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Abstract. The parameter space of n ordered points in projective d-space that lie on a
rational normal curve admits a natural compactification by taking the Zariski closure in
(Pd)n. The resulting variety was used to study the birational geometry of the moduli space
M0,n, but in this paper we turn to a more classical question, first asked independently by
both Speyer and Sturmfels: what are the defining equations? For conics, d = 2, we find
scheme-theoretic equations revealing a determinantal variety structure and use this to prove
some geometric properties; moreover, determining which subsets of these equations suffice
set-theoretically is equivalent to a well-studied combinatorial problem. For twisted cubics,
d = 3, we use the Gale transform to produce equations defining the union of two irreducible
components, the compactified configuration space we want and the locus of degenerate point
configurations, and we explain the challenges involved in eliminating this extra component.
For d ≥ 4 we conjecture a similar situation and prove partial results in this direction.

1. Introduction

Configuration spaces are central to many modern areas of geometry, topology, and physics.
On the other hand, rational normal curves are among the most classical objects in algebraic
geometry. In this paper we explore a setting where these two realms meet: the configuration
space of n ordered points in Pd that lie on a rational normal curve. This is naturally a
subvariety of (Pd)n, and by taking the Zariski closure we obtain a compactification of this
configuration space, which we call the Veronese compactification Vd,n ⊆ (Pd)n.

The Veronese compactification parameterizes configurations of (possibly coincident) points
supported on a flat limit of a rational normal curve. Such a flat limit, if it is non-degenerate,
is a rational normal curve or a union of rational normal curves of lower degree where étale
locally the components meet like the coordinate axes in affine space. Our main focus is to
find and study the multi-homogeneous equations cutting out the Veronese compactification.

1.1. Results and proof outlines. First, some notation and conventions. We work over an
algebraically closed field k of arbitrary characteristic. Let [n] := {1, 2, . . . , n}, and denote

the set of cardinality m subsets of [n] by
(
[n]
m

)
. An ordered configuration of n points in Pd is

usually written

p = (p1, . . . , pn) ∈ (Pd)n.
The Veronese compactification Vd,n is irreducible of dimension d2 + 2d+n− 3 and equals all
of (Pd)n when d = 1 or n ≤ d+ 3, so assume throughout that d ≥ 2 and n ≥ d+ 4.
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We can say the most in the case of conics, d = 2.

Theorem 1.1. For n ≥ 6, we have:

(1) V2,n is defined scheme-theoretically by
(
n
6

)
determinants of 6×6 matrices whose entries

are quadratic monomials;
(2) a subset T ⊆

(
[n]
6

)
of these determinants defines V2,n set-theoretically if and only if

for any partition I1 t · · · t I6 = [n], there exists J ∈ T such that |J ∩ Ij| = 1 for
all 1 ≤ j ≤ 6—consequently, the minimal number of these determinants that suffice
set-theoretically is at least 2

n−4

(
n
6

)
;

(3) V2,n is Cohen-Macaulay, and if char k 6= 2 it is normal—but it is Gorenstein if and
only if n = 6.

The starting point here is the elementary observation that six points in P2 lie on a conic
if and only if their images under the Veronese embedding P2 ↪→ P5 lie on a hyperplane.
This yields a 6× 6 determinant defining the hypersurface V2,6 ⊆ (P2)6. We then provide an
inductive argument showing that V2,n ⊆ (P2)n is defined by the pullback of this determinant
along all

(
n
6

)
forgetful maps V2,n � V2,6. We can then apply results from the theory of

determinantal varieties to see that V2,n is Cohen-Macaulay and classify when it is Gorenstein;
constructing an isomorphism in codimension one with the Kontsevich stable map space
M0,n(P2, 2) then yields normality when char k 6= 2.

The combinatorial property stated above in (2) is a special case of a set transversality
problem that has been studied by many authors (see [BT09] and the references cited therein).
We prove the first assertion in (2) by using the Veronese embedding to reduce to the analogous
problem of determining which minors of a (d+1)×n matrix of homogeneous coordinates for
(Pd)n set-theoretically cut out the locus Yd,n ⊆ (Pd)n of degenerate point configurations—
and this latter problem we solve with a direct linear algebraic analysis. The second assertion
in (2) then follows from general bounds discussed in [BT09], though we also provide a new
argument for a bound that is close to this one.

Let us turn now to d ≥ 3. The locus Vd,n ⊆ (Pd)n is SLd+1-invariant, and the Gale
transform provides an involutive isomorphism of GIT quotients [DO88, Corollary III.1]

(Pd)n//SLd+1
∼= (Pn−d−2)n//SLn−d−1

sending configurations supported on a rational normal curve to configurations supported
on a rational normal curve [Gop70, Gop84]. Our basic idea is the following. We have
the equations for V2,d+4, and the Gale transform sends these to equations that are satisfied
on Vd,d+4; by pulling these back along the

(
n
d+4

)
forgetful maps, we get equations that are

satisfied on Vd,n. Let us denote by Wd,n ⊆ (Pd)n the subscheme these latter equations define.

Theorem 1.2. For d ≥ 3, let Wd,n be the scheme discussed above and let Yd,n ⊆ (Pd)n be
the determinantal variety parameterizing degenerate point configurations. Then:

(1) scheme-theoretically, we have Vd,n ∪ Yd,n ⊆ Wd,n;
(2) the above inclusion is a set-theoretic equality if d = 3 or n = d + 4 (we conjecture

that equality always holds).
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Thus we have explicit set-theoretic determinantal equations for the variety

W3,n = V3,n ∪ Y3,n.

In the first two non-trivial cases, V3,7 and V3,8, we prove that every degenerate configuration
lies on a flat limit of a twisted cubic (i.e., Y3,7 ⊆ V3,7 and Y3,8 ⊆ V3,8), so we actually get
equations for these Veronese compactifications (we also get equations for V4,8 in this way).
For n ≥ 9, however, W3,n really does have two irreducible components. Essentially, this is a
consequence of the Gale transform not being defined on degenerate configurations.

We prove three statements that reveal some of the considerable challenges that occur here
which did not occur for d = 2: (1) V3,n for n ≥ 9 is not defined, even set-theoretically, by
pulling back the equations for V3,7; (2) V3,n is not normal for n ≥ 8 (assuming char k 6= 2, 3);
(3) the polynomials that cut Wd,n down to the single irreducible component Vd,n cannot be
PGLd+1-invariant. This third property rules out many geometric constructions for producing
equations, while the first property suggests the complexity of the equations increases as n
increases.

Remark 1.3. There are other possible approaches to finding equations for Vd,n. For instance,
there are nice expressions for the equations of a rational normal curve in certain standard
forms, so one general strategy is to first use the PGLd+1-action to move an arbitrary point
of Vd,n into a standard form and then apply these well-known equations. However, this
introduces a large number of extra variables, the entries of the PGLd+1 matrix, and the
necessary elimination theory appears to get quite complicated quickly. The Gale transform
takes advantage of the fact that Vd,n is PGLd+1-invariant and this symmetry significantly
cuts down the complexity of the equations.

1.2. Background and context. Our main motivation for embarking on this study is simply
that rational normal curves are such ubiquitous classical objects that it seems very natural
to ask for the equations describing the locus of point configurations supported on them. In
fact, Speyer asked precisely this question in a MathOverflow post [Spe14], and in personal
correspondence Sturmfels had asked the second author the same question.

The condition that points lie on a rational normal curve arises in a variety of settings—for
example, six linearly general points in P2 lie on a conic if and only if they are self-associated by
the Gale transform [Cob22] (see also [Kap93, Example 2.3.12] for a modern discussion); seven
linearly general points in P3 lie on a twisted cubic if and only if they do not satisfy the Minimal
Resolution Conjecture [CRV93, Proposition 3.3]; the Hilbert function of a configuration of
fat points in Pd conjecturally does not depend on their locations if they lie on a rational
normal curve [CEG99]; the blow-up of Pd at any number of points is a Mori Dream Space
if the points lie on a rational normal curve [CT06, Theorem 1.2]; if p0, . . . , pd and q0, . . . , qd
are two bases for Pd, each apolar with respect to a fixed non-degenerate quadratic form, and
the codimension of the space of degree d hypersurfaces with multiplicity d− 2 at the pi and
passing through the qi is at least two in the space of degree d hypersurfaces with multiplicity
d− 2 at the pi, then all the pi and qi lie on a rational normal curve [Lan99, Theorem 1.8].

There are several instances where explicit equations for a moduli space were worked out
and used to better understand that moduli space. Most closely related to the topic of this
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paper, we have Keel and Tevelev’s equations for the Grothendieck-Knudsen compactification
M0,n of the moduli space of n points on the line, in its log canonical embedding [KT09] (see
also [MR17]), and Howard, Millson, Snowden, and Vakil’s equations for the GIT compactifi-
cations of this same moduli space, in their natural invariant-theoretic projective embeddings
[HMSV09]; also, Ren, Sam, and Sturmfels studied certain 19th-century moduli spaces and
used their explicit equations to explore tropicalizations [RSS14].

