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What is your favorite mathematical theorem, result, or formula?
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Part |

Introduction - integral points and integral

polytopes




Integral points

An integral point of R™ is a point x = (21,2, -+ ,y) such that each
coordinate x; is an integer.

Examples:
e (2,—1,5): an integral point in R3
@ (—2,2): not an integral point in R?

Z": set of n-dimensional integral points.
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Integral polytope

In R™, an integral polytope is a figure (convex set) generated by finitely
many integral points.

Examples:

@ One-dimensional integral polytope in R!: finite interval with integer
endpoints.
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e Two-dimensional integral polytope in R2: polygon whose vertices
are all integral points.
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For an integral polytope P, count the number of integral points on P.
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Two related questions:

Question (Computational aspect)

Find a fast way counting the number of integral points on P.

Question (Theoretical aspect)

Describe the number of integral points on P in terms of some geometric
properties/quantities of P.

Han-Bom Moon Let’s count points!




Georg Alexander Pick, 1859 - 1942

Theorem (Pick, 1899)

Let P be a two-dimensional integral polytope in R?.
@ i: number of integral points in the interior of P.
@ b: number of integral points on the boundary of P.

Then b
Area(P) =1+ 3~ 1.

4
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Pick's theorem

For instance, in the picture above, i =7, b = 8. So

Area:7+571:10.

Every two-dimensional integral polytope has a half-integer area.
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| will present and prove an interesting formula which counts the number
of integral points (indeed, describes the set of integral points completely)
on a given integral polytope P.

@ The result is true for arbitrary dimension.
o | will give a proof for two-dimensional case, for notational simplicity.

@ The same proof works for every dimension.
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Preliminary - Geometric series




Geometric series

A geometric series is an infinite sum with constant ratio between
successive terms.

o0
atar+ar’+a+art+-= E ar™
n=0

It appears in many different geometric contexts. For instance:

This picture shows us that

1+1+1+1+ —1+1+ 12+ 13+ =
2 4 8 o 2 B
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Geometric series

A geometric series is an infinite sum with constant ratio between
successive terms.
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Geometric series

o0
atar+ar?+ard +art 4 = Zar”
n=0
Indeed, if |r| < 1, we can evaluate this sum by using a very simple
formula.

First of all, consider the sum of first n + 1 terms:
Sy i=a+ar+ar®+ - +ar”
rS, =ar +ar® +ar® + -+ ar"t!
(1-7)S, =8, —rSy = (at+ar+--+ar")— (ar +ar’* + - +ar™*")

=a—ar" = qa(1 — ")

1— n+1
L, M=)
1—r
1— n+1
a+ar+ar®+ar®+---= lim S, = lim all —r ): a4
n—00 n— 00 —7r 1—1r
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Geometric series

o0
a
atar+ar?+ar* +art+... = E ar™ = 1
—r
n=0
Here are some explicit examples we will consider later:

1
1+x+x2+x3+~-~—1 (a=1,r=2x)
-z

x3+x4+1’5+...:

1_$(afx ,T =)

4 2434 =
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Geometric series

o0
a
atar+ar?+ar* +art+... = E ar™ = 1
—r
n=0
Here are some explicit examples we will consider later:

1
l+az+a®+a®+-- (a=1r=ux)
1-—2z
Bttt + = (a=a2"r=2)
1—-2z
T a2 e 34 = Tha ()2 ()3 L
l—z=t z-1

L+ay ' +2%y 2 +2%y 2+
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Geometric series

o0
a
atar+ar?+ar* +art+... = E ar™ = 1
—r
n=0
Here are some explicit examples we will consider later:

1
l+az+a®+a®+-- (a=1r=ux)
1-—2z
Bttt + = (a=a2"r=2)
1—-2z
T a2 e 34 = Tha ()2 ()3 L
l—z=t z-1

1—|—xy_1 +$2y_2+$3y_3+--- 1+£L'y_1-I—([L'y_l)Q-i-({Ey_l)g-f—---

_ 1 Y

l—zy=! y—=z
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Some variations

Exercise: Compute the sum of all monomials x?y? on the first quadrant,

that is, 2%y’ with 7,5 > 0.
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l+z+y+a”+oy+y +a°+ay+ay" +y" +-- =7
o o o o o o o o
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If we change the order of terms with respect to the degree of x:
l+z+y+a®+ay+y’ +2° +2%y+ay” +y° + -
=Q+y+y’+ )+ (@tay+ay 4+ )+ @ +2Py+ 27+ )+

1 1

2 ..
1=y .Z‘+1_y xr° 4+
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Main theorem




First example

Before stating the main theorem, let's compute some simple examples.

Consider an interval P = [1, 3].

W
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<

-2 -1 0 1 2 3 4 5
There are three integral points on it, 1, 2, and 3.

For each endpoint, we can draw a ray.

