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Question

Question

What is your favorite mathematical theorem, result, or formula?
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Part I

Introduction - integral points and integral

polytopes
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Integral points

An integral point of Rn is a point x = (x1, x2, · · · , xn) such that each

coordinate xi is an integer.

Examples:

(2,−1, 5): an integral point in R3

(−2, 2
5 ): not an integral point in R2

Zn: set of n-dimensional integral points.
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Integral polytope

In Rn, an integral polytope is a figure (convex set) generated by finitely

many integral points.

Examples:

One-dimensional integral polytope in R1: finite interval with integer

endpoints.

−1 0 1 2 3 4

Two-dimensional integral polytope in R2: polygon whose vertices

are all integral points.
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Main question

Question

For an integral polytope P , count the number of integral points on P .

Two related questions:

Question (Computational aspect)

Find a fast way counting the number of integral points on P .

Question (Theoretical aspect)

Describe the number of integral points on P in terms of some geometric

properties/quantities of P .
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Pick’s theorem

Georg Alexander Pick, 1859 - 1942

Theorem (Pick, 1899)

Let P be a two-dimensional integral polytope in R2.

i: number of integral points in the interior of P .

b: number of integral points on the boundary of P .

Then

Area(P ) = i+
b

2
− 1.
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Pick’s theorem

Area(P ) = i+
b

2
− 1

For instance, in the picture above, i = 7, b = 8. So

Area = 7 +
8

2
− 1 = 10.

Corollary

Every two-dimensional integral polytope has a half-integer area.
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Goal

I will present and prove an interesting formula which counts the number

of integral points (indeed, describes the set of integral points completely)

on a given integral polytope P .

The result is true for arbitrary dimension.

I will give a proof for two-dimensional case, for notational simplicity.

The same proof works for every dimension.
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Part II

Preliminary - Geometric series
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Geometric series

A geometric series is an infinite sum with constant ratio between

successive terms.

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn

It appears in many different geometric contexts. For instance:

This picture shows us that

1 +
1

2
+

1

4
+

1

8
+ · · · = 1 +

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · =

2.
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Geometric series

A geometric series is an infinite sum with constant ratio between

successive terms.

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn
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1 +
1
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1
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn

Indeed, if |r| < 1, we can evaluate this sum by using a very simple

formula.

First of all, consider the sum of first n+ 1 terms:

Sn := a+ ar + ar2 + · · ·+ arn

rSn = ar + ar2 + ar3 + · · ·+ arn+1

(1− r)Sn = Sn − rSn = (a+ ar+ · · ·+ arn)− (ar+ ar2 + · · ·+ arn+1)

= a− arn+1 = a(1− rn+1)

⇒ Sn =
a(1− rn+1)

1− r

a+ ar + ar2 + ar3 + · · · = lim
n→∞

Sn = lim
n→∞

a(1− rn+1)

1− r
=

a

1− r
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn =
a

1− r

Here are some explicit examples we will consider later:

1 + x+ x2 + x3 + · · · = 1

1− x
(a = 1, r = x)

x3 + x4 + x5 + · · · = x3

1− x
(a = x3, r = x)

1+x−1+x−2+x−3+· · · =

1+x−1+(x−1)2+(x−1)3+· · · = 1

1− x−1
=

x

x− 1

1 + xy−1 + x2y−2 + x3y−3 + · · · = 1 + xy−1 + (xy−1)2 + (xy−1)3 + · · ·

=
1

1− xy−1
=

y

y − x
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn =
a

1− r

Here are some explicit examples we will consider later:
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn =
a

1− r

Here are some explicit examples we will consider later:
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Some variations

Exercise: Compute the sum of all monomials xiyj on the first quadrant,

that is, xiyj with i, j ≥ 0.

1 + x+ y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + · · · = ?

If we change the order of terms with respect to the degree of x:

1 + x+ y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + · · ·
= (1 + y + y2 + · · · ) + (x+ xy + xy2 + · · · ) + (x2 + x2y + x2y2 + · · · ) + · · ·

=
1

1− y
+

x

1− y
+

x2

1− y
+ · · · = 1

1− y
+

1

1− y
· x+

1

1− y
· x2 + · · ·

=

1
1−y

1− x
=

1

(1− x)(1− y)
.
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Part III

Main theorem

Han-Bom Moon Let’s count points!



First example

Before stating the main theorem, let’s compute some simple examples.

Consider an interval P = [1, 3].

−2 −1 0 1 2 3 4 5

P

There are three integral points on it, 1, 2, and 3.

For each endpoint, we can draw a ray.

C1
C2

−2 −1 0 1 2 3 4 5P

The overlap of these two rays is precisely P .
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First example

C1
C2

−2 −1 0 1 2 3 4 5P

x−2 x−1 x0 x1 x2 x3 x4 x5

For each Ci, we can make a geometric series [Ci] by adding all xi’s

where i is an integer on the ray.

