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Three kingdoms in mathematical worlds

Geometry ←→ Combinatorics

←→
←→

Algebra

Geometry: study of figures/spaces, curves, surfaces, higher

dimensional spaces, their lengths, volumes, curvatures, symmetries,

· · ·
Combinatorics: study of finite sets, graphs, counting, · · ·
Algebra: study of calculation of symbols, numbers, polynomials,

matrices, equations, · · ·

There are many surprising interactions of these three seemingly unrelated

worlds.
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Part I

Introduction - integral points and integral

polytopes
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Integral points

An integral point of Rn is a point x = (x1, x2, · · · , xn) such that each

coordinate xi is an integer.

Examples:

(2,−1, 5): an integral point in R3

(−2, 25 ): not an integral point in R2

Zn: set of n-dimensional integral points.
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Integral polytope

In an n-dimensional space Rn, an integral polytope is a figure (convex

set) generated by finitely many integral points.

Examples:

A one-dimensional integral polytope is a finite interval whose

endpoints are integers.

−1 0 1 2 3 4

A two-dimensional integral polytope is a polygon whose vertices are

all integral points.
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Main question

Question

For an integral polytope P , count the number of integral points on P .

Two related questions:

Question (Computational aspect)

Find a fast way counting the number of integral points on an integral

polytope P .

Question (Theoretical aspect)

Describe the number of integral points on P in terms of some geometric

properties/quantities of P .
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Pick’s theorem

Georg Alexander Pick, 1859 - 1942

Theorem (Pick, 1899)

Let P be a two-dimensional integral polytope. Let i be the number of

integral points in the interior of P and b be the number of integral points

on the boundary of P . Then the following equation holds.

Area(P ) = i+
b

2
− 1
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Pick’s theorem

Area(P ) = i+
b

2
− 1

For instance, in the picture above, i = 7, b = 8. So

Area = 7 +
8

2
− 1 = 10.

Simple corollary: Every two-dimensional integral polytope has a

half-integer area.
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Goal

I will present and prove an interesting formula which counts the number

of integral points (indeed, describes the set of integral points completely)

on a given integral polytope P .

The result is true for arbitrary dimension, but I will give a proof for

two-dimensional case, for notational simplicity.

The same proof works for every dimension.

Han-Bom Moon Let’s count points!



Part II

Preliminary - Geometric series
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Geometric series

A geometric series is an infinite sum with constant ratio between

successive terms.

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn

It appears in many different geometric contexts. For instance:

This picture shows us that

1 +
1

2
+

1

4
+

1

8
+ · · · = 1 +

1

2
+

(
1

2

)2

+

(
1

2

)3

+ · · · = 2.
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn

Indeed, if |r| < 1, we can evaluate this sum by using a very simple

formula.

First of all, consider the sum of first n+ 1 terms:

S := a+ ar + ar2 + · · ·+ arn

rS = ar + ar2 + ar3 + · · ·+ arn+1

(1−r)S = S−rS = (a+ar+ar2+· · ·+arn)−(ar+ar2+ar3+· · ·+arn+1)

= a− arn+1 = a(1− rn+1)

⇒ S =
a(1− rn+1)

1− r

a+ ar + ar2 + ar3 + · · · = lim
n→∞

S = lim
n→∞

a(1− rn+1)

1− r
=

a

1− r
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Geometric series

a+ ar + ar2 + ar3 + ar4 + · · · =
∞∑

n=0

arn =
a

1− r

Here are some explicit examples we will consider later:

1 + x+ x2 + x3 + · · · = 1

1− x
(a = 1, r = x)

x3 + x4 + x5 + · · · = x3

1− x
(a = x3, r = x)

1+x−1+x−2+x−3+· · · = 1+x−1+(x−1)2+(x−1)3+· · · = 1

1− x−1
=

x

x− 1

1 + xy−1 + x2y−2 + x3y−3 + · · · = 1 + xy−1 + (xy−1)2 + (xy−1)3 + · · ·

=
1

1− xy−1
=

y

y − x
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Some variations

Exercise: Compute the sum of all monomials xiyj on the first quadrant,

that is, xiyj with i, j ≥ 0.

1 + x+ y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + · · · = ?