While the Veronese compactification Vd,n is a parameter space rather than a moduli space
(meaning that we do not quotient out by automorphisms), the results in this paper may lead
to progress related to the investigations above. For instance, the GIT quotients Vd,n//SLd+1

were used in [Gia13, GG12, GJM13] to study the birational geometry of M0,n, and since Yd,n
is unstable for all GIT linearizations, our equations for Wd,n yield equations for

Vd,n//SLd+1 ⊆ (Pd)n//SLd+1

(definitely for d = 2, 3, and conjecturally for all d). The Howard-Millson-Snowden-Vakil
results, while solving a 100-year-old problem, are only the d = 1 case of their program,
and perhaps our equations for Vd,n//SLd+1 will help illuminate the unknown equations for
(Pd)n//SLd+1. Moreover, the tropicalization of V2,n is a compactification of the image of the
space of phylogenetic trees under the 3-dissimilarity map embedding [PS04], so our equations
for the former could be used to study the latter.

We defer these potential applications to future investigations and focus here on the struc-
ture of the equations for Vd,n and what they imply geometrically about this parameter space
itself. While our results provide important first steps in exploring this elementary yet richly
complex object from an explicit equational perspective, there is clearly more to do and the
story will only become more engrossing as the higher d cases are fully unraveled.

Acknowledgement. We thank Bernd Sturmfels for introducing us to this problem and
we thank Aldo Conca, Yaim Cooper, Igor Dolgachev, Sam Grushevsky, Seung Jin Lee,
David Speyer, Jenia Tevelev, Dennis Tseng, Bernd Sturmfels and Matteo Varbaro for helpful
conversations regarding it. The first author was supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 701807; the second
author was partially supported by the NSA Young Investigator Grant H98230-16-1-0015; the
third author was partially supported by the Minerva Research Foundation; the fourth author
was partially supported by the NSF grant DMS-1603604 and the Research and Training
Group in Algebra, Algebraic Geometry, and Number Theory as a student at the University
of Georgia.

2. Rational normal curves, configurations, and their limits

This section contains preliminary material that we rely on in the rest of the paper. We
introduce the main object of interest, a compactification of the space of configurations of
distinct points supported on a rational normal curve. We first define this as a closure in
the Zariski topology, but then we explain how it can also be constructed as the image of a
Kontsevich stable map moduli space under a natural morphism. With the help of a lemma
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of Artin, we obtain a useful description of the limit curves supporting configurations in the
boundary of this compactification.

Recall that a rational normal curve in Pd is a smooth rational curve of degree d. Up to
projective automorphism there is a unique rational normal curve in Pd, namely, the image
of the d-th Veronese map P1 ↪→ Pd. Two well-known and useful classical facts are:

(1) any d + 3 points in Pd in linearly general position lie on a unique rational normal
curve [Har95, Theorem 1.18] (this is Castelnuovo’s Lemma), and

(2) distinct points on a rational normal curve are in linearly general position (this follows
from basic properties of the Van der Monde determinant).

Definition 2.1. Let d and n be positive integers.

(1) Let Ud,n ⊆ (Pd)n be the subvariety parameterizing configurations p = (p1, . . . , pn) of
n distinct points in Pd such that there exists a rational normal curve C ⊆ Pd with
pi ∈ C for all i = 1, . . . , n.

(2) Let Vd,n ⊆ (Pd)n be the Zariski closure of Ud,n, equipped with the reduced induced
scheme structure. We call this the Veronese compactification of Ud,n.

Castelnuovo’s Lemma implies that Vd,n = (Pd)n whenever n ≤ d+ 3. Clearly V1,n = (P1)n,
so from now on we assume d ≥ 2.

Lemma 2.2. For n ≥ d+ 3, the variety Vd,n is irreducible of dimension d2 + 2d+ n− 3.

Proof. Let ι : P1 ↪→ Pd be a fixed rational normal curve. Consider the map

ψ : PGLd+1 × (P1)n → Vd,n

(g, (x1, . . . , xn)) 7→ ((g ◦ ι)(x1), . . . , (g ◦ ι)(xn)).

Since there is only one rational normal curve up to projective equivalence, we have

Ud,n ⊆ im ψ ⊆ Ud,n = Vd,n.

Since the domain of ψ is irreducible, we know that im ψ, and hence Vd,n, is irreducible.
For a general p ∈ Ud,n, by Castelnuovo’s Lemma there is a unique rational normal curve

C ⊆ Pd that contains p. Let h ∈ PGLd+1 such that im(h ◦ ι) = C. Then

ψ−1(p) = {(kh, (x1, . . . , xn)) | k ∈ Aut(C) ∼= PGL2, (kh ◦ ι)(xi) = pi},
where we view PGL2 as the subgroup of PGLd+1 fixing C. Moreover, since any n ≥ 3 points
determine a unique automorphism of C that fixes them, ψ−1(p) ∼= PGL2. Therefore

dimVd,n = dim
(
PGLd+1 × (P1)n

)
− dim PGL2 = d2 + 2d+ n− 3,

as claimed. �

Since it can be difficult to study a variety defined simply as a Zariski closure, we reinterpret
Vd,n in terms of a well-known (and well-behaved) moduli space. Recall that M0,n(Pd, k) is
the coarse moduli space of genus zero stable maps to Pd of degree k. When char k = 0 or
char k > k, this is a normal, irreducible, projective variety of dimension dk+d+k+n−3 (see
[FP97] or [KV07, §2.3] for the characteristic zero case, [BM96, Theorem 3.14, Proposition
7.4] and [Bal08] for positive characteristic). Such a stable map is defined as follows:
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Definition 2.3. Let X be a connected projective curve of arithmetic genus zero with at
worst nodal singularities, and let x1, . . . , xn be n distinct smooth points of X. A morphism
f : X → Pd is stable if there are only finitely many automorphisms g : X → X satisfying
g(xi) = xi and f ◦ g = f , and it has degree k if f∗[X] = k[`] where [`] is the homology class
of a line in Pd.

The n evaluation maps νi : M0,n(Pd, k)→ Pd send each equivalence class of stable maps

(f : X → Pd, x1, , . . . , xn)

to the point f(xi). These play a key role in Gromov-Witten theory. By taking the product
of all n evaluation maps we obtain the total evaluation map

ν : M0,n(Pd, k)→ (Pd)n,
which will play a key role in our study, when k = d.

Proposition 2.4. Let n ≥ d+ 3, and assume char k = 0 or char k > d.

(1) The Veronese compactification Vd,n is the scheme-theoretic image of the total evalu-
ation map ν : M0,n(Pd, d)→ (Pd)n.

(2) For any point configuration p = (pi) ∈ Vd,n, there is a (possibly nodal) rational curve
X and a stable map (f : X → Pd, x1, . . . , xn) with f∗[X] = d[`] and f(xi) = pi.

Proof. Castelnuovo’s Lemma implies that M0,n(Pd, d) contains an open set parameterizing
rational normal curves in Pd with n distinct points. Since M0,n(Pd, d) is an irreducible proper
variety, its image under ν is then an irreducible closed subvariety of (Pd)n containing Ud,n as
a dense subset. This implies that ν : M0,n(Pd, d)→ Vd,n is a surjective birational morphism
with reduced scheme-theoretic image. �

Some caution is needed when applying (2) above: the image f(X) may not be a rational
curve of degree d in Pd, even when X = P1, because f may not be injective. For instance,
f could be a d-fold cover of a line. To describe the boundary configurations in Vd,n and the
curves supporting them, the following definition is useful. (Recall that a curve embedded in
projective space is said to be non-degenerate if it is not contained in a hyperplane.)

Definition 2.5. A quasi-Veronese curve in Pd is a curve of degree d that is complete,
connected, and non-degenerate.

This terminology differs slightly from that of [Gia13, Definition 2.1], since here we are
requiring non-degeneracy. The following result of Artin shows that quasi-Veronese curves
are built out of rational normal curves in a fairly straightforward way.

Lemma 2.6 ([Art76, Lemma 13.1]). Let C be a quasi-Veronese curve in Pd. Then:

(1) each irreducible component of C is a rational normal curve in its span,
(2) the singularities of C are étale locally the union of coordinate axes in km, and
(3) any connected closed subcurve of C is again a quasi-Veronese curve in its span.

From Artin’s description we see that the curves depicted in Figure 1 are precisely the
types of quasi-Veronese curves that occur in P3.
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Figure 1. The degree three quasi-Veronese curves: twisted cubic, non-
coplanar union of line and conic, chain of three lines, and non-coplanar union
of three lines meeting at a point.

Proposition 2.7. A non-degenerate point configuration p ∈ (Pd)n is in Vd,n if and only if
it lies on a quasi-Veronese curve.