Cs Cy

NN
N

-2 -1 0 1P2 3 4 5

The overlap of these two rays is precisely P.
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First example

Cs c

A AN

-2 -1 0 1P2 3 4 5

SC72 (Eil iEO SC]' (E2 LCS 1’4 (Es

For each C;, we can make a geometric series [C;] by adding all %'s
where ¢ is an integer on the ray.

[Cil=a+2?+2® 42" +--- =

[Co] =2+ +x+1+a 4. = =

Let's add them. Then we have:

x 3?4 T .I‘4

[Cl]+[02]:1—x+x—1:1—x_1—x

4 1— 3 1— 1 2
_zow - l-o)(lt+zta) = o(14az+2?) = s+a’4a°
1—2z 1—2x 1—2x

This is precisely the sum of 2° for i on the interval P!
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Second example

Let’s look at a two-dimensional example.

Consider a unit square S on the plane:

o o O
o o
o o O

For each vertex vg, we can make an internal angle Cj.

A

O*O o OA o (¢} o O (e] o O
(o] D—IO (e} [e] # [e] Olﬁ
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o o O o o O (o] @ ¢} [¢] v o O
Cl CQ Cg C4
As we have done before, by adding all 2°y? on Cj, we can make an
infinite sum [C}]. For instance,
. . 1
[C1] = 1+a+y+a® +ay+y? +a® + 2y +ay? +y5 4+ = .
(1—2)(1-y)
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Second example

O‘F;o om o % oo o % oo
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4 Cg C3 Cy

By similar computations, we obtain:

S [
[Ca] = x+1+ay+a tytay?+ - = iggzoxiyj Ta- :c*f)(l —y (- jl —v)
= z‘ﬁl%':glxiyj - x*lg;Z(Jl —y ) @ _5612)?; -1
[Cy] = izoX,j:gxiyj = x)g “y ) T (1o ;;?y -1)
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Second example

1 2
R T A N )
B 222 _ Y2
Sl= ey YT

If we add them together, we have:
1 x? 2292 Y
Q-o0-y @-Dl-y @-Di-y (T-a)F-1
_ 1 — 22 4 2%y? — 92 _ 1-2)(1—y)(1+2)(1+y)
(1-2)(1-y) (I-z)(1-y)
=1+2)14+y)=14+z+y+uzy

which is exactly, the sum of z%y’ on the square S.
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Some terminologies

A cone is a figure generated by several rays starting from a point.

A 4

The inner tangent cone C), to P at v is the internal angle we've
described before.
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Some teminologies

For any polytope or cone P, let [[P]] be the (possibly infinite) sum of all
x'y?'s where (i,7) is in P.

([P]] = 2y + zy® + 2y + ay® + 2%y + 2%y + -

Let [P] be a representation of [[P]] as a rational function.

[P] = (sy+2°y+2°°+ )+ (@ + 2% + 2%+ )+
_ Ty a:y2 :1f2y: Ty
l—zy  1—uxy l-—y  (1-a2y)(1-y)

If P is an integral polytope, [[P]] = [P] is a finite sum.

One can generalize them to n-dimensional polytopes.
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Theorem (Brion, 1988)

Let P be an integral polytope with vertices vi,vs,--- ,vi. Then

k
[Pl =) [C.]
i=1
FS
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N N N 3
? ? ? ?
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+
zy $5y4 xy4

+ +
A=yl -=zy) (@-Dy-1) @-=z)(y—-1)
= ay+ay? +a2y? +ay® 1 22y® 4 ayd = [P
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Theorem (Brion, 1988)

Let P be an integral polytope with vertices vi,vs,--- ,v. Then
k
[P] =) [C..]
i=1

Schematically, we can say:

y V-V

Han-Bom Moon Let’s count points!



Part IV

The proof




First reduction - Induction on dimension

Let P be an integral polytope with vertices vy,va,--- ,vx. Then
k
[P] =) [C..]
i=1

The theorem is saying that “for every n-dimensional integral polytope, a
certain equation holds".

It is a nice idea to use mathematical induction on the dimension of
integral polytopes.

For n =1, integral polytopes are finite intervals. We can check it directly.

So we'll assume that n =1 case is true. I'll give a proof for
2-dimensional case.
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Second reduction - Divide and conquer

A great idea to solve a mathematical problem is to reduce it into simpler
problems.

Every polygon can be decomposed into triangles. For instance, consider

the following quadrilateral.
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Second reduction - Divide and conquer

Suppose that we can prove the triangle case, that is,

4-4 4 4

Then it is also true for the quadrilateral case, because:

4\
= 4l
[
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Second reduction - Divide and conquer

By applying the same idea several times, we can conclude that it is
sufficient to prove the theorem for triangles.

