G\) is given by the pull-back:
\[
\begin{array}{c}
0 \\ \downarrow \\
\mathcal{O}_Q \\
\downarrow \\
0 \\
\end{array}
\begin{array}{c}
\mathcal{O}_Q(0, 2) \\
\downarrow \\
\mathcal{O}_Q(2, 2) \\
\downarrow \\
\mathcal{O}_Q(3, 2) \\
\downarrow \\
0 \\
\end{array}
\begin{array}{c}
\mathcal{O}_E(0, 1) \\
\downarrow \\
\mathcal{O}_E(2, 2) \\
\downarrow \\
\mathcal{O}_E(3, 2) \\
\downarrow \\
0 \\
\end{array}
\begin{array}{c}
0 \\
\downarrow \\
G \\
\downarrow \\
F^D(2, 2) \\
\downarrow \\
0 \\
\end{array}
\]

By applying the snake lemma to (4), we conclude that the unique non-split extension \(G\) lies on \(0 \to \mathcal{O}_E(0, 1) \to G \to \mathcal{O}_Q(2, 2) \to 0\). Hence \(G \in G\) (Proposition 2.1) and we have an element \((s^*, G) \in P\).

Now suppose that \((s, F) \in M^+_2\), so \(F = \mathcal{O}_C(0, 1)\). Then \(F^D(2, 2) = \mathcal{O}_C(2, 2)\). So we have \(0 \to (s^*) \otimes \mathcal{O}_Q \to G \to \mathcal{O}_C(2, 2) \to 0\). By the snake lemma (Consult the proof of [CM15, Lemma 3.7].), \(G\) fits into \(0 \to \mathcal{O}_Q(2, 2) \to G \to \mathcal{O}_\ell \to 0\) where \(\ell\) is the line of type \((0, 1)\) determined by the section \(s\). So \(\text{Hom}(\mathcal{O}_Q(2, 2), G) \neq 0\) and this implies \(G\) does not admit a resolution \(\mathcal{O}_Q(0, 1) \to \mathcal{O}_Q(1, 2)^{\oplus 2}\). Thus the correspondence is not well-defined on \(M^+_2\).

\(\square\)

3.2. The first elementary modification and the extension of the domain. We can extend the morphism in Lemma 3.3 by applying an elementary modification of pairs ([CC16, Section 2.2]) on \(M^+_2\).

Lemma 3.4. There exists an exact sequence of pairs \(0 \to (0, K) \to (L^*, m) : E^*_1|_{M^+_2} \times Q \to (L^*, \mathcal{O}_Z) \to 0\) where \(Z\) is the pull-back of the universal family of \((0, 1)\)-lines to \(M^+_2 \times Q\) and \(K_{m|Q} \cong \mathcal{O}_Q(2, 2)\) for \(m = [(s, F)] \in M^+_2\).

Proof. The last part of the proof of Lemma 3.3 tells us that there is an exact sequence of sheaves \(0 \to \mathcal{O}_Q(2, 2) \to \mathcal{E}|_{M^+_2 \times Q} \to \mathcal{O}_Z \to 0\). Now it is sufficient to show that for each fiber \(G = \mathcal{E}|_{((s, F)) \times Q},\) the section \(s^*\) of \(G\) does not come from \(H^0(\mathcal{O}_Q(2, 2))\). If it is, we have an injection \(\mathcal{O}_Q \subset \mathcal{O}_Q(2, 2)\) whose cokernel is \(\mathcal{E}_q(2, 2)\) for some elliptic curve \(E\). By the snake lemma once again, we obtain \(0 \to \mathcal{O}_E(2, 2) \to F^D(2, 2) = \mathcal{O}_C(2, 2) \to \mathcal{O}_\ell \to 0\). It violates the stability of \(F^D(2, 2)\).
Let \((\mathcal{L}', \mathcal{E}')\) be the elementary modification of \((\mathcal{L}^*, \mathcal{E})\) along \(M_2^+\), that is,

\[
\text{Ker}(\mathcal{L}^*, \mathcal{E}) \to (\mathcal{L}'|_{M_2^+}, \mathcal{E}'|_{M_2^+ \times Q}) \to (\mathcal{L}', \mathcal{O}_Z))
\]