Proof. When char k = 0 or char k > d we may use Proposition 2.4 and argue as follows:
any non-degenerate image of a stable map in M0,n(Pd, d) is a quasi-Veronese curve, and
conversely Artin’s Lemma implies that any quasi-Veronese curve is the image of a degree d
stable map. To extend the proof to arbitrary characteristic, one can use the Hilbert scheme
instead of the stable map moduli space. If H denotes the closed component of the Hilbert
scheme parameterizing rational normal curves in Pd and their flat limits, then Vd,n equals the
projection of the incidence locus in H× (Pd)n [Gia13, Lemma 2.3]. Thus any non-degenerate
configuration in Vd,n lies on a non-degenerate flat limit of a rational normal curve, and such
a curve is certainly a quasi-Veronese curve; conversely, it is not hard to see from Artin’s
Lemma that any quasi-Veronese curve is a flat limit of a rational normal curve. �

3. The case of conics

The Veronese compactification for conics, V2,n, turns out to be rather well-behaved and
we are able to say a lot about it. In this section we first find the single multi-homogeneous
equation defining the hypersurface V2,6 ⊆ (P2)6 and then show that by pulling this back
along all the forgetful maps we get defining equations for V2,n ⊆ (P2)n for all n. This shows,
in particular, that the conic Veronese compactification V2,n is a determinantal variety. This
helps us show that it is Cohen-Macaulay and normal for all n, but Gorenstein only for n = 6.
We then turn to the question of finding subsets of our equations which still cut out V2,n set-
theoretically. We show that this question is answered precisely by a property of hypergraphs
that has been studied by many authors from various combinatorial perspectives.

3.1. The unique equation defining V2,6. Five general points determine a unique conic
and it is a codimension one condition for the sixth point to lie on this conic, so V2,6 ⊆ (P2)6 is
a hypersurface and hence is defined by a single multi-homogeneous equation. This defining
equation is classical and well-known (see [Stu08, Example 3.4.3]). In this subsection we will
recall one method for producing it, since both the equation and the construction will be
useful later on. In this subsection we denote the homogeneous coordinates of (P2)6 by

a = [a0 : a1 : a2], b = [b0 : b1 : b2], . . . , f = [f0 : f1 : f2].
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Definition 3.1. Consider the following multi-homogeneous polynomial of degree (2, . . . , 2):

φ(a, . . . , f) :=

∣∣∣∣∣∣∣∣∣∣∣

a20 b20 c20 d20 e20 f 2
0

a21 b21 c21 d21 e21 f 2
1

a22 b22 c22 d22 e22 f 2
2

a0a1 b0b1 c0c1 d0d1 e0e1 f0f1
a0a2 b0b2 c0c2 d0d2 e0e2 f0f2
a1a2 b1b2 c1c2 d1d2 e1e2 f1f2

∣∣∣∣∣∣∣∣∣∣∣
,

and let W2,6 = Z(φ(a, . . . , f)) ⊆ (P2)6 denote the corresponding hypersurface.

The following result says that φ(a, . . . , f) is the unique equation defining V2,6.

Proposition 3.2. As schemes, we have V2,6 = W2,6.

Proof. Let v : P2 ↪→ P5 be the Veronese embedding

[z0 : z1 : z2] 7→ [z20 : z21 : z22 : z0z1 : z0z2 : z1z2].

Any conic in P2 is the restriction to v(P2) of a hyperplane in P5. Thus six points a, . . . , f ∈ P2

lie on a conic if and only if v(a), . . . , v(f) lie on a hyperplane, which is true if and only if
φ(a, . . . , f) = 0. This shows that V2,6 = W2,6 set-theoretically. Since V2,6 is reduced, to show
that this equality holds scheme-theoretically it suffices, by degree considerations, to show
that φ is not a square. This is straightforward to check. �

Remark 3.3. Since φ(a, . . . , f) is SL3-invariant, by the fundamental theorem of invariant
theory it is a polynomial in the maximal minors of coordinates on (P2)6. Indeed,

φ(a, . . . , f) = |abc||ade||bdf ||cef | − |abd||ace||bcf ||def |,
where, e.g., |abc| denotes the determinant of the matrix whose columns are the coordinates
of the points a, b, and c. (Cf., ([Cob61, p.118] and [Stu08, Example 3.4.3].)

3.2. Pulling back from V2,6 to V2,n. We will show here that the equations for V2,n are all
obtained by pulling back the unique equation for V2,6 along the natural forgetful maps.

For any subset I ⊆ [n], there is a projection map

πI : (Pd)n → (Pd)|I|, (pi) 7→ (pi)i∈I .

This restricts to a surjective map Vd,n � Vd,|I| that we also denote by πI .

Definition 3.4. Let φ be the multi-homogeneous form defining V2,6 ⊆ (P2)6 (cf., §3.1).

(1) For any subset I ⊆ [n] with |I| = 6, let φI := π∗I (φ).
(2) For n ≥ 6, let W2,n ⊆ (P2)n be the closed subscheme defined by φI for all I ⊆ [n]

with |I| = 6.

Clearly V2,n ⊆ W2,n, since if n points in P2 lie on a conic then so do any 6 of them, and we
have shown above that V2,6 = W2,6. A very simple but useful observation is the following:

Observation 3.5. For n ≥ 7, the fibers of the projection map π[n−1] : V2,n → V2,n−1
forgetting the last coordinate are, set-theoretically, either a smooth conic, two distinct
lines, or P2. A degenerate conic, which is a single line, cannot occur as a fiber because
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if (p1, . . . , pn−1) ∈ V2,n−1 lie on a line, then for any point pn ∈ P2, (p1, . . . , pn) lie on a nodal
conic.

Theorem 3.6. The Veronese compactification V2,n is defined by φI for all I ⊆ [n] with
|I| = 6, i.e., V2,n = W2,n as schemes.

Proof. First, we show by induction on n that the equality V2,n = W2,n holds set-theoretically.
The base case n = 6 is Proposition 3.2. Fix n ≥ 7, assume by the inductive hypothesis that
V2,n−1 = W2,n−1 set-theoretically, and consider the following diagram:

V2,n
� � //

π[n−1]

����

W2,n
� � //

π[n−1]

����

(P2)n

π[n−1]
����

V2,n−1 W2,n−1
� � // (P2)n−1.

For any point p = (p1, . . . , pn−1) ∈ V2,n−1 = W2,n−1, consider the fiber Vp (resp. Wp) of
V2,n → V2,n−1 (resp. W2,n → W2,n−1). Clearly Vp ⊆ Wp ⊆ P2 and we are done if we show
that the first containment is always an equality. If Vp = P2 then equality is automatic, so by
Observation 3.5 we may assume that Vp is either a smooth conic or two distinct lines. By
the definition of W2,n, the fiber is given by

Wp =
⋂

n∈I⊆[n],
|I|=6

Z(φI(p, [z0 : z1 : z2])), (1)

where the zi are homogeneous coordinates on our n-th copy of P2 and each φI(p, [z0 : z1 : z2])
is either 0 or a nonzero homogeneous polynomial of degree 2 in the zi. We are done if there
exists a nonzero polynomial φJ(p, [z0 : z1 : z2]) in (1), since then Z(φJ(p, [z0 : z1 : z2])) = Vp
and hence Vp = Wp.

Let us assume by contradiction that there is no nonzero φJ(p, [z0 : z1 : z2]), and hence
that Wp = P2. This implies that any 5 points from p do not determine a unique conic, even
though all n− 1 of them do since by assumption Vp is a smooth conic or two distinct lines.

Each point pi defines a linear functional `i ∈ H0(OP2(2))∗, and the intersection
⋂n−1
i=1 ker `i,

which is one-dimensional, is the set of conics passing through all of the points pi. There must
be five linearly independent functionals {`ij}5j=1 such that

⋂5
j=1 ker `ij is one-dimensional,

but then setting J = {i1, . . . , i5, n} gives φJ(p, [z0 : z1 : z2]) 6= 0, a contradiction. Thus
V2,n = W2,n as sets.

Next, we argue by induction on n that W2,n is reduced, and hence that V2,n = W2,n as
schemes. Again, the base case n = 6 is Proposition 3.2. Since being reduced is a local
property, we may replace W2,n and W2,n−1 = V2,n−1 by affine neighborhoods Spec B and
Spec A, respectively. Thus A is a reduced ring by inductive hypothesis, the projection map
corresponds to an injective ring homomorphism A ↪→ B, and our goal is to show that B is
reduced. Suppose that there is b ∈ B such that bt = 0. We may assume that b /∈ A, because
A is reduced. Let m be a maximal ideal of A. Since every geometric fiber is reduced,
A/m⊗A (b) = 0. For any maximal ideal n of B such that n ∩ A = m, we have

(b)/n(b) ∼= A/m⊗A (b)/n(b) ∼= A/m⊗A ((b)⊗B B/n) ∼= (A/m⊗A (b))⊗B B/n = 0.



