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Three kingdoms in mathematical worlds

Geometry — Combinatorics

. 7

Algebra

o Geometry: study of figures/spaces, curves, surfaces, higher
dimensional spaces, their lengths, volumes, curvatures, symmetries,

@ Combinatorics: study of finite sets, graphs, counting, - - -

@ Algebra: study of calculation of symbols, numbers, polynomials,
matrices, equations, - - -

There are many surprising interactions of these three seemingly unrelated
worlds.
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Part |

Introduction - integral points and integral

polytopes




Integral points

An integral point of R™ is a point x = (21,2, -+ ,y) such that each
coordinate x; is an integer.

Examples:
e (2,—1,5): an integral point in R3
@ (—2,2): not an integral point in R?

Z": set of n-dimensional integral points.
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Integral polytope

In an n-dimensional space R™, an integral polytope is a figure (convex
set) generated by finitely many integral points.

Examples:

@ A one-dimensional integral polytope is a finite interval whose
endpoints are integers.

S
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@ A two-dimensional integral polytope is a polygon whose vertices are
all integral points.
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For an integral polytope P, count the number of integral points on P.
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Two related questions:

Question (Computational aspect)

Find a fast way counting the number of integral points on an integral
polytope P.

Question (Theoretical aspect)

Describe the number of integral points on P in terms of some geometric
properties/quantities of P.
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Georg Alexander Pick, 1859 - 1942

Theorem (Pick, 1899)

Let P be a two-dimensional integral polytope. Let i be the number of
integral points in the interior of P and b be the number of integral points
on the boundary of P. Then the following equation holds.

Area(P):i—l—g—l
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For instance, in the picture above, i =7,

. So
Area:7+§—1:10.

Simple corollary: Every two-dimensional integral polytope has a
half-integer area.
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| will present and prove an interesting formula which counts the number
of integral points (indeed, describes the set of integral points completely)
on a given integral polytope P.

@ The result is true for arbitrary dimension, but | will give a proof for
two-dimensional case, for notational simplicity.

@ The same proof works for every dimension.
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Preliminary - Geometric series




Geometric series

A geometric series is an infinite sum with constant ratio between
successive terms.

o0
atar+ar’+a+art+-= E ar™
n=0

It appears in many different geometric contexts. For instance:

This picture shows us that

1+1+1+1+ —1+1+ 12+ 13+ =2
2 4 8 o 2 2 T
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Geometric series

o0
atar+ar?+ard +art 4 = Zar”
n=0
Indeed, if |r| < 1, we can evaluate this sum by using a very simple
formula.

First of all, consider the sum of first n + 1 terms:
S:=a+ar+ar®+---+ar"
rS=ar+ar’+a+-+ar™t!

(1-7r)S = S—rS = (at+ar+ar’*+- - +ar™)—(ar+ar’+ar®4- - +ar™*)

=a—ar" = qa(1 — "t

1— n+1
g al=r)
1—7r
1— n+1
a+ar+ar®+ar®+---= lim S = lim a(l —r ): ¢
n—00 n—00 1—7 1—17r
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Geometric series

o0
a
atar+ar+ard+art4+.. = E ar™ = 1
—r
n=0
Here are some explicit examples we will consider later:

1
l+z+a?+2°+. = (

ettt 4= :

1
4o o243+ = 14 () (a7 )+ =

l+ay ' +22y 2+ 2%y 2+ =

Ttay '+ (@y )2+ @y )P+

_ 1 y

l—zy=! y—=z

Han-Bom Moon Let’s count points!




Some variations

Exercise: Compute the sum of all monomials x?y? on the first quadrant,

that is, 2%y’ with 7,5 > 0.
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l+z+y+a”+oy+y +a°+ay+ay" +y" +-- =7
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If we change the order of terms with respect to the degree of x:
l+z+y+a®+ay+y’ +2° +2%y+ay” +y° + -
=Q+y+y’+ )+ (@tay+ay 4+ )+ @ +2Py+ 27+ )+

1 1

2 ..
1=y .Z‘+1_y xr° 4+
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Main theorem




First example

Before stating the main theorem, let's compute some simple examples.

Consider a finite interval P = [1, 3] on the real line. This is a
one-dimensional integral polytope.
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There are three integral points on it, 1, 2, and 3.
For each endpoint, we can draw a ray.

Cs oy
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N

-2 -1 0 1P2 3 4 5

The overlap of these two rays is precisely P.
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First example

Cs c
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For each ray C;, we can make a geometric series [C;] by adding all 2°'s
where ¢ is an integer on the ray.

[Cil=a+2?+2® 42" +--- =

[Co] =2+ +x+1+a 4. = =

Let's add them. Then we have:

x 3?4 T .I‘4

[Cl]+[02]:1—x+x—1:1—x_1—x

4 1— 3 1— 1 2
_zow - l-o)(lt+zta) = o(14az+2?) = s+a’4a°
1—2z 1—2x 1—2x

This is precisely the sum of 2° for i on the interval P!
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Second example

Now let's look at a two-dimensional example.