[C1] = x+ x2 + x3 + x4 + · · · = x

1− x

[C2] = x3 + x2 + x+ 1 + x−1 + · · · = x3

1− x−1
=

x4

x− 1

Let’s add them. Then we have:

[C1] + [C2] =
x

1− x
+

x4

x− 1
=

x

1− x
− x4

1− x

=
x− x4

1− x
=

x(1− x3)

1− x
=

x(1− x)(1 + x+ x2)

1− x
= x(1+x+x2) = x+x2+x3

This is precisely the sum of xi for i on the interval P !
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Second example

Let’s look at a two-dimensional example.

Consider a unit square S on the plane:

For each vertex vk, we can make an internal angle Ck.

C1 C2 C3 C4

As we have done before, by adding all xiyj on Ck, we can make an

infinite sum [Ck]. For instance,

[C1] = 1+x+y+x2+xy+y2+x3+x2y+xy2+y3+· · · = 1

(1− x)(1− y)
.
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Second example

C1 C2 C3 C4

By similar computations, we obtain:

[C1] =
1

(1− x)(1− y)

[C2] = x+1+xy+x−1+y+xy2+· · · =
∑

i≤1,j≥0

xiyj =
x

(1− x−1)(1− y)
=

x2

(x− 1)(1− y)

[C3] =
∑

i≤1,j≤1

xiyj =
xy

(1− x−1)(1− y−1)
=

x2y2

(x− 1)(y − 1)

[C4] =
∑

i≥0,j≤1

xiyj =
y

(1− x)(1− y−1)
=

y2

(1− x)(y − 1)
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Second example

[C1] =
1

(1− x)(1− y)
, [C2] =

x2

(x− 1)(1− y)
,

[C3] =
x2y2

(x− 1)(y − 1)
, [C4] =

y2

(1− x)(y − 1)

If we add them together, we have:

1

(1− x)(1− y)
+

x2

(x− 1)(1− y)
+

x2y2

(x− 1)(1− y)
+

y2

(1− x)(y − 1)

=
1− x2 + x2y2 − y2

(1− x)(1− y)
=

(1− x)(1− y)(1 + x)(1 + y)

(1− x)(1− y)

= (1 + x)(1 + y) = 1 + x+ y + xy

which is exactly, the sum of xiyj on the square S.
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Some terminologies

A cone is a figure generated by several rays starting from a point.

The inner tangent cone Cv to P at v is the internal angle we’ve

described before.

v

P

v

Cv

Han-Bom Moon Let’s count points!



Some teminologies

For any polytope or cone P , let [[P ]] be the (possibly infinite) sum of all

xiyj ’s where (i, j) is in P .

P

[[P ]] = xy + xy2 + x2y2 + xy3 + x2y3 + x3y3 + · · ·

Let [P ] be a representation of [[P ]] as a rational function.

[P ] = (xy + x2y2 + x3y3 + · · · ) + (xy2 + x2y3 + x3y4 + · · · ) + · · ·

=
xy

1− xy
+

xy2

1− xy
+ · · · =

xy
1−xy

1− y
=

xy

(1− xy)(1− y)

If P is an integral polytope, [[P ]] = [P ] is a finite sum.

One can generalize them to n-dimensional polytopes.
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Main theorem

Theorem (Brion, 1988)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi ].

P

Cv1

Cv2
Cv3

[Cv1 ] + [Cv2 ] + [Cv3 ] =
xy

(1− y)(1− xy)
+

x5y4

(x− 1)(xy − 1)
+

xy4

(1− x)(y − 1)

= xy + xy2 + x2y2 + xy3 + x2y3 + x3y3 = [P ]
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Main theorem

Theorem (Brion, 1988)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi ].

Schematically, we can say:

= + +
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Part IV

The proof
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First reduction - Induction on dimension

Theorem

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi
].

The theorem is saying that “for every n-dimensional integral polytope, a

certain equation holds”.

It is a nice idea to use mathematical induction on the dimension of

integral polytopes.

For n = 1, integral polytopes are finite intervals. We can check it directly.

So we’ll assume that n = 1 case is true. I’ll give a proof for

2-dimensional case.
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Second reduction - Divide and conquer

A great idea to solve a mathematical problem is to reduce it into simpler

problems.

Every polygon can be decomposed into triangles. For instance, consider

the following quadrilateral.
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Second reduction - Divide and conquer

Suppose that we can prove the triangle case, that is,

= + +

Then it is also true for the quadrilateral case, because:

= + −

triangle case
induction = + + + + + − −

= + + − + + − +

= + + +
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Second reduction - Divide and conquer

By applying the same idea several times, we can conclude that it is

sufficient to prove the theorem for triangles.

Let’s prove the theorem for triangles.
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Some algebraic definitions

1 Q[x, y]: set of polynomials with two variables x and y.

x+ y2, xy, x+ 4x3

2 Q[x±, y±]: set of Laurent polynomials.

x+ y2, xy, xy−1, x3y−2 + 5y4

3 Q[[x, y]]: set of formal power series.

1 + x+ y + x2 + xy + y2 + · · · , 1 + x+ x2 + x3 + · · · .
4 Q[[x±, y±]]: set of formal Laurent series.