10 ALESSIO CAMINATA, NOAH GIANSIRACUSA, HAN-BOM MOON, AND LUCA SCHAFFLER

(To understand the first isomorphism of the chain, let M = (b)/n(b). Then mM = 0, so that
M = M/mM ∼= A/m⊗AM .) By Nakayama’s lemma, b = 0 for some open neighborhood of
the closed point n. Since this is true for all closed points, b = 0 in Spec B. �

3.3. Geometric properties. One significant consequence of the equational description of
V2.n established in Theorem 3.6 is that this d = 2 Veronese compactification is a determi-
nantal variety in the sense of [Eis95, §18]. Indeed, locally on affine charts V2,n is defined by
an ideal generated by 6× 6 minors of a 6× n matrix with entries in k[Xi, Yi]1≤i≤n.

Corollary 3.7. The Veronese compactification V2,n is Cohen-Macaulay.

Proof. The defining ideal on affine charts has codimension 2n − (n + 5) = n − 5, so this
follows from [Eis95, Theorem 18.18]. �

This Cohen-Macaulay property, together with a careful analysis of the relation between V2,n
and M0,n(P2, 2) on a sufficiently nice locus, allows us to obtain another important geometric
property:

Theorem 3.8. If char k 6= 2, the Veronese compactification V2,n is normal.

Proof. This is trivial for n ≤ 5, so assume n ≥ 6. Since Serre’s condition is that normality
is equivalent to R1 and S2 holding, and Cohen-Macaulay is equivalent to all Sk holding, it
suffices to prove that V2,n is regular in codimension 1. Let N′ ⊆ M0,n(P2, 2) be the union of
the closures of the following three loci of stable maps (f : X → P2, x1, . . . , xn): (1) the image
of f is a line; (2) the domain is reducible, X = X1 ∪ X2, with X1 mapped to a point and
containing at least three marked points; (3) the domain is reducible, X = X1∪X2, with only
one marked point on X1 and deg f∗[X1] = 1. Let N be the union of N′ with the pre-image
along the total evaluation map ν : M0,n(P2, 2) → (P2)n of the closed locus parameterizing
point configurations with no five points in general linear position. It is straightforward to see
that (i) the restriction of the total evaluation map ν : N → ν(N) is a positive-dimensional
fibration while its restriction to the open complement M := M0,n(P2, 2) \ N is bijective, and
(ii) if we set V := ν(M) then the codimension of V2,n \ V is at least two. Thus, if we show
that V is R1, then it follows that V2,n is R1. To show regularity in codimension 1 of V it
suffices to show that the bijective morphism ν : M → V is an isomorphism. To do this, we
explicitly construct the inverse morphism.

For the projection π[n] : V2,n+1 → V2,n, set V+ := π−1[n] (V ) and consider the restriction

π[n] : V+ → V . This is a flat family since the fibers are all non-degenerate conics, hence
have the same Hilbert polynomial, and the base is reduced. (Note that the fiber over p ∈ V
cannot be P2 because there are at least five points pi1 , . . . , pi5 in general linear position.)
Furthermore, there are n sections σ1, . . . , σn : V → V+ given by

σi(p1, . . . , pn) = (p1, . . . , pn, pi).

For two distinct indices 1 ≤ i, j ≤ n, let ∆i,j ⊆ V+ be the smooth codimension two subvariety

defined by pn+1 = pi = pj. Take the blow-up Ṽ+ → V+ of all the ∆i,j (the order doesn’t

matter since they are disjoint) and let σ̃i : V → Ṽ+ be the proper transform of the above
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sections. Then Ṽ+ → V, σ̃1, . . . , σ̃n with Ṽ+ → V+
πn+1−−−→ P2, is a flat family of stable maps

inducing a morphism V → M that one can verify is the inverse of ν. �

Remark 3.9. For char k = 2, since M0,n(P2, 2) does not have good geometric properties
(even the moduli stack is not separated), the preceding proof does not work. We are not
sure if normality holds in this case.

A natural question which may arise at this point is whether the variety V2,n is also Goren-
stein. The answer is the following:

Proposition 3.10. The Veronese compactification V2,n is Gorenstein if and only if n = 6.

Proof. This can be checked locally. The stalk at a point of V2,n is given by A = R/I, where
R is a local regular ring of dimension 2n and I is an ideal of codimension n− 5 generated by
6× 6 minors of a 6×n matrix M with entries in R. By Corollary 3.7, A is Cohen-Macaulay
of dimension n + 5, therefore by [BH93, Theorem 3.2.10] A is Gorenstein if and only if
Extn+5

A (k, A) has k-dimension 1. We have an isomorphism

Extn+5
A (k, A) ∼= TorR2n−n−5(k, A),

therefore A being Gorenstein is equivalent to the last non-zero Betti number

βRn−5(A) = dimk TorRn−5(k, A)

being equal to 1. Since codim I = n − 5, by [BV88, Theorem 2.16] an R-free resolution of
R/I is given by the Eagon-Northcott complex of the map ϕM : Rn → R6 corresponding to
the matrix M . The last non-zero module of the complex is in homological position n − 5
and it is Symn−6(R6). Now, A is Gorenstein if and only if this free module has rank 1, which
holds if and only if n = 6. �

3.4. Toward a smaller set of defining equations. We showed above that the ideal defin-
ing V2,n is generated by

(
n
6

)
polynomials, namely, the pull-backs of the defining polynomial

for V2,6 along all forgetful maps V2,n → V2,6. Here we will show that V2,n can be cut out
set-theoretically by certain proper subsets of these polynomials. We first study the analogous
problem of minimal collections of set-theoretic equations for generic determinantal varieties
in a product of projective spaces and then show how the case of V2,n, which is determinantal
but with relations among the matrix entries, reduces to this case of indeterminate entries. In
both cases, the combinatorics controlling which subsets of polynomials are set-theoretically
valid turns out to be an interesting problem concerning hypergraphs and set transversals
that has been studied from multiple perspectives in the combinatorics literature.

Definition 3.11. The space of degenerate point configurations (those lying on a hyperplane)
is the determinantal variety Yd,n ⊆ (Pd)n defined by all (d+1)×(d+1) minors of a (d+1)×n
matrix of homogeneous coordinates.

Note that Yd,n = (Pd)n if n ≤ d, since in this case there are no size d+ 1 minors (and also
any d points in Pd lie on a hyperplane), so we are generally interested in the case n ≥ d+ 1.

For a subset H ⊆ [n] with |H| = d+1, let mH be the minor in our matrix of homogeneous

coordinates corresponding to the columns indexed by H, and for a collection T ⊆
(

[n]
d+1

)
of
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such subsets let Y Td,n ⊆ (Pd)n be the closed subscheme defined by the multi-homogeneous

polynomials {mH}H∈T . By definition we have Y
( [n]
d+1)

d,n = Yd,n and if T1 ⊆ T2 then Y T2d,n ⊆ Y T1d,n.

Question 3.12. Two natural questions immediately arise:

(1) For which collections T does the equality Y Td,n = Yd,n hold?

(2) What is the minimal cardinality of a collection |T | such that Y Td,n = Yd,n?

Both questions can be asked at the level of varieties (that is, set-theoretically) or at the
level of schemes. We shall focus on the former, since in that case we find a very natural
combinatorial answer.

Recall that a k-uniform hypergraph H is by definition a subset of
(
[n]
k

)
, and each H ∈ H

is called an edge.

Definition 3.13. We say that the transversality property holds for a k-uniform hypergraph
H (or that H satisfies the transversality property) if for any partition I1t · · · t Ik = [n] with
each Ij nonempty, there is an edge H ∈ H such that |H ∩ Ij| = 1 for all 1 ≤ j ≤ k.

Note that a 2-uniform hypergraph is just a graph in the usual sense, and the transversality
property is equivalent to connectedness of the graph. See [BT09, §1] for a brief survey of
the literature surrounding this concept of hypergraph transversality, including translations
to other combinatorial settings.

Example 3.14. For n = 5, consider the 3-uniform hypergraph

H = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}}.
It is simple to verify that H satisfies the transversality property. Moreover, there does not
exist a 3-uniform hypergraph on [5] with fewer than five edges that satisfies the transversality
property. Up to permutation (that is, the S5-action on [5]), H is the unique hypergraph
satisfying the transversality property with the minimal number of edges for (k, n) = (3, 5).

The next result answers the first of the two question stated above.

Proposition 3.15. For a collection T ⊆
(

[n]
d+1

)
, we have a set-theoretic equality Y Td,n = Yd,n

if and only if the transversality property holds for T , viewed as a hypergraph.

Proof. We may regard each point in (Pd)n = (Ad+1 \ {0})n/(k×)n as an equivalence class of
(d + 1) × n matrices none of whose columns is the zero vector. Suppose that Y Td,n = Yd,n.

For any partition I1 t · · · t Id+1 = [n], consider the matrix A ∈ (Pd)n whose i-th column is
the j-th standard basis vector ej when i ∈ Ij. This matrix has full rank, so A /∈ Yd,n = Y Td,n,
and hence there must be a nonzero minor mH(A) 6= 0 with H ∈ T . By our construction
of A, a nonzero minor cannot have more than one column indexed by any Ij, so we have
|H ∩ Ij| = 1 for all j and thus T satisfies the transversality property.