If we change the order of terms with respect to the degree of x:

1 + x+ y + x2 + xy + y2 + x3 + x2y + xy2 + y3 + · · ·
= (1 + y + y2 + · · · ) + (x+ xy + xy2 + · · · ) + (x2 + x2y + x2y2 + · · · ) + · · ·

=
1

1− y
+

x

1− y
+

x2

1− y
+ · · · = 1

1− y
+

1

1− y
· x+

1

1− y
· x2 + · · ·

=

1
1−y

1− x
=

1

(1− x)(1− y)
.
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Part III

Main theorem
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First example

Before stating the main theorem, let’s compute some simple examples.

Consider a finite interval P = [1, 3] on the real line. This is a

one-dimensional integral polytope.

−2 −1 0 1 2 3 4 5

P

There are three integral points on it, 1, 2, and 3.

For each endpoint, we can draw a ray.

C1
C2

−2 −1 0 1 2 3 4 5P

The overlap of these two rays is precisely P .
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First example

C1
C2

−2 −1 0 1 2 3 4 5P

x−2 x−1 x0 x1 x2 x3 x4 x5

For each ray Ci, we can make a geometric series [Ci] by adding all xi’s

where i is an integer on the ray.

[C1] = x+ x2 + x3 + x4 + · · · = x

1− x

[C2] = x3 + x2 + x+ 1 + x−1 + · · · = x3

1− x−1
=

x4

x− 1

Let’s add them. Then we have:

[C1] + [C2] =
x

1− x
+

x4

x− 1
=

x

1− x
− x4

1− x

=
x− x4

1− x
=
x(1− x3)
1− x

=
x(1− x)(1 + x+ x2)

1− x
= x(1+x+x2) = x+x2+x3

This is precisely the sum of xi for i on the interval P !
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Second example

Now let’s look at a two-dimensional example.

Consider a unit square S on the plane:

For each vertex vk, we can make an internal angle Ck.

C1 C2 C3 C4

As we have done before, by adding all xiyj on Ck, we can make an

infinite sum [Ck]. For instance,

[C1] = 1+x+y+x2+xy+y2+x3+x2y+xy2+y3+· · · = 1

(1− x)(1− y)
.
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Second example

C1 C2 C3 C4

By similar computations, we obtain:

[C1] =
1

(1− x)(1− y)

[C2] = x+1+xy+x−1+y+xy2+· · · =
∑

i≤1,j≥0

xiyj =
x

(1− x−1)(1− y)
=

x2

(x− 1)(1− y)

[C3] =
∑

i≤1,j≤1

xiyj =
xy

(1− x−1)(1− y−1)
=

x2y2

(x− 1)(y − 1)

[C4] =
∑

i≥0,j≤1

xiyj =
y

(1− x)(1− y−1)
=

y2

(1− x)(y − 1)
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Second example

[C1] =
1

(1− x)(1− y)
, [C2] =

x2

(x− 1)(1− y)
,

[C3] =
x2y2

(x− 1)(y − 1)
, [C4] =

y2

(1− x)(y − 1)

If we add them together, we have:

1

(1− x)(1− y)
+

x2

(x− 1)(1− y)
+

x2y2

(x− 1)(1− y)
+

y2

(1− x)(y − 1)

=
1− x2 + x2y2 − y2

(1− x)(1− y)
=

(1− x)(1− y)(1 + x)(1 + y)

(1− x)(1− y)
= (1 + x)(1 + y) = 1 + x+ y + xy

which is exactly, the sum of xiyj on the square S.
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Some terminologies

A cone with the apex v is a geometric figure that is generated by several

rays starting from v.

Let P be an integral polytope and v be a vertex. The inner tangent cone

Cv to P at v is the internal angle we’ve described before.

v

P

v

Cv
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Some teminologies

For any polytope or cone P , let [[P ]] be the (possibly infinite) sum of all

xiyj ’s where (i, j) is in P .

P

[[P ]] = xy + xy2 + x2y2 + xy3 + x2y3 + x3y3 + · · ·

Let [P ] be a representation of [[P ]] as a rational function.