Lemma 3.5. For a point \(m = [(s, F = O_C(0, 1))] \in M_2^+, \) the modified pair \((\mathcal{L}', \mathcal{E}')|_{\{m\} \times Q}\) fits into a non-split exact sequence \(0 \to (s', \mathcal{O}_E) \to (s', \mathcal{E}'|_{\{m\} \times Q}) \to (0, \mathcal{O}_Q(2, 2)) \to 0\) where \(E\) is a \((0, 1)\)-line.

Proof. An elementary modification of pairs interchanges the sub pair with the quotient pair ([He98, Lemma 4.24]). Thus we obtain the sequence. It remains to show that the sequence is non-split. We will show that the normal bundle \(N_{M_2^+/M^+}\) at \(m\) is canonically isomorphic to \(H^0(\mathcal{O}_E)^*\). Then the element \(m\) corresponds to the projective equivalent class of nonzero elements in \(H^0(\mathcal{O}_E)^* \cong \text{Ext}^1((0, \mathcal{O}_Q(2, 2)), (s', \mathcal{O}_E))\), so it is non-split.

The pair \((s, F)\) fits into \(0 \to (0, \mathcal{O}_Q(-2, -2)) \to (s, \mathcal{O}_Q(0, 1)) \to (s, F) \to 0\). Thus we have

\[
0 \to \text{Ext}^0((0, \mathcal{O}_Q(-2, -2)), (s, F)) \to \text{Ext}^1((s, F), (s, F)) \to \text{Ext}^1((s, \mathcal{O}_Q(0, 1)), (s, F)) \to \cdots.
\]

The first term \(\text{Ext}^0((0, \mathcal{O}_Q(-2, -2)), (s, F)) \cong H^0(\mathcal{O}_C(2, 2, 3)) \cong C^{11}\) is the deformation space of curves \(C\) on \(Q\). The second term \(\text{Ext}^1((s, F), (s, F))\) is \(T_m \mathcal{M}^+\) ([He98, Theorem 3.12]). For the third term, by [He98, Theorem 3.12], we have

\[
0 \to \text{Hom}(s, H^0(F)/\langle s \rangle) \to \text{Ext}^1((s, \mathcal{O}_Q(0, 1)), (s, F)) \to \text{Ext}^1(\mathcal{O}_Q(0, 1), F) \overset{\delta}{\to} \text{Hom}(s, H^1(F)).
\]

The first term \(\text{Hom}(s, H^0(F)/\langle s \rangle) = C\) is the deformation space of the line \(E\) in \(Q\) determined by the section \(s\). By Serre duality, \(\phi : H^0(\mathcal{O}_Q(0, 1))^* \to H^0(\mathcal{O}_Q)^*\) and the kernel is \(H^0(\mathcal{O}_E(0, 1))^* \cong H^0(\mathcal{O}_E)^*\). This proves our assertion. \(\square\)

Recall that the modified pair \((\mathcal{L}', \mathcal{E}')\) provides a natural surjection \(\mathcal{E}xt^2_\pi(\mathcal{E}', \omega_\pi) \to \mathcal{L}'\) on \(M^+ \times Q\). It is straightforward to check that \(\mathcal{E}xt^2_\pi(\mathcal{E}', \omega_\pi)\) has rank 10 at each fiber, thus it is locally free.

Proof of Proposition 3.2. We claim that there exists a surjection \(w^*U^* \to \mathcal{L}' \to 0\) up to a twisting by a line bundle on \(M^+ \setminus \mathcal{M}^+_1\). Then there is a morphism \(M^+ \setminus \mathcal{M}^+_1 \to \mathcal{P}\).