Conversely, suppose T has the transversality property and let B be a matrix representing
an arbitrary point of (Pd)n \ Yd,n, i.e., B is a full rank d + 1 matrix without zero columns.
If we can show that B /∈ Y Td,n then we will obtain Y Td,n ⊆ Yd,n, and hence Y Td,n = Yd,n since

the opposite containment is trivial. First, note that both Yd,n and Y Td,n are GLd+1-invariant
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subsets of (Pd)n, for the natural diagonal action, so we can assume without loss of generality
that B is in row echelon form. For each 1 ≤ j ≤ d+ 1, let Ij be the set of columns such that
the lowest nonzero entry is on the j-th row. Then I1 t · · · t Id+1 is a partition of [n], with
Ij 6= ∅ for each j, since rank(B) = d+ 1. By assumption on T there must exist H ∈ T such
that |H ∩ Ij| = 1 for all j. But then clearly mH(B) 6= 0, and so B /∈ Y Td,n as desired. �

By the preceding result, the most “efficient” ways to cut out the locus of degenerate point
configurations correspond to the uniform hypergraphs T with the minimal number of edges
that satisfy the transversality property. We can derive a lower bound for this minimal number
of edges as follows. Consider a partition of [n] where |Ij| = 1 for j ≤ d and Id+1 = n−d. The

set of such partitions can be identified with
(

[n]
n−d

)
. Consider the following incidence locus:

Inc := {(J,H) ∈
(

[n]

n− d

)
× T | |J ∩H| = 1}.

We have two projections

Inc
π1

||

π2

  (
[n]
n−d

)
T .

The transversality property of T implies that π1 is surjective, so |Inc| ≥
(
n
n−d

)
=
(
n
d

)
. For

any H ∈ T , we have |π−12 (H)| = d+ 1. Thus,

|T | = |Inc|
d+ 1

≥ 1

d+ 1

(
n

d

)
.

This is not far from the best known lower bound [Ste75] (see also [BT09, §1.4]):

|T | ≥ 2

n− d+ 2

(
n

d

)
.

We now return to the question of finding a smaller set of defining equations for V2,n.
Remarkably, the following result says that at least set-theoretically, the combinatorics of
which determinantal equations can be dropped when defining V2,n is exactly the same as
that of the space of degenerate point configurations in P5, namely Y5,n, analyzed above.

Theorem 3.16. For a collection T ⊆
(
[n]
6

)
, the equations {φH}H∈T define V2,n set-theoretically

if and only if T satisfies the transversality property.

Proof. Let V T2,n ⊆ (P2)n be the subscheme defined by {φH}H∈T . For the product of Veronese

embeddings v : (P2)n ↪→ (P5)n, we have V T2,n = im v ∩ Y T5,n (cf., the proof of Proposition 3.2).

If T satisfies the transversality property, then by Proposition 3.15 we have Y T5,n = Y
([n]

6 )
5,n , so

intersecting with im v yields V T2,n = V
([n]

6 )
2,n . But V

([n]
6 )

2,n = V2,n by Theorem 3.6, so V T2,n = V2,n.

Conversely, suppose V T2,n = V2,n. In the first half of the proof of Proposition 3.15, we used
a matrix whose columns were repetitions of the d + 1 standard basis vectors. The same
argument works for repetitions of any d+1 linearly independent vectors. Because v(P2) ⊆ P5
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is non-degenerate, we can find 6 linearly independent vectors in v(P2). Thus the same proof
works here to show that the transversality property holds for T . �

Example 3.17. There is only one equation for V2,6. For V2,7, our construction in Theorem
3.6 uses

(
7
6

)
= 7 equations. We can drop any one of these and the corresponding hypergraph

still satisfies the transversality property, so by the preceding result any 6 of these 7 equations
cuts out V2,7 set-theoretically.

Remark 3.18. A reasonable expectation is that if the equality V T2,n = V2,n holds set-
theoretically, then it also does scheme-theoretically. We verified this using a computer al-
gebra system in a few cases for small values of n, but more evidence would be necessary to
confidently state the conjecture.

Remark 3.19. The arithmetical rank of a polarized projective variety X ⊆ PN is the
smallest number of equations needed to define X set-theoretically. The definition makes
sense for varieties embedded in products of projective space as well. Bruns and Schwänzl
proved that the arithmetical rank of the ideal of t minors of an m×n generic matrix is exactly
mn− t2 + 1 [BS90, Theorem 1]. In particular, Bruns gives an explicit construction of a set
of defining equations by using a poset attached to the matrix [Bru89, Corollary 2.2]. We can
apply his construction to the set of equations {φI} defining V2,n ⊆ (P2)n, obtaining a new set
of equations, certain sums of the φI , that set-theoretically defines V2,n ⊆ (P2)n. In this way
we obtain an upper bound of 6n−35 on the arithmetical rank of V2,n. Contrary to the case of
a generic matrix this upper bound is not sharp. For example, for n = 7 it gives 6 · 7− 35 = 7
equations, whereas we saw in Example 3.17 that V2,7 can be defined set-theoretically by 6
equations. Nonetheless, since this upper-bound is linear n, it is asymptotically much better
than the one obtained by combining Theorem 3.16 with the combinatorial bounds in [BT09].

4. The Veronese compactification in higher dimensions

In this section we turn to the Veronese compactification Vd,n ⊆ (Pd)n for d > 2. Our main
tool for producing equations for this variety is the classical Gale transform, which allows us
to draw from the d = 2 case studied in the previous section. However, the Gale transform
does not apply to degenerate point configurations, and this leads to a serious complication.

The equations we produce cut out (conjecturally, though we prove some important special
cases) a union of two irreducible loci: Vd,n and the locus Yd,n, which made a brief appear-
ance in §3.4, of degenerate configurations. These two components coincide only in a few
small cases; in general, finding more equations to cut out exactly Vd,n appears to be very
challenging, and we note multiple reasons why.

Since the Gale transform appears in various forms in the literature, and since we shall
need some very specific properties of it that are difficult to find in the literature, we begin
this section with a study of the Gale transform. (For a generalization, historical background,
and more scheme-theoretic investigation see [EP00].)

4.1. Gale duality. We denote the set of a× b matrices by Ma×b and the subset of full rank
matrices by M full

a×b . If a < b, then for a matrix A ∈ Ma×b and an index set I ∈
(
[b]
a

)
we let

mI(A) denote the associated maximal minor of A. Throughout, assume 2 ≤ d ≤ n− 2.
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Definition 4.1. For A ∈M full
(d+1)×n, the set of affine Gale transforms of A is

G̃(A) := {B ∈M full
(n−d−1)×n | AB

t = 0}.

Remark 4.2. We shall use repeatedly the following elementary observations:

(1) GLn−d−1 acts transitively on G̃(A), and

(2) G̃(·) is constant on GLd+1-orbits.

Example 4.3. If the first d+ 1 columns of A ∈M full
(d+1)×n are linearly independent then the

GLd+1-orbit of A contains a matrix of the form [Id+1|A] for some A ∈ M(d+1)×(n−d−1). It is

then straightforward to check that [At| − In−d−1] ∈ G̃(A).

The Gale transform exhibits a compatibility between maximal minors that we shall rely
upon heavily when studying configurations on rational normal curves. First, some notation:

Definition 4.4. For I = {i1, . . . , ik} ∈
(
[n]
k

)
, let

SI :=
k∑
j=1

(ij − j)

be the minimum number of adjacent transpositions (i, i+1) needed to obtain I from [k] ⊆ [n].

The following notation is also helpful, though we only use it in the immediately following
proposition and its proof. For I ⊆ [n], let I1 := I ∩ [d + 1] and I2 := I \ I1, so I = I1 t I2;
let J1 := [d+ 1] \ I1 and J2 := Ic \ [d+ 1], so Ic = J1 t J2. If A ∈Ma×b and I ⊆ [b], J ⊆ [a]
satisfy |I| = |J |, then we let mJ

I (A) be the minor of A specified by the I-columns and J-rows
of A; if this is a maximal minor, say J = [a], we denote this simply by mI(A).

Proposition 4.5. Let A ∈M full
(d+1)×n, B ∈ G̃(A), and I ∈

(
[n]
d+1

)
. Then

mI(A) = (−1)SI+(n−d−1)λmIc(B),

where λ ∈ k× is a nonzero constant independent of I.

Proof. By continuity it suffices to prove the statement for a general matrix A, so we may
assume that all the minors of A are nonzero. Let us start by proving our identity in the
special case A = [Id+1|A] and B = [At| − In−d−1].

The columns of A are indexed by d+ 2, d+ 3, . . . , n. By the cofactor expansion,

mI(A) = (−1)SI1m
[d+1]\I1
I2

(A).

