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ABSTRACT. In 2004 Pachter and Speyer introduced the higher dissimilarity maps for phy-
logenetic trees and asked two important questions about their relation to the tropical Grass-
mannian. Multiple authors, using independent methods, answered affirmatively the first
of these questions, showing that dissimilarity vectors lie on the tropical Grassmannian, but
the second question, whether the set of dissimilarity vectors forms a tropical subvariety, re-
mained opened. We resolve this question by showing that the tropical balancing condition
fails. However, by replacing the definition of the dissimilarity map with a weighted vari-
ant, we show that weighted dissimilarity vectors form a tropical subvariety of the tropical
Grassmannian in exactly the way that Pachter–Speyer envisioned. Moreover, we provide
a geometric interpretation in terms of configurations of points on rational normal curves
and construct a finite tropical basis that yields an explicit characterization of weighted dis-
similarity vectors.

1. INTRODUCTION

1.1. Background. In one of the first papers on tropical geometry, Speyer and Sturmfels
[SS04] introduced the tropical Grassmannian and showed that Grtrop(2, n) ⊆ R(

n
2) coin-

cides with the space of n-leaf phylogenetic trees, a tropical analogue of the moduli space
of stable rational n-pointed curves that plays an important role in genomics. With this
Euclidean embedding, each phylogenetic tree is identified with its dissimilarity vector,
the

(
n
2

)
-tuple of path lengths connecting each pair of the n leaves.

Pachter and Speyer [PS04] generalized this embedding by introducing the higher dis-
similarity maps: for each integer r with 2 ≤ r ≤ n+1

2
they showed that any phylogenetic

tree can be recovered from its r-dissimilarity vector, the
(
n
r

)
-tuple recording the sum of

edge lengths in the subtree spanned by each subset of r leaves. They also stated two
questions concerning the possible tropical geometry of these higher dissimilarity maps:
(1) Is the space of r-dissimilarity vectors in R(

n
r) contained in the tropical Grassmannian

Grtrop(r, n)? And if so, then: (2) Is there a rational map Gr(2, n) 99K Gr(r, n) whose image
tropicalizes to yield the space of r-dissimilarity vectors? The first question was answered
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positively by several authors using distinct methods [Coo09, Gir10, Man11], whereas the
second question has remained open other than the case r = 3 that was confirmed in the
original [PS04]. There have been numerous papers studying other aspects of Pachter–
Speyer’s higher dissimilarity maps as well (e.g., [EL18, BR17, BR14, Rub12, HM12, BC09,
Rub07, LYP06]).

In this paper we resolve the second question of Pachter–Speyer and introduce and
study a variant of the higher dissimilarity maps that is more compatible with tropical
geometry.

1.2. Statement of results. By direct calculation we provide a negative answer to the sec-
ond tropical question of Pachter–Speyer (recall that the first open case is r = 4, n = 7):

Theorem 1.1 (Theorem 3.1). For n = 7 the space of 4-dissimilarity vectors in R(
7
4) is a polyhedral

complex that is not balanced, for any choice of weights on the facets, hence is not a tropical variety.

However, this is not the end of the story. The rational map Gr(2, n) 99K Gr(3, n) in
[PS04], providing the motivation for their second tropical question, does not tropicalize
to a map sending the 2-dissimilarity vector of each phylogenetic tree to the corresponding
3-dissimilarity vectors — as Pachter and Speyer point out, the output is twice the corre-
sponding 3-dissimilarity vector. This generalizes to a rational map Gr(2, n) 99K Gr(r, n)

whose tropicalization sends the 2-dissimilarity vector of a phylogenetic tree to the
(
n
r

)
-

tuple recording, for each size r subset of the n leaves, the sum of all path lengths connect-
ing all pairs of leaves in this subset. It is just a coincidence that for r = 3 these two dif-
ferent notions of subtree weights differ by a scalar. We call these

(
n
r

)
-tuples defined using

path lengths within subtrees weighted r-dissimilarity vectors, and the map sending a phy-
logenetic tree to its vector of weighted r-dissimilarity vectors the weighted r-dissimilarity
map. While for r > 3 the original r-dissimilarity vectors do not have the tropical geome-
try interpretation Pachter and Speyer had hoped for, it turns out these weighted variants
do:

Theorem 1.2 (Theorem 4.13, Proposition 5.1). For 2 ≤ r ≤ n−2, the weighted r-dissimilarity
map embeds the space of phylogenetic trees as a tropical subvariety in R(

n
r). This tropical variety

is the tropicalization of a subvariety of Gr(r, n) that is both (1) the image of a natural rational
map Gr(2, n) 99K Gr(r, n), and (2) the Gelfand–MacPherson correspondence applied to the open
subvariety of (Pr−1)n parameterizing configurations of n distinct points that lie on a rational
normal curve in Pr−1.

The equations for the Zariski closure of the locus in (Pr−1)n mentioned in the preced-
ing theorem were studied in [CGMS18]. While they are not known in full generality,
we prove here that a particularly simple subset of the defining equations, after apply-
ing the Gelfand–MacPherson correspondence, yields a tropical basis for an ideal whose
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set-theoretic vanishing locus is the subvariety of Gr(r, n) alluded to in the preceding the-
orem. As a consequence of this tropical basis result, we obtain the following characteri-
zation of weighted dissimilarity vectors, generalizing the classic tree-metric theorem for
2-dissimilarity vectors:

Theorem 1.3 (Corollary 5.13). Fix 2 ≤ r ≤ n − 2. A vector w = (wI)I∈([n]
r )
∈ R(

n
r) is a

weighted r-dissimilarity vector if and only if the following two conditions hold:

(1) for each 4-tuple {i, j, k, l} ⊆ [n] there exists an A ⊆ [n] \ {i, j, k, l} of size r− 2 such that
two of the following expressions equal each other and are greater than or equal to the third:

wijA + wklA, wikA + wjlA, wilA + wjkA;

(2) for each I ∈
(

[n]
6

)
, J ∈

(
[n]\I
r−3

)
, and for each cube C on I (see §5.2 for the notation) with

corresponding bipartition B,W we have∑
K∈B

wJtK =
∑
K∈W

wJtK .