Let's prove the theorem for triangles.
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Some algebraic definitions

Q QJz,y]: set of polynomials with two variables = and y.
x+y2, Ty, x + 423
Q@ Q[at,y*]: set of Laurent polynomials.
€+ 92 2y, zy~!, $dy2 + 5yt
Q Ql[z,y]]: set of formal power series.
l+z+y+a?+ay+y?+-, 1+z+a?+a3+---.
Q@ QJ[zT, y*]]: set of formal Laurent series.
et Pt 142t 4,
(5] Q(Z)a:,y): set of rational functions.

Tty 2 L 1
Traty? 1 TTH2° 4+ =13

Qlr,y] < Q[[z,yl]
N N

Qz,y) > Qz*,y*] c Qla*,y¥]
Some formal Laurent series cannot be written as rational functions.
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Infinite sum associated to a cone

For any polytope or cone C,
[[C]]: infinite sum of all monomials on C. [[C]] € Q[[z*,y¥]].

[C]: its realization as a rational function. [C] € Q(z,y).

O 0O O O O

1

(1—22y)(1 —y)

(1—22y)(1—vy)

sum of blue terms = 1+y+a2y+y°+22y*+aly’+ - =

sum of red terms = x+ay+aiy+ry? +ady’ +2dy* 4+ =

1+

totalsum= —————-~——
(1—2%y)(1 —y)
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Infinite sum associated to a cone

Let PL be the subspace of Q[[zT, y*]] generated by [[C]] for some cone

C' (space of polyhedral Laurent series).

There is a map

p: PL — Qx,y)
[([C] — [C]

It preserves the addition, subtraction and polynomial multiplication.

p(([C)) £ [[D]) = [C] = [D] = p([[C]]) £ p([[D]))

In abstract algebra, we say p is an Q[zT, y*]-module homomorphism.
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Key observation

An half-plane H is a union of two cones. So [[H]] € PL.
We want to compute [H] := p([[H]]).

For a half-plane H, [H] = 0.

Let (a,b) be an integral vector parallel to the boundary of H.
Then zy?[[H]] = [[H]).
Asply p. [H] = p(([H])) = p(z*y[H]]) = z°yp([[H]]) = 2°y*[H].

We have (1 — 2%y*)[H] = 0.

Divide 1 — 2%y®. Then we obtain [H] = 0. O
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Final step of the proof

For any triangle T', let C1, Cs,C3 be three inner tangent cones,
H,, Hs, H3 be three half-planes generated by three edges.

Consider the following alternating sum:

[[R?)] = [[H1]] = [[Ha]] = [[Hs]] + [[C1]] + [[Ca]] + [[C]] — [[T7]

WAL
AR 4

This sum is 0. (Why?)
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Final step of the proof

IR?)] — [[H1]] = [[H]] - [[Hs]] + [[C1]] + [[Ca]] + [[Cs]] - [[T]] = 0

Apply the map p here. Then [H;] = [H3] = [H3] = 0.
[R?] = 0 because R? is the union of two half-planes.

So we have [C1] + [Co] + [C3] — [T] = 0, or equivalently,

[T] = [C1] + [Ca] + [Cs3).
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Final remarks




Ehrhart-MacDonald reciprocity

Recall that for any half-plane H, [H] = 0.

We can make an interesting consequence. Consider the following figure:

Q@ [Cl+[D]=0

Q@ [D]+[E]=0

@ By adding 1 and 2, we have [C] = [E]. In other words, any closed
cone is equal to the opposite open cone.
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Ehrhart-MacDonald reciprocity

Let T be any triangle. Let E1, Es, E3 be three outer tangent cones, and
let C7, Cs, C3 be three open inner tangent cones.

Then
[Er] + [Eo] + [E3] = [C1] + [Ca] + [C3] = [Tint

where [T];,,: be the sum of all monomials on the interior of T
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Ehrhart-MacDonald reciprocity

(]
Eugene Ehrhart, 1906 - 2000

Of course, we can generalize it to arbitrary n-dimensional integral

polytopes.

Theorem (Ehrhart-MacDonald reciprocity)

Let P be an integral polytope with vertices vy,va,--- ,vk. Let E; be the
outer tangent cone to P at v;. Then

k
[ int — n Z

=1
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So... how can we count points?

k

[P1=3[Cu.]

i=1
The left hand side is the sum of monomials on P.

[Pl =142+ +y+zy+y
The number of integral points on P is [P](1,1) = 6.
On the other hand, the right hand side
1 y4 334
+ +
(I-z)1-y) W-Dy-2z) (@-1@-y)

is not defined at (x,y) = (1,1). But we can compute its limit

[Cv1] + [Ovz} + [Cva] =

y4 334

lim + +
@y)—-an (1-2)1-y) H-Dy—-2) (@-1)(z-y)

= 6.



Original proof

Michel Brion, 1958 -
Brion's original proof uses the well-known correspondence
integral polytope P <> projective polarized toric variety (X, L)

So we may interpret the result in a purely geometric context.

Keywords: T-equivariant Grothendieck group, localization.
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Thank you!
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