Similarly, by the cofactor expansion from the last column,

mIc(B) = (−1)TJ2+|J2|m
Jc
2
J1

(At),

where TJ2 is the number of adjacent transpositions (j, j + 1) that we must apply to obtain
J2 from {n−|J2|+ 1, . . . , n− 1, n}, the rows of At are indexed by d+ 2, d+ 3, . . . , n, and the
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complement of J2 is taken relatively to this set of indices. Note that we have to multiply by
(−1)|J2| because the second half of B is the negative of the identity matrix. Then

mIc(B) = (−1)TJ2+|J2|m
Jc
2
J1

(At) = (−1)TJ2+|J2|mJ1
Jc
2
(A) = (−1)TJ2+|J2|m

[d+1]\I1
I2

(A).

Thus
mI(A) = (−1)SI1

+TJ2+|J2|mIc(B).

Now the result follows from the observations below:

(1) If we denote by S ′I2 the number of adjacent transpositions that we have to apply to
get I2 from {d+ 2, d+ 3, . . . , d+ |I2|+ 1}, then S ′I2 = TJ2 .

(2) |I1|+ |I2| = d+ 1.
(3) SI = SI1 + S ′I2 + |I2|(d+ 1− |I1|) = SI1 + S ′I2 + |I2|2.

So

mI(A) = (−1)SI1
+TJ2+|J2|mIc(B) = (−1)SI1

+S′I2
+|J2|mIc(B) = (−1)SI−|I2|2+n−d−1−|I2|mIc(B)

= (−1)SI−|I2|(|I2|+1)+(n−d−1)mIc(B) = (−1)SI+(n−d−1)mIc(B),

because |I2|(|I2|+ 1) is even. Observe that in this case we have λ = 1.
Now we prove the statement for general matrices A and B with nonzero minors. There

exist invertible square matrices X, Y of appropriate sizes such that A = X[Id+1|A] and
B = Y [At| − In−d−1]. Then we have that

mI(A) = mI(X[Id+1|A]) = det(X)mI([Id+1|A]) = det(X)(−1)SI+n−d−1mIc([A
t| − In−d−1])

=
det(X)

det(Y )
(−1)SI+n−d−1 det(Y )mIc([A

t| − In−d−1]) =
det(X)

det(Y )
(−1)SI+n−d−1mIc(B),

which is the required statement where λ = det(X)/ det(Y ). �

We next turn to defining a projective Gale transform. Fix homogeneous coordinates on
(Pd)n, and for any matrix A ∈M(d+1)×n that does not have the zero vector as a column, let
PA ∈ (Pd)n denote the projective point configuration whose homogeneous coordinates are
the columns of A. There is a crucial geometric property necessary for the projective Gale
transform to be well-defined.

Definition 4.6. A point configuration p = (p1, . . . , pn) ∈ (Pd)n is automorphism-free if there
is no non-trivial automorphism of Pd fixing all the pi.

It is straightforward to verify the following (cf., [GG15, Lemma 3.1 and Proposition 3.2]):

Lemma 4.7. A point configuration in Pd is automorphism-free if and only if for any hyper-
plane H ⊆ Pd there are at least two points of the configuration that do not lie on H.

Definition 4.8. Let p = (p1, . . . , pn) ∈ (Pd)n be an automorphism-free point configuration.
The set of Gale transforms of p is

G̃(p) := {PB ∈ (Pn−d−2)n | PA = p and B ∈ G̃(A)}.

For this definition to be well-defined, we need the following:
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Lemma 4.9. Let p ∈ (Pd)n be an automorphism-free configuration. Then (1) any matrix
A ∈ M(d+1)×n satisfying PA = p is full rank, and (2) given such an A, each column of any

matrix B ∈ G̃(A) is nonzero.

Proof. Statement (1) is obvious, since automorphism-free implies non-degenerate, so we turn
to (2). Without loss of generality we may assume that A = [Id+1|A], and so as noted earlier

every matrix in G̃(A) is in the GLn−d−1-orbit of the matrix [At| − In−d−1]. Thus it suffices
to show that each column of this latter matrix is nonzero, or equivalently that each row of
A is nonzero. If, say, the j-th row of A is zero, then the projectivization of the j-th column
of A yields the only point of p outside the hyperplane H ⊆ Pd defined by the vanishing of
the j-th coordinate, contradicting the automorphism-free hypothesis. �

Now that we have established that the set of Gale transforms G̃(p) ⊆ (Pd)n is well-defined
on automorphism-free configurations, we can extend Remark 4.2 to this projective setting.

Proposition 4.10. Let p ∈ (Pd)n be an automorphism-free configuration. Then:

(1) PGLn−d−1 acts transitively on G̃(p),

(2) G̃(·) is constant on PGLd+1-orbits, and

(3) Each configuration in G̃(p) is automorphism-free.

Proof. Without loss of generality let us suppose that the first d + 1 points of p are linearly
independent. Then the GLd+1-orbit of each matrix A satisfying PA = p contains a matrix
of the form [Id+1|A], and the torus (k∗)n−d−1 acts transitively on the set of such matrices by

rescaling the columns of A. The set of affine Gale transforms G̃([Id+1|A]) coincides with the
GLn−d−1-orbit of the matrix [At| − In−d−1]. Since the action of (k∗)n−d−1 rescaling the rows
of At extends to the left-multiplication action of GLn−d−1, we see that this set of affine Gale
transforms is unaffected by rescaling the columns of A. This implies assertion (1). Assertion
(2) follows immediately from the corresponding fact about the affine Gale transform. To

prove (3) it suffices, by (1), to show that a single configuration in G̃(p) is automorphism-
free. So suppose to the contrary that the (n−d−1)×n matrix [At|−In−d−1] has a submatrix
of size (n− d− 1)× (n− 1) that is not full rank. Clearly the missing column is then among
the last block of n− d− 1 columns. If it is the j-th column in that negated identity matrix,
then by considering the vanishing minors obtained by using the remaining n−d−2 columns
of this identity block and each column of At separately, we deduce that the j-th row of At is
zero. But this means the j-th column of A is zero, which is impossible because PA = p. �

The preceding result says that the Gale transform sends the projective equivalence class
of an automorphism-free configuration of n points in Pd to the projective equivalence class
of an automorphism-free configuration of n points in Pn−d−2. This is a precise formulation
of the usual geometric statement of the Gale transform. Moreover, it is clear from the
definition that this is involutive, meaning that applying the Gale transform to the projective

equivalence class G̃(p) results in the projective equivalence class of p.
A classical fact about the Gale transform, first observed by Goppa in the context of coding

theory, is that any configuration of distinct points supported on a rational normal curve in
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Pd (which is necessarily an automorphism-free configuration, since such points are in general
linear position and n ≥ d + 2) is sent to a configuration of distinct points supported on a
rational normal curve in Pn−d−2. In our language this is the following:

Proposition 4.11 ([EP00, Corollary 3.2]). If p ∈ Ud,n ⊆ (Pd)n, then G̃(p) ⊆ Un−d−2,n.

From this fact, together with continuity and involutivity of the Gale transform, we imme-
diately obtain the following result (cf., [Gia13, §6.2]):

Corollary 4.12. If p ∈ Vd,n ⊆ (Pd)n is automorphism-free, then G̃(p) ⊆ Vn−d−2,n.

4.2. The base case. Since we already analyzed the Veronese compactification Vd,n ⊆ (Pd)n
for d = 2, we now assume d ≥ 3. Recall that Vd,n = (Pd)n for all n ≤ d + 3, so the first
non-trivial case is Vd,d+4.

Definition 4.13. For each I ∈
(
[d+4]
6

)
, let ψI be the polynomial in the maximal minors of

a matrix of coordinates for (Pd)d+4 obtained by taking the polynomial φI from Definition
3.4, which is a polynomial in the maximal minors of a matrix of coordinates for (P2)d+4 (see
Remark 3.3), and applying the transformation

mJ 7→ (−1)SJ+d+1mJc .

(The notation SJ was introduced in Definition 4.4.) Let Wd,d+4 ⊆ (Pd)d+4 be the closed

subscheme defined by {ψI} for all I ∈
(
[d+4]
6

)
.

Remark 4.14. The number of polynomials ψI is
(
d+4
6

)
, and their multi-degrees are permu-

tations of (2, 2, 2, 2, 2, 2, 4, . . . , 4).

Example 4.15. For d = 3, by Remark 3.3 we have

φ[6] = |123||145||246||356| − |124||135||236||456|,
and so

ψ[6] = |4567||2367||1357||1247| − |3567||2467||1457||1237|.
One can similarly work out the remaining six polynomials defining W3,7. We show below
(Corollary 4.26) that these seven polynomials cut out V3,7 set-theoretically, i.e. V3,7 = W3,7 as
sets. The same seven equations were obtained over a century ago by White from a different
construction and for a different purpose [Whi15].