Consider the following commutative diagram

\[
\begin{array}{ccc}
(M^+ \setminus \mathcal{M}^+_1) \times Q & \xrightarrow{w'} & G \times Q \\
\pi & & \pi \\
M^+ \setminus \mathcal{M}^+_1 & \xrightarrow{w} & G.
\end{array}
\]

Note that \(U = \pi_*\mathcal{W}\) where \(\mathcal{W} = \text{coker}(\phi)\) is the universal quotient on \(G \times Q\) (Section 2.1). One can check that \(\mathcal{W}\) is flat over \(G\). By its construction of \(w, \mathcal{E}'|_{\{m\} \times Q} \cong w'^*\mathcal{W}|_{\{m\} \times Q}\) restricted to each point \(m \in M^+ \setminus \mathcal{M}^+_1\). The universal property of \(G\) (as a quiver representation space [Kin94, Proposition 5.6]) tells us that \(w'^*\mathcal{W} \cong \mathcal{E}'\) up to a twisting by a line bundle on \(M^+ \setminus \mathcal{M}^+_1\). The base change property implies that there exists a natural isomorphism (up to a twisting by a line bundle) \(w^*U = w'^*(\pi_*\mathcal{W}) = \pi_*\mathcal{E}' \cong \mathcal{E}xt^2_\pi(\mathcal{E}', \omega_\pi)^*\) by [LP93, Corollary 8.19]. Hence we have \(w^*U^* \cong (w^*U)^* \cong (\pi_*\mathcal{E}')^* \cong \mathcal{E}xt^2_\pi(\mathcal{E}', \omega_\pi) \to \mathcal{L}'\). Therefore we obtain a morphism \(q : M^+ \setminus \mathcal{M}^+_1 \to \mathcal{P}\).

By the proof of Lemma 3.5, the modified pair does not depend on the choice of a \((2, 3)\)-curve, so \(q : M^+ \setminus \mathcal{M}^+_1 \to \mathcal{P} \setminus p^{-1}(t(Y_{10}))\) is indeed a contraction of \(M^+_2\) and the image of \(M^+_2\) is \(Y_{01}\). Recall
that the exceptional divisor M^+_2 is $|\mathcal{O}_Q(2,3)| \times |\mathcal{O}_Q(0,1)| \cong \mathbb{P}^{11} \times \mathbb{P}^1$. Note that the sheaf F in the pair $(s, F) \in M^+_2$ is parametrized by $\mathbb{P}^{11} = |\mathcal{O}_Q(2,3)| = \mathbb{P} \text{Ext}^1(\mathcal{O}_Q(-2,-2)[1], \mathcal{O}_Q(0,1))$. It follows also from the fact that each F fits into a triangle $0 \to \mathcal{O}_Q(0,1) \to F \to \mathcal{O}_Q(-2,-2)[1] \to 0$. By analyzing $T_F M = \text{Ext}^1(F, F)$ (which is similar to [CC16, Lemma 3.4]), one can see that $\mathcal{N}_{M_2/M^+} \cong \mathcal{N}_{M_2/M^+} \cong \text{Ext}^1(\mathcal{O}_Q(0,1), \mathcal{O}_Q(-2,-2)[1]) \otimes \mathcal{O}_{\mathbb{P}^{11}}(-1) \cong H^0(\mathcal{O}_Q(0,1))^* \otimes \mathcal{O}_{\mathbb{P}^{11}}(-1)$. Thus $\mathcal{N}_{M^+_2/M^+} \cong \mathcal{O}_{\mathbb{P}^{11} \times \mathbb{P}^1}(-1, -1)$ and q is a smooth blow-down by Fujiki-Nakano criterion.

Thus we have two different contractions of M^+, one is M obtained by contracting all \mathbb{P}^1-fibers on M^+_2, and the other is:

Definition 3.6. Let M^- be the contraction of M^+ which is obtained by contracting all \mathbb{P}^{11}-fibers on M^+_2. We define M^-_1 as the image of M^+_1 for the contraction $M^+ \to M^-$.