[P ] = (xy + x2y2 + x3y3 + · · · ) + (xy2 + x2y3 + x3y4 + · · · ) + · · ·

=
xy

1− xy
+

xy2

1− xy
+ · · · =

xy
1−xy

1− y
=

xy

(1− xy)(1− y)

If P is an integral polytope, [[P ]] = [P ] is a finite sum.

One can generalize them to n-dimensional polytopes.
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Main theorem

Theorem (Brion, 1988)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi ].

P

Cv1

Cv2
Cv3

[Cv1 ] + [Cv2 ] + [Cv3 ] =
xy

(1− y)(1− xy)
+

x5y4

(x− 1)(xy − 1)
+

xy4

(1− x)(y − 1)

= xy + xy2 + x2y2 + xy3 + x2y3 + x3y3 = [P ]
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Main theorem

Theorem (Brion, 1988)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi ].

Schematically, we can say:

= + +

Han-Bom Moon Let’s count points!



Part IV

The proof
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First reduction - Induction on dimension

Theorem

Let P be an integral polytope with vertices v1, v2, · · · , vk. Then

[P ] =

k∑
i=1

[Cvi
].

The statement of the theorem is saying that “for every n-dimensional

integral polytope, a certain equation holds”.

It is a nice idea to use mathematical induction on the dimension of

integral polytopes.

When n = 1, the only possible integral polytopes are finite intervals. By

the same computation as in the first example, we can check it directly.

So from now, we’ll assume that n = 1 case is true. I’ll give a proof for

dimension 2 case, but the same proof works for arbitrary dimensions.
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Second reduction - Divide and conquer

A great idea to solve a mathematical problem is to reduce it into simpler

problems.

Every polygon can be decomposed into triangles. For instance, consider

the following quadrilateral.
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Second reduction - Divide and conquer

Suppose that we can prove the triangle case, that is,

= + +

Then it is also true for the quadrilateral case, because:

= + −

triangle case
induction = + + + + + − −

= + + − + + − +

= + + +
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Second reduction - Divide and conquer

By applying the same idea several times, we can conclude that it is

sufficient to prove the theorem for triangles.

Let’s prove the theorem for triangles.
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Some algebraic definitions

To complete the proof, we need to define several algebraic notations.

1 R[x, y]: set of polynomials with two variables x and y.

x+ y2, xy, x+ 4x3

2 R[x±, y±]: set of Laurent polynomials.

x+ y2, xy, xy−1, x3y−2 + 5y4

3 R[[x, y]]: set of formal power series.

1 + x+ y + x2 + xy + y2 + · · · , 1 + x+ x2 + x3 + · · · .
4 R[[x±, y±]]: set of formal Laurent series.

· · ·+ x−2 + x−1 + 1 + x+ x2 + · · · ,
5 R(x, y): set of rational functions.

x2+y
1+x+y2 , 1 + x+ x2 + · · · = 1

1−x

There are some formal Laurent series so that they cannot be written as

rational functions.
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Infinite sum associated to a cone

Recall: For any polytope or cone C,

[[C]]: infinite sum of all monomials on C. [[C]] ∈ R[[x±, y±]].

[C]: its realization as a rational function. [C] ∈ R(x, y).

Wait! It is not clear that we can always find a rational function [C].

Lemma (Gordan’s lemma)

Let C be an integral cone with apex 0. Suppose that C does not contain

the origin. Then there are finitely many integral points v1, v2, · · · , vk on

C such that any other integral points on C is described as a nonnegative

sum of v1, v2, · · · , vk.
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Infinite sum associated to a cone

A consequence is that for any integral cone C, we can always find a

realization of [[C]] as a rational function [C].

sum of blue terms = 1+y+x2y+y2+x2y2+x4y2+· · · = 1

(1− x2y)(1− y)

sum of red terms = x+xy+x3y+xy2+x3y2+x5y2+· · · = x

(1− x2y)(1− y)

total sum =
1 + x

(1− x2y)(1− y)
Indeed, the above description provides an explicit algorithm finding [C].
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Infinite sum associated to a cone

Let PL be the subspace of R[[x±, y±]] generated by [[C]] for some cone

C (space of polyhedral Laurent series).

Then there is a (unique) map

p : PL → R(x, y)
[[C]] 7→ [C].