4.3. The general case. Recall that for the d = 2 conic case studied in §3.2, we first
defined W2,6 as the vanishing of a determinant and then pulled this polynomial back along
all the forgetful maps to define a subscheme W2,n that we proved coincides with the Veronese
compactification V2,n. In this subsection we mimic that story for d ≥ 3 by pulling back the
equations for Wd,d+4 produced above to define a subscheme Wd,n for all n ≥ d+ 4. However,
we shall see below that there are significant twists to this story when d ≥ 3.

Note: For the remainder of this section we assume d ≥ 3 and n ≥ d+ 4.

Definition 4.16. For each J ∈
(

[n]
d+4

)
, there is a projection morphism πJ : (Pd)n � (Pd)d+4

sending (pi) to (pi)i∈J . For each defining polynomial ψI for Wd,d+4, let ψI,J := π∗JψI . Let
Wd,n ⊆ (Pd)n be the closed subscheme defined by {ψI,J} for all possible I, J .
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The first basic fact about this scheme is that it contains the Veronese compactification:

Lemma 4.17. We have Vd,n ⊆ Wd,n as schemes.

Proof. Since Vd,n is reduced, it suffices to show this containment set-theoretically. Let p =

(pi) ∈ Ud,n. For any J ∈
(

[n]
d+4

)
we have pJ := (pi)i∈J ∈ Ud,d+4. By Proposition 4.11 we then

have G̃(pJ) ⊆ U2,d+4, so φI vanishes on G̃(pJ) for each I ∈
(
[d+4]
6

)
. It then follows from

Proposition 4.5 and the definition of ψI that ψI vanishes at pJ . Since this holds for all I
and J , we have Ud,n ⊆ Wd,n and hence, by continuity, Vd,n ⊆ Wd,n. �

Recall that Yd,n ⊆ (Pd)n is the space of degenerate point configurations (Definition 3.11).

Lemma 4.18. We have Yd,n ⊆ Wd,n as schemes.

Proof. By definition the ideal for Yd,n is generated by the maximal minors of a matrix of
coordinates for (Pd)n, and by construction the polynomials ψI,J generating the ideal for Wd,n

are all polynomials in these maximal minors. �

Thus we have a scheme-theoretic containment of the scheme-theoretic union:

Vd,n ∪ Yd,n ⊆ Wd,n.

By putting together what we already know about the Gale transform, we can show that the
opposite inclusion holds set-theoretically in the base case n = d+ 4:

Theorem 4.19. Set-theoretically, we have Wd,d+4 = Vd,d+4 ∪ Yd,d+4.

Proof. Fix p ∈ Wd,d+4. If p is degenerate, then p ∈ Yd,d+4 and we are done. If p is
automorphism-free, then Proposition 4.5 and the definition of Wd,d+4 implies that each Gale

transform G̃(p) lies in V2,d+4, and each Gale transform is automorphism-free by Proposition

4.10, so G̃(G̃(p)) ⊆ Vd,d+4 by Corollary 4.12; since p ∈ G̃(G̃(p)), we are done. So we can
assume that p is non-degenerate but not automorphism-free.

Let A be a matrix associated to p, i.e., PA = p. Since all loci in question are PGLd+1-
invariant, the fact that the points in p span Pd yet there is a hyperplane H ⊆ Pd containing
all but one of the points means we can assume without loss of generality that A = [Id+1|A]
where the first e ≥ 1 rows of A, and no others, are zero. Then an affine Gale transform of
A is given by B = [At| − I3], a 3× (d+ 4) matrix whose zero columns are precisely the first
e columns. Let B′ be the 3× (d + 4− e) matrix obtained by removing these zero columns,
and let q = PB′ ∈ (P2)d+4−e be the associated point configuration. Since p ∈ Wd,d+4, we
know all of the ψI,J vanish at A, so by Proposition 4.5 the columns of B, and hence of B′,
are vectors lying on the affine cone over a plane conic. Thus after projectivization we obtain
q ∈ V2,d+4−e. We claim that q is automorphism-free. Indeed, if we remove the first e rows and
columns of A then the associated configuration r ∈ (Pd−e)d+4−e is clearly automorphism-free

and has q as a Gale transform, q ∈ G̃(r), so the claim follows from Proposition 4.10(3).

Since q ∈ V2,d+4−e is automorphism-free, Corollary 4.12 tells us that G̃(q) ⊆ Vd−e,d−e+4,

and involutivity of the Gale transform implies r ∈ G̃(q), so we see that r ∈ Vd−e,d−e+4. Thus,
there is a quasi-Veronese curve C of degree d− e in the Pd−e ⊆ Pd defined by the vanishing
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of the first e coordinates that passes through the points pe+1, pe+2, . . . , pd+4. Let C ′ be the
union of C and the e lines obtained by connecting each pi, for 1 ≤ i ≤ e, to any point of
C. Then C ′ is a degree d quasi-Veronese curve in Pd because the points p1, . . . , pe are the
standard coordinate points outside of the linear subspace Pd−e. Since C ′ passes through all
d+ 4 points of p, we have that p ∈ Vd,d+4 as desired. �

Before turning to the question of whether the preceding proposition extends beyond n =
d+ 4, it is convenient to introduce the following geometric construction:

Definition 4.20. For p ∈ (Pd)n, let the Veronese envelope Ep ⊆ Pd be the union of all
quasi-Veronese curves passing through each point of p.

Note that the order of the points does not affect the Veronese envelope, and Ep 6= ∅ if
and only if p ∈ Vd,n. Moreover, for any subset I ⊆ [n] and corresponding projection map
πI : (Pd)n → (Pd)|I|, we have Ep ⊆ EπI(p).

We will need the following result shortly for an inductive argument:

Lemma 4.21. Suppose p ∈ Wd,n \ Yd,n and π[n−1](p) ∈ Vd,n−1. If the containment

Eπ[n−1](p) ⊆
⋂
I

EπI(p) (2)

is an equality, where the intersection is over I ∈
(
[n−1]
d+3

)
such that πI(p) /∈ Yd,d+3, then

p ∈ Vd,n.

Proof. Write q = πI(p) for a subset I ∈
(
[n−1]
d+3

)
such that this projection is non-degenerate,

and let q′ = πIt{n}(p). Since p ∈ Wd,n, by definition we have q′ ∈ Wd,d+4, and so q′ ∈
Vd,d+4∪Yd,d+4 by Theorem 4.19. Since q is non-degenerate, so must be q′, and so q′ ∈ Vd,d+4.
In particular, there is a quasi-Veronese curve through pn and all points of q, so pn ∈ Eq. By
letting the index set I vary, we deduce that pn is in the right side, and hence also the left
side, of the hypothesized equality (2). Thus there is a quasi-Veronese curve through pn and
all pi for 1 ≤ i ≤ n− 1, or in other words, p ∈ Vd,n. �

Theorem 4.22. Set-theoretically, we have W3,n = V3,n ∪ Y3,n.

Proof. We use induction on n. The base case, n = 7, is Theorem 4.19, and for arbitrary n one
containment is given by Lemmas 4.17 and 4.18. Let p ∈ W3,n \Y3,n; then we must show that
p ∈ V3,n. By the inductive hypothesis, we may assume that all points of p are distinct. We
claim that by reordering the points if necessary, we may also assume that π[n−1](p) /∈ Y3,n−1.
Indeed, if there is a plane H1 ⊆ P3 containing all but one point of p and another plane
H2 ⊆ P3 containing all but a different point, then the line H1 ∩ H2 ⊆ P3 contains all but
two points, so the union of this line with the line between those two remaining points and
any third line joining these two lines yields a quasi-Veronese curve through all n points, thus
showing that p ∈ V3,n thereby verifying the claim. So, we have π[n−1](p) ∈ W3,n−1 \ Y3,n−1
and hence by the inductive hypothesis, π[n−1](p) ∈ V3,n−1.

If π[n−1](p) contains one of the non-degenerate six-point sub-configurations πI(p), I ∈(
[n−1]

6

)
, depicted in Figure 2, then there is a unique quasi-Veronese curve through πI(p) and

so Eπ[n−1](p) = EπI(p). In this case we may apply Lemma 4.21 to conclude that p ∈ V3,n.
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Figure 2. Six-point configurations whose Veronese envelope is a curve.

Thus it is sufficient to consider the point configurations without such sub-configurations.
Table 1 and Figure 3 show all remaining possibilities of π[n−1](p) if there are no points on the
nodes. Table 1 also shows the Veronese envelopes Eπ[n−1](p), and for each one it illustrates

a single non-degenerate six-point sub-configuration πI(p) whose Veronese envelope equals
that of π[n−1](p). The case in Figure 3 is isolated from the others because there Eπ[n−1](p),
which is the curve itself, is not the Veronese envelope of a single non-degenerate six-point
sub-configuration but instead is the intersection of two such Veronese envelopes. In all such
cases we can apply again Lemma 4.21 to deduce that p ∈ V3,n. It only remains to check the
cases with points on the nodes; by again explicitly enumerating these cases we verified that
Lemma 4.21 can always be applied here (details of this last step are omitted from the paper
for the sake of brevity but are available upon request). �

Figure 3. On the left, a point configuration π[n−1](p) whose Veronese enve-
lope, the curve itself, is the intersection of the Veronese envelopes of the two
six-point sub-configurations on the right.