3.3. The second elementary modification and M^-. Recall that $u : G_1 \to G$ is the blow-up of G along the \mathbb{P}^1 parameterizing $(1, 0)$-lines in Q, and Y_{10} is the exceptional divisor. Let W be the cokernel of the universal morphism ϕ on $G \times Q$ in Section 2.1. Let $V := (u \times \text{id})^*W$ be the pullback of W along the map $u \times \text{id} : G_1 \times Q \to G \times Q$. Then for $([\ell], t) \in Y_{10}$, $V_{([\ell], t) \times Q}$ fits into a non-split exact sequence $0 \to \mathcal{O}_\ell(1) \to V_{([\ell], t) \times Q} \to \mathcal{O}_Q(1,3) \to 0$. By relativizing it over $Y_{10} \times Q$, we obtain $0 \to S \to V|_{Y_{10} \times Q} \to Q \to 0$. Let V^- be the elementary modification $\text{elem}_{Y_{10} \times Q}(V, Q) := \ker(V \to V|_{Y_{10} \times Q} \to Q)$ along $Y_{10} \times Q$. Note that over $([\ell], t) \in G_1$, $V^-_{([\ell], t) \times Q}$ fits into a non-split exact sequence $0 \to \mathcal{O}_Q(1,3) \to V^-_{([\ell], t) \times Q} \to \mathcal{O}_\ell(1) \to 0$ because the elementary modification interchanges the sub/quotient sheaves. Let $\pi_1 : G_1 \times Q \to G_1$ be the projection into the first factor. Then $U^- := \pi_1, V^-$ is a rank 10 bundle over G_1. Let $P^- := \mathbb{P}(U^-)$.

The following proposition completes the proof of Theorem 1.3.

Proposition 3.7. The projective bundle P^- is isomorphic to M^- in Definition 3.6.

Proof. Since the elementary modification has been done locally around $Y_{10} \times Q$, $\mathbb{P}(u^*U)$ and P^- are isomorphic over $G_1 \setminus Y_{10}$. On the other hand, set theoretically, it is straightforward to see that the image of q is $P \setminus p^{-1}(t(Y_{10}))$, where $p : P \to G$ is the structure morphism. So we have a birational morphism $M^+ \setminus M^+_1 \to P \setminus p^{-1}(t(Y_{10})) \cong \mathbb{P}(u^*U) \setminus p^{-1}(Y_{10}) \cong P^- \setminus p^{-1}(Y_{10})$ (here we used the same notation p for the projections $\mathbb{P}(u^*U) \to G_1$ and $P^- \to G_1$). By Proposition 3.2, this map is a blow-down along M^+_2, thus we have an isomorphism $\tau : P^- \setminus p^{-1}(Y_{10}) \to M^+ \setminus M^+_1$. So we have a birational map $\tau : P^- \dashrightarrow M^-$, where its undefined locus is $p^{-1}(Y_{10})$.

On the other hand, since the flipped locus for $M^\infty \dashrightarrow M^+$ is M^+_2, we have an isomorphism $M^- \setminus (M^2 \cup M^+_3) \cong M^+ \setminus (M^2 \cup M^+_3) \cong M^\infty \setminus (M^2 \cup M^+_3)$. (Here M^∞_1 is defined in an obvious way.) Also $\tau^{-1}(M^2 \cup M^+_3) = p^{-1}(Y_{10})$. Hence if we restrict the domain of τ, then we have $\sigma : P^- \setminus p^{-1}(Y_{10}) \dashrightarrow M^- \setminus (M^2 \cup M^+_3) \cong M^\infty \setminus (M^2 \cup M^+_3)$ whose undefined locus is $p^{-1}(Y_{10})$. Therefore σ can be regarded as a map into a relative Hilbert scheme. Note that $M^2 \cup M^+_3$ is the locus of $(2, 3)$-curves passing through two points lying on a $(0, 1)$-line.