The map p preserves the addition, subtraction and polynomial

multiplication. In particular, for any h ∈ R[x±, y±], then

p(h · [[C]]) = h · [C] = h · p([[C]]).

With a formal language, we say that p is an R[x±, y±]-module

homomorphism.
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Key observation

Note that an half-plane H is a union of two cones. So [[H]] ∈ PL. We

would like to compute [H] := p([[H]]).

Lemma

For a half-plane H, [H] = 0.

Proof.

Let (a, b) be any integral vector parallel to the boundary of H.

Then xayb[[H]] = [[H]].

Apply p. Then xayb[H] = [H].

We have (1− xayb)[H] = 0.

By dividing both side by 1− xayb, we obtain [H] = 0.

(2, 1)

Han-Bom Moon Let’s count points!



Final step of the proof

For any triangle T , let C1, C2, C3 be three inner tangent cones,

H1, H2, H3 be three half-planes generated by three edges, and R2 be the

whole plane.

Consider the following alternating sum:

[[R2]]− [[H1]]− [[H2]]− [[H3]] + [[C1]] + [[C2]] + [[C3]]− [[T ]]

Schematically,

− − −

+ + + −

This sum is 0. (Why?)
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Final step of the proof

[[R2]]− [[H1]]− [[H2]]− [[H3]] + [[C1]] + [[C2]] + [[C3]]− [[T ]] = 0

Apply the map p here. Then [H1] = [H2] = [H3] = 0.

[R2] = 0 because R2 is the union of two half-planes.

So we have [C1] + [C2] + [C3]− [T ] = 0, or equivalently,

[T ] = [C1] + [C2] + [C3].
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Part V

Final remarks
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Ehrhart-MacDonald reciprocity

Recall that for any half-plane H, [H] = 0.

We can make an interesting consequence. Consider the following figure:

[C]
[D]

[E]

1 [C] + [D] = 0

2 [D] + [E] = 0

3 By adding 1 and 2, we have [C] = [E]. In other words, any closed

cone is equal to the opposite open cone.
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Ehrhart-MacDonald reciprocity

Let T be any triangle. Let E1, E2, E3 be three outer tangent cones, and

let C1, C2, C3 be three open inner tangent cones.

Then

[E1] + [E2] + [E3] = [C1] + [C2] + [C3] = [T ]int

where [T ]int be the sum of all monomials on the interior of T .

=
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Ehrhart-MacDonald reciprocity

Eugène Ehrhart, 1906 - 2000

Of course, we can generalize it to arbitrary n-dimensional integral

polytopes.

Theorem (Ehrhart-MacDonald reciprocity)

Let P be an integral polytope with vertices v1, v2, · · · , vk. Let Ei be the

outer tangent cone to P at vi. Then

[P ]int = (−1)n
k∑

i=1

[Ei].
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So... how can we count points?

[P ] =

k∑
i=1

[Cvi ]

The left hand side is the sum of monomials on P .

P

[P ] = 1 + x+ x2 + y + xy + y2

The number of integral points on P is [P ](1, 1) = 6.

On the other hand, the right hand side

[Cv1 ]+[Cv2 ]+[Cv3 ] =
1

(1− x)(1− y)
+

y4

(y − 1)(y − x)
+

x4

(x− 1)(x− y)
is not defined at (x, y) = (1, 1). But we can compute its limit

lim
(x,y)→(1,1)

1

(1− x)(1− y)
+

y4

(y − 1)(y − x)
+

x4

(x− 1)(x− y)
= 6.
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Original proof

Brion’s original proof uses the well-known correspondence

integral polytope P ⇐⇒ projective polarized toric variety (X,L)

So we may interpret the result in a purely geometric context.

1 vector space generated by monomials on P : H0(X,L) = χ(X,L).

2 [P ] = class of χ(X,L) in T -equivariant Grothendieck group K0
T (X).

3 Localization: χ(X,L) = χ(XT , i∗L) · γX . Here

γX = (
∑

i≥0(−1)i[∧iN ])−1, N is the normal bundle to XT .

4 XT is a set of torus-invariant points, and for each such point p,

(χ(XT , i∗L) · γX)|p = [Cp].
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Thank you!
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