Consider a unit square S on the plane:

o o O
o o
o o O

For each vertex vg, we can make an internal angle Cj.
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As we have done before, by adding all 2°y? on Cj, we can make an
infinite sum [C}]. For instance,
. . 1
[C1] = 1+a+y+a® +ay+y? +a® + 2y +ay? +y5 4+ = .
(1—2)(1-y)
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Second example
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By similar computations, we obtain:

S [
[Ca] = x+1+ay+a tytay?+ - = iggzoxiyj Ta- :c*f)(l —y (- jl —v)
= z‘ﬁl%':glxiyj - x*lg;Z(Jl —y ) @ _5612)?; -1
[Cy] = izoX,j:gxiyj = x)g “y ) T (1o ;;?y -1)
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Second example

1 2
R T A N )
B 222 _ Y2
Sl= ey YT

If we add them together, we have:
1 x? 2292 Y
Q-o0-y @-Dl-y @-Di-y (T-a)F-1
_ 1 — 22 4 2%y? — 92 _ 1-2)(1—y)(1+2)(1+y)
(1-2)(1-y) (I-z)(1-y)
=1+2)14+y)=14+z+y+uzy

which is exactly, the sum of z%y’ on the square S.
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Some terminologies

A cone with the apex v is a geometric figure that is generated by several
rays starting from v.

Let P be an integral polytope and v be a vertex. The inner tangent cone
C, to P at v is the internal angle we've described before.
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Some teminologies

For any polytope or cone P, let [[P]] be the (possibly infinite) sum of all
x'y?'s where (i,7) is in P.

([P]] = 2y + zy® + 2y + ay® + 2%y + 2%y + -

Let [P] be a representation of [[P]] as a rational function.

[P] = (sy+2°y+2°°+ )+ (@ + 2% + 2%+ )+
_ Ty a:y2 :1f2y: Ty
l—zy  1—uxy l-—y  (1-a2y)(1-y)

If P is an integral polytope, [[P]] = [P] is a finite sum.

One can generalize them to n-dimensional polytopes.
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Theorem (Brion, 1988)

Let P be an integral polytope with vertices vi,vs,--- ,vi. Then

k
[Pl =) [C.]
i=1
FS
o o o oo o G’lﬁ o o o oo o oo o o
o o o o o < o o >
o
o o o o o o O(U% o o o o o o
o o o o o o o o o o o o o OGU%
N N N 3
? ? ? ?
o o o oo o oo oo o o o0 o o o oo
+
zy $5y4 xy4

+ +
A=yl -=zy) (@-Dy-1) @-=z)(y—-1)
= ay+ay? +a2y? +ay® 1 22y® 4 ayd = [P
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Theorem (Brion, 1988)

Let P be an integral polytope with vertices vi,vs,--- ,v. Then
k
[P] =) [C..]
i=1

Schematically, we can say:

y V-V
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Part IV

The proof




First reduction - Induction on dimension

Let P be an integral polytope with vertices vi,vs,--- ,vi. Then
k
[Pl =) [Cy.]
i=1

The statement of the theorem is saying that “for every n-dimensional
integral polytope, a certain equation holds”.

It is a nice idea to use mathematical induction on the dimension of
integral polytopes.

When n = 1, the only possible integral polytopes are finite intervals. By
the same computation as in the first example, we can check it directly.

So from now, we'll assume that n = 1 case is true. I'll give a proof for
dimension 2 case, but the same proof works for arbitrary dimensions.
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Second reduction - Divide and conquer

A great idea to solve a mathematical problem is to reduce it into simpler
problems.

Every polygon can be decomposed into triangles. For instance, consider

the following quadrilateral.
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Second reduction - Divide and conquer

Suppose that we can prove the triangle case, that is,

4-4 4 4

Then it is also true for the quadrilateral case, because:

4\
= 4l
[
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Second reduction - Divide and conquer

By applying the same idea several times, we can conclude that it is
sufficient to prove the theorem for triangles.

Let's prove the theorem for triangles.
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Some algebraic definitions

To complete the proof, we need to define several algebraic notations.

(2]

Rz, y]: set of polynomials with two variables = and y.
x+y2, Ty, x + 423

R[z*, y*]: set of Laurent polynomials.

4y, xy, wy !, 2y + 5yt

Rl[z, y]]: set of formal power series.
l+o+y+a?+ay+y?+-, l+o+a?+a23 4+
R[[z*, y*]]: set of formal Laurent series.
otz itz 2t 4

R(z,y): set of rational functions.
z’+y 2 _ _1

There are some formal Laurent series so that they cannot be written as
rational functions.
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Infinite sum associated to a cone

Recall: For any polytope or cone C,
[[C]): infinite sum of all monomials on C. [[C]] € R[[z*, y*]].
[C]: its realization as a rational function. [C] € R(z,y).