We claim that σ is extended to a morphism $\tilde{\sigma} : P^- \setminus p^{-1}(Y_{10}) \to M^-$ such that $\tilde{\sigma}(p^{-1}(Y_{10})) = M^+_1 \cong M^\infty_1$. To show this, it is enough to check that V^- over Y_{10} provides a flat family of the twisted ideal sheaf of Hilbert scheme of two points lying on $(1, 0)$-type lines. Note that V^- fits into a non-split extension $0 \to \mathcal{O}_Q(1,3) \to V^-_{([\ell], t) \times Q} \to \mathcal{O}_\ell(1) \to 0$. By a diagram chasing similar to
are isomorphic. Over Y of V let

Proof of Proposition 1.2.

of Maruyama ([Mar73]).

obtain R π

rank π

□

Corollary 3.8.

(1) The moduli space M matches with the result in [Mai16, Theorem 1.2].

Now two maps τ and $\tilde{\sigma}$ coincide over the intersection $P^\tau \setminus \rho^{-1}(Y_{10} \cup Y_{01})$ of domains, so we have a birational morphism $P^\tau \to M^\tau$. Since $\rho(P^\tau) = 3 = \rho(M^\tau)$ and both of them are smooth, this map is an isomorphism.

The modification on $G_1 \times Q$ descends to G_1. Then Proposition 1.2 follows from a general result of Maruyama ([Mar73]).

Proof of Proposition 1.2. Let $\pi_1 : G_1 \times Q \to G_1$ be the projection. We claim that $U^- = \text{elm}_{Y_{10}}(u^*U, \pi_{1*}Q) \cong \pi_{1*}\text{elm}_{Y_{10} \times Q}(V, Q)$. Indeed, from $0 \to V^- \to V \to Q \to 0$, we have $0 \to \pi_{1*}V^- \to \pi_{1*}V = u^*U \to \pi_{1*}Q \to R^1\pi_{1*}V^- \to R^1\pi_{1*}V$. It is sufficient to show that $R^1\pi_{1*}V^- = 0$. By using the resolution of V given by the universal morphism ϕ, we have $R^1\pi_{1*}V = 0$. Over $G_1 \setminus Y_{10}$, the last two terms are isomorphic. Over Y_{10}, from $H^1(\mathcal{O}_Q(1, 3)) = H^1(\mathcal{O}_Y(1)) = 0$ and the description of $V^-|_{(\ell, t)}$, we obtain $R^1\pi_{1*}V^- = 0$.

Note that $u^*U|_{Y_{10}}$ fits into a vector bundle sequence $0 \to \pi_{1*}S \to u^*U|_{Y_{10}} \to \pi_{1*}Q \to 0$ and rank $\pi_{1*}S = 2$ and rank $\pi_{1*}Q = 8$. The result follows from [Mar73, Theorem 1.3].

As a direct application of Theorem 1.3, we compute the Poincaré polynomial of M which matches with the result in [Mai16, Theorem 1.2].

Corollary 3.8. (1) The moduli space M is rational;
(2) The Poincaré polynomial of M is

$$P(M) = q^{12} + 3q^{12} + 8q^{11} + 10q^{10} + 11q^9 + 11q^8 + 11q^7 + 11q^6 + 11q^5 + 11q^4 + 10q^3 + 8q^2 + 3q + 1.$$

Proof. Now M is birational to a \mathbb{P}^9-bundle over G, so we obtain Item (1). Item (2) is a straightforward calculation using

$$P(M) = P(\mathbb{P}^1) - P(\mathbb{P}^1) + P(M^-) = P(\mathbb{P}^1) - P(\mathbb{P}^1) + P(\mathbb{P}^9)(P(G) + (P(\mathbb{P}^2) - 1)P(\mathbb{P}^1)).$$

□

REFERENCES

DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, 80 DAEHAKRO, BUKGU, DAEGU 41566, KOREA

E-mail address: krchung@knu.ac.kr

DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, BRONX, NY 10458

E-mail address: hmoon8@fordham.edu