We expect that the preceding result extends to all higher dimensions:

Conjecture 4.23. For all d ≥ 4 and n ≥ d+ 5, set-theoretically we have Wd,n = Vd,n ∪Yd,n.

The combinatorics of our proof technique in the d = 3 case, which involves a brute-force
enumeration of many cases, quickly becomes unwieldy; a more conceptual proof would be
desirable and is likely necessary to tackle this conjecture.

Remark 4.24. Let us pause a moment to recall where things stand now. We found equations
that cut out V2,n scheme-theoretically and classified which of these equations can be omitted
to still cut out V2,n set-theoretically. For d ≥ 3 we used the Gale transform to find equations
of a scheme that set-theoretically we conjecture satisfies Wd,n = Vd,n ∪ Yd,n, where Yd,n is
the locus of degenerate point configurations. We proved this conjecture when d ≥ 3 and
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π[n−1](p)

Eπ[n−1](p) cone over a
conic

P3 P2 ∪ P1 P3 P2 ∪ P2 P2 ∪ P2

πI(p)

π[n−1](p)

Eπ[n−1](p) P3 P2 ∪ P1 P3 P3 P2 ∪ P2

πI(p)

Table 1. Configurations of n − 1 ≥ 7 points not containing the six-point
sub-configurations in Figure 2, and for each one a six-point sub-configuration
with the same Veronese envelopes.

n = d + 4, and also when d = 3 and n ≥ d + 4. The variety Vd,n is irreducible (Lemma
2.2), and it is well-known that the determinantal variety Yd,n is irreducible. Thus, for each
pair (d, n) the equality Wd,n = Vd,n ∪ Yd,n means that either (1) Yd,n ⊆ Vd,n, in which case
the Gale equations defining Wd,n do indeed cut out the Veronese compactification Vd,n set-
theoretically, or (2) the variety (Wd,n)red has precisely two irreducible components, namely
the Veronese compactification Vd,n and the degenerate point configuration loci Yd,n.

Consider a case where (Wd,n)red does have these two irreducible components. In order to
set-theoretically cut Wd,n down to the irreducible component we care about, Vd,n, we need
polynomials that vanish on Vd,n but are nonzero at a general point of Yd,n. However, by
the first fundamental theorem of invariant theory, any SLd+1-invariant multi-homogeneous
polynomial on (Pd)n is a polynomial in the maximal minors of the matrix of homogeneous
coordinates, so such a polynomial must vanish on Yd,n since the latter is defined by the
vanishing of these minors. Therefore, the polynomials that cut Wd,n down to Vd,n cannot be
invariant with respect to projectivities. This largely rules out the possibility of constructing
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them in a geometric manner and is part of the reason we believe it will be quite difficult to
find a complete set of equations for Vd,n, even set-theoretically in the case d = 3.

Proposition 4.25. Suppose that d ≥ 3 and n ≥ d+ 4. We have Yd,n ⊆ Vd,n if and only if

(d, n) ∈ {(3, 7), (3, 8), (4, 8)}.
Proof. Assume (d, n) 6= (3, 7), (3, 8), (4, 8). We claim Yd,n 6⊆ Vd,n for dimension reasons:

dim(Yd,n) = nd− n+ d ≥ d2 + 2d+ n− 3 = dim(Vd,n).

The equality on the left follows from a simple parameter count and the equality on the right
is Lemma 2.2 (or a simple parameter count as well), so it suffices to establish the inequality
in the middle. If d = 3, 4 and n ≥ 9 then this inequality is clear, so suppose d ≥ 5. By
rewriting the inequality as n(d− 2) ≥ d2 + d− 3, we see that it holds since

n(d− 2) ≥ (d+ 4)(d− 2) ≥ d2 + d− 3,

where the first inequality here uses n ≥ d+ 4 and the second one uses d ≥ 5.
For the converse, first suppose that d = 3 and n = 8. For any 8 points p in P2, there is

a pencil of cubic curves passing through them. Because the discriminant of singular cubic
curves is a hypersurface in |OP2(3)|, there is a singular cubic curve passing through p. By
embedding P2 as a plane in P3 and adding an embedded spatial point to this singular cubic
at one of its singular points, it follows from [PS85] that there is a family of twisted cubics
whose flat limit is this singular plane cubic curve (with embedded point), and so p is in the
closure of U3,8. Thus Y3,8 ⊆ V3,8, and hence Y3,7 ⊆ V3,7 as well.

Lastly, let p ∈ Y4,8 be a general degenerate point configuration, say p ⊆ P3 ⊆ P4. By
applying Gromov-Witten theory, in particular the reconstruction theorem ([KV07, §4.4] for
characteristic zero, [Pom12] for positive characteristic), we can count the number of rational
curves of degree 4 passing through p, which is four (the details of this calculation are available
upon request). In characteristic zero, we may also rely on interpolation theory to guarantee
the existence (but not the precise number) of such a rational curve (see [ALY15]). Thus V4,8
contains a general point of Y4,8 and hence it contains all of Y4,8. �

Corollary 4.26. We have explicit set-theoretic equations for V3,7, V3,8, and V4,8.

Proof. In these cases we have Wd,n = Vd,n ∪ Yd,n by Theorems 4.19 and 4.22, and we have
Yd,n ⊆ Vd,n in these cases by Proposition 4.25, so Wd,n = Vd,n in these cases. �

This also brings up the second reason why finding a complete set of defining equations for
Vd,n seems to be a very difficult problem in general:

Corollary 4.27. The pull-backs of all polynomials vanishing on V3,7 = W3,7 do not set-
theoretically cut out V3,n for any n ≥ 9.

Proof. By Proposition 4.25, a general configuration of n ≥ 9 points in P2 ⊆ P3 is outside of
V3,n even though its image under each projection map (P3)n � (P3)7 is in Y3,7 ⊆ V3,7. �

A third indicator of the sudden increase in complexity when passing from d = 2 to d ≥ 3
is that Vd,n in the latter case does not seem to have nice geometric/arithmetic properties as
it does in the former. For instance:
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Proposition 4.28. Suppose that char k 6= 2, 3. For n ≥ 8, V3,n is not normal.

Proof. Consider a triangular configuration of three lines `1, `2, `3 on a P2 ⊆ P3. Let p ∈ (P3)9

be distinct points such that pi ∈ `j if and only if i ≡ j mod 3. Then p ∈ V3,9. We claim
that `1 ∪ `2 ∪ `3 is the only degeneration of a twisted cubic containing all of the pi. Indeed,
if C is a rational curve containing all the pi, then C meets P2 at least 9 times. Because
degC = 3 < 9, C must have an irreducible component contained in P2. The only plane
curve with degree ≤ 3 passing through all the pi is `1 ∪ `2 ∪ `3. This verifies the claim.

Now consider the total evaluation map ν : M0,9(P3, 3) → V3,9 ⊆ (P3)9. The fiber ν−1(p)
consists of three distinct points, corresponding to a stable map fi : C = C1 ∪C2 ∪C3 → P3,
i = 1, 2, 3, where C is a chain of P1s with central component C2, and f(C2) = `i. Since ν
is a birational projective morphism, V3,9 is not normal by Zariski’s Main Theorem [Har77,
Corollary III.11.4] because M0,n(P3, 3) is a normal variety under the characteristic assumption
([BM96, Proposition 7.4]). One can easily generalize this argument to all n ≥ 9.

For n = 8, let p ∈ V3,8 be a degenerate configuration of eight points not lying on a
conic (such a configuration exists by Proposition 4.25). For the total evaluation map ν :
M0,8(P3, 3)→ V3,8 ⊆ (P3)8, the fiber ν−1(p) corresponds to degree 3 stable maps f : C → P3

such that f(C) passes through these eight points, and the only possibility for f(C) is to be
a singular planar cubic. Since there are finitely many, but more than one, singular planar
cubics passing through eight general points (there are 12 to be precise, by considering the
discriminant [Sil09, Appendix A, Prop 1.1]), we conclude that the fiber ν−1(p) is disconnected
and hence again by Zariski’s Main Theorem that V3,8 is not normal. �
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[Ste75] François Sterboul, Un problème extrémal pour les graphes et les hypergraphes, Discrete Math.,
vol. 11, pp. 71–78, 1975.

[Stu08] Bernd Sturmfels, Algorithms in invariant theory. Second Edition, in Texts and Monographs in
Symbolic Computation, Springer-Verlag, Vienna, 2008.

[Whi15] Henry S. White, Seven Points on a Twisted Cubic Curve, Proceedings of the National Academy
of Sciences of the United States of America, Vol. 1, No. 8 (Aug. 15, 1915), pp. 464–466.
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