Wait! It is not clear that we can always find a rational function [C].

Lemma (Gordan's lemma)

Let C be an integral cone with apex 0. Suppose that C' does not contain
the origin. Then there are finitely many integral points vy, va,--- , v on
C such that any other integral points on C' is described as a nonnegative
sum of vy, v, , V.
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Infinite sum associated to a cone

A consequence is that for any integral cone C, we can always find a
realization of [[C]] as a rational function [C].

O 0O O O O

1

(1 —22y)(1 —y)

(1—22y)(1 —y)

sum of blue terms = 1+y+a2y+y°+z2y*+zty’+ - =

sum of red terms = x+ay+aiy+ry? 23y’ +2dy* 4+ =

1+
(1—2%y)(1 —y)

Indeed, the above description provides an explicit algorithm finding [C].

total sum =
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Infinite sum associated to a cone

Let PL be the subspace of R[[z*, yT]] generated by [[C]] for some cone
C' (space of polyhedral Laurent series).

Then there is a (unique) map

p: PL — R(z,y)
[(C] — [C].

The map p preserves the addition, subtraction and polynomial
multiplication. In particular, for any h € R[z*, y*], then

p(h-[[C]]) = h-[C] = h - p([[C]])-

With a formal language, we say that p is an R[zT, y*]-module

homomorphism.
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Key observation

Note that an half-plane H is a union of two cones. So [[H]] € PL. We
would like to compute [H] := p([[H]]).

For a half-plane H, [H| = 0.

Let (a,b) be any integral vector parallel to the boundary of H.
Then 2%y*([H]] = [[H]].
Apply p. Then z%*[H] = [H].

We have (1 — 2%y®)[H] = 0.

By dividing both side by 1 — 2%y, we obtain [H] = 0. O
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Final step of the proof

For any triangle T, let C1, Ca,Cs be three inner tangent cones,
H,, Hy, H3 be three half-planes generated by three edges, and R? be the
whole plane.

Consider the following alternating sum:
([R?]] — [[EL]] = [[H2)] = [[Ha]] + [[C1]] + [[Ca]] + [[C5]) - [T]]

HAA
g4
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This sum is 0. (Why?)




Final step of the proof

IR?)] — [[H1]] = [[H]] - [[Hs]] + [[C1]] + [[Ca]] + [[Cs]] - [[T]] = 0

Apply the map p here. Then [H;] = [H3] = [H3] = 0.
[R?] = 0 because R? is the union of two half-planes.

So we have [C1] + [Co] + [C3] — [T] = 0, or equivalently,

[T] = [C1] + [Ca] + [Cs3).




Part V

Final remarks




Ehrhart-MacDonald reciprocity

Recall that for any half-plane H, [H] = 0.

We can make an interesting consequence. Consider the following figure:

Q@ [Cl+[D]=0

Q@ [D]+[E]=0

@ By adding 1 and 2, we have [C] = [E]. In other words, any closed
cone is equal to the opposite open cone.
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Ehrhart-MacDonald reciprocity

Let T be any triangle. Let E1, Es, E3 be three outer tangent cones, and
let C7, Cs, C3 be three open inner tangent cones.

Then
[Er] + [Eo] + [E3] = [C1] + [Ca] + [C3] = [Tint

where [T];,,: be the sum of all monomials on the interior of T
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Ehrhart-MacDonald reciprocity

(]
Eugene Ehrhart, 1906 - 2000

Of course, we can generalize it to arbitrary n-dimensional integral

polytopes.

Theorem (Ehrhart-MacDonald reciprocity)

Let P be an integral polytope with vertices vy,va,--- ,vk. Let E; be the
outer tangent cone to P at v;. Then

k
[ int — n Z

=1
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So... how can we count points?

k

[P1=3[Cu.]

i=1
The left hand side is the sum of monomials on P.

[Pl =142+ +y+zy+y
The number of integral points on P is [P](1,1) = 6.
On the other hand, the right hand side
1 y4 334
+ +
(I-z)1-y) W-Dy-2z) (@-1@-y)

is not defined at (x,y) = (1,1). But we can compute its limit

[Cv1] + [Ovz} + [Cva] =

y4 334

lim + +
@y)—-an (1-2)1-y) H-Dy—-2) (@-1)(z-y)

= 6.



Original proof

Brion’s original proof uses the well-known correspondence
integral polytope P <= projective polarized toric variety (X, L)

So we may interpret the result in a purely geometric context.

@ vector space generated by monomials on P: HY(X, L) = x(X, L).
@ [P] = class of x(X, L) in T-equivariant Grothendieck group K(X).
@ Localization: x(X, L) = x(X7T,i*L) - vx. Here

Yx = (X ;50(—1)I[A'N])~!, N is the normal bundle to X7

@ X7 is a set of torus-invariant points, and for each such point p,
(X(XTvi*L) "YX)|p = [Cp]
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Thank you!
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