· · ·+ x−2 + x−1 + 1 + x+ x2 + · · · ,
5 Q(x, y): set of rational functions.

x2+y
1+x+y2 , 1 + x+ x2 + · · · = 1

1−x

Q[x, y] ⊂ Q[[x, y]]

∩ ∩
Q(x, y) ⊃ Q[x±, y±] ⊂ Q[[x±, y±]]

Some formal Laurent series cannot be written as rational functions.
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Infinite sum associated to a cone

For any polytope or cone C,

[[C]]: infinite sum of all monomials on C. [[C]] ∈ Q[[x±, y±]].

[C]: its realization as a rational function. [C] ∈ Q(x, y).

sum of blue terms = 1+y+x2y+y2+x2y2+x4y2+· · · = 1

(1− x2y)(1− y)

sum of red terms = x+xy+x3y+xy2+x3y2+x5y2+· · · = x

(1− x2y)(1− y)

total sum =
1 + x

(1− x2y)(1− y)
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Infinite sum associated to a cone

Let PL be the subspace of Q[[x±, y±]] generated by [[C]] for some cone

C (space of polyhedral Laurent series).

There is a map

p : PL → Q(x, y)

[[C]] 7→ [C].

It preserves the addition, subtraction and polynomial multiplication.

p([[C]]± [[D]]) = [C]± [D] = p([[C]])± p([[D]])

For any h ∈ Q[x±, y±], then

p(h · [[C]]) = h · [C] = h · p([[C]]).

In abstract algebra, we say p is an Q[x±, y±]-module homomorphism.
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Key observation

An half-plane H is a union of two cones. So [[H]] ∈ PL.

We want to compute [H] := p([[H]]).

Lemma

For a half-plane H, [H] = 0.

Proof.

Let (a, b) be an integral vector parallel to the boundary of H.

Then xayb[[H]] = [[H]].

Apply p. [H] = p([[H]]) = p(xayb[[H]]) = xaybp([[H]]) = xayb[H].

We have (1− xayb)[H] = 0.

Divide 1− xayb. Then we obtain [H] = 0.

(2, 1)
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Final step of the proof

For any triangle T , let C1, C2, C3 be three inner tangent cones,

H1, H2, H3 be three half-planes generated by three edges.

Consider the following alternating sum:

[[R2]]− [[H1]]− [[H2]]− [[H3]] + [[C1]] + [[C2]] + [[C3]]− [[T ]]

Schematically,

− − −

+ + + −

This sum is 0. (Why?)
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Final step of the proof

[[R2]]− [[H1]]− [[H2]]− [[H3]] + [[C1]] + [[C2]] + [[C3]]− [[T ]] = 0

Apply the map p here. Then [H1] = [H2] = [H3] = 0.

[R2] = 0 because R2 is the union of two half-planes.

So we have [C1] + [C2] + [C3]− [T ] = 0, or equivalently,

[T ] = [C1] + [C2] + [C3].

Han-Bom Moon Let’s count points!



Part V

Final remarks
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Ehrhart-MacDonald reciprocity

Recall that for any half-plane H, [H] = 0.

We can make an interesting consequence. Consider the following figure:

[C]
[D]

[E]

1 [C] + [D] = 0

2 [D] + [E] = 0

3 By adding 1 and 2, we have [C] = [E]. In other words, any closed

cone is equal to the opposite open cone.
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Ehrhart-MacDonald reciprocity

Let T be any triangle. Let E1, E2, E3 be three outer tangent cones, and

let C1, C2, C3 be three open inner tangent cones.

Then

[E1] + [E2] + [E3] = [C1] + [C2] + [C3] = [T ]int

where [T ]int be the sum of all monomials on the interior of T .

=
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Ehrhart-MacDonald reciprocity

Eugène Ehrhart, 1906 - 2000

Of course, we can generalize it to arbitrary n-dimensional integral

polytopes.

Theorem (Ehrhart-MacDonald reciprocity)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Let Ei be the

outer tangent cone to P at vi. Then

[P ]int = (−1)n
k∑

i=1

[Ei].
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So... how can we count points?

[P ] =

k∑
i=1

[Cvi ]

The left hand side is the sum of monomials on P .

P

[P ] = 1 + x+ x2 + y + xy + y2

The number of integral points on P is [P ](1, 1) = 6.

On the other hand, the right hand side

[Cv1 ]+[Cv2 ]+[Cv3 ] =
1

(1− x)(1− y)
+

y4

(y − 1)(y − x)
+

x4

(x− 1)(x− y)

is not defined at (x, y) = (1, 1). But we can compute its limit

lim
(x,y)→(1,1)

1

(1− x)(1− y)
+

y4

(y − 1)(y − x)
+

x4

(x− 1)(x− y)
= 6.
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Original proof

Michel Brion, 1958 -

Brion’s original proof uses the well-known correspondence

integral polytope P ⇐⇒ projective polarized toric variety (X,L)

So we may interpret the result in a purely geometric context.

Keywords: T -equivariant Grothendieck group, localization.

Han-Bom Moon Let’s count points!



Thank you!
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