The case r = 2 is a main result of [SS04] and our proof relies on their result; in both this
case and the case r = n − 2 condition (2) here is vacuous because

(
[n]\I
r−3

)
= ∅. In general,

this characterization does not provide a minimal, non-redundant set of conditions, and
indeed our proof suggests an algorithmic approach for reducing the number of conditions
of type (2) that need to be checked.

Remark 1.4. In [SS04] it is shown that the quadratic Plücker relations do not form a trop-
ical basis for Gr(r, n) when r ≥ 3 and n ≥ 7, and in general the tropical Grassman-
nian depends on the characteristic of the base field. It is interesting to contrast with the
present situation where the tropical subvariety of Grtrop(r, n) parameterizing weighted r-
dissimilarity vectors, and the tropical basis we construct for it, is independent of the base
field.

Acknowledgements. NG was supported in part by NSF DMS-1802263 and thanks the
members of the Spring 2016 UGA VIGRE graduate student tropical research group: Na-
talie Hobson, Andrew Maurer, Xian Wu, Matt Zawodniak, and Nate Zbacnik. We also
would like to thank the anonymous referee for the valuable comments and suggestions.

2. BACKGROUND AND PRELIMINARIES

First some conventions. We work over an algebraically closed field k of arbitrary char-
acteristic, equipped with the trivial valuation. For a subvariety X ⊆ PN−1 of projective
space, we denote by X◦ := Xaff ∩ (k×)N the restriction of the affine cone over X to the
dense open torus in AN . Tropicalization sends subvarieties of the torus (k×)N to subsets
of Euclidean space RN .
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2.1. Phylogenetic trees. For us, an n-leaf phylogenetic tree is a connected graph, without
cycles or vertices of degree 2, with n leaves labelled by the integers [n] := {1, . . . , n}, that
is equipped with an R-valued length on each edge such that all the internal edges have
non-negative length. The set of n-leaf phylogenetic trees with a fixed combinatorial tree
as the underlying graph forms a half-space R#edges−n

≥0 ×Rn, and by identifying trees having
edges of length zero with the trees obtained by deleting such edges these half-spaces are
naturally glued together and form an abstract polyhedral complex, that we shall denote
by Tn, known as the space of phylogenetic trees [BHV01]. An influential result of Speyer–
Sturmfels is that the tropical Grassmannian

Grtrop(2, n) := Trop(Gr(2, n)◦) ⊆ R(
n
2)

coincides with the space of phylogenetic trees Tn [SS04, Theorem 3.4].

Remark 2.1. A phylogenetic tree is sometimes defined to have edge lengths only on its in-
ternal edges. The space of such phylogenetic trees is the quotient of Grtrop(2, n) by a linear
subspace of dimension n, and it coincides with the moduli space of tropical n-pointed sta-
ble rational curves Mtrop

0,n somewhat analogous to Kapranov’s construction [Kap93] of M0,n

as a (Chow) quotient of the Grassmannian Gr(2, n) by the maximal torus (k×)n (indeed
the linear subspace Rn acting on Grtrop(2, n) is the tropicalization of Kapranov’s torus ac-
tion). Throughout this paper we include the non-internal edge lengths and hence work
in R(

n
2) without taking this linear subspace quotient.

2.2. Dissimilarity vectors and maps. The map

d2 : Tn → R(
n
2),

sending each phylogenetic tree T to the vector whose (i < j)-entry is the sum of edge
lengths along the unique path in T connecting leaf i to leaf j is known as the dissimilarity
map, and the output d2(T ) is a dissimilarity vector. This map is injective [Bun71], with
image equal to Grtrop(2, n); it identifies phylogenetic trees with dissimilarity vectors, or
equivalently, points of the tropical Grassmannian [SS04].

The higher dissimilarity map
dr : Tn → R(

n
r),

introduced in [PS04] for r ≥ 3, sends T to the higher dissimilarity vector whose I-entry, for
I ∈

(
[n]
r

)
, is the sum of edge lengths among all edges in the subtree spanned by the r leaves

indexed by I ; it is injective for 2 ≤ r ≤ n+1
2

[PS04, Theorem in §2]. Since a tree spanned
by two leaves is a path, the r = 2 case of this map coincides with the dissimilarity map in
the preceding paragraph.

Pachter and Speyer asked two questions about these higher dissimilarity maps [PS04,
Problems 3 and 4]: (1) is the image of dr contained in Grtrop(r, n), and if so then (2) is there
a rational map Gr(2, n) 99K Gr(r, n) whose image, viewed as a subvariety of (k×)(

n
r) by



POINT CONFIGURATIONS, PHYLOGENETIC TREES, AND DISSIMILARITY VECTORS 5

taking the affine cone over the Plücker embedding and then intersecting with the big torus
in A(

n
r), tropicalizes to the space of higher dissimilarity vectors dr(Tn). Various authors,

cited above in the introduction, resolved the first of these questions in the affirmative. For
the second question there has been progress in characterizing the image of dr [Rub12],
even in terms of a piecewise linear map that appears related to tropical geometry [BC09],
but the only case that had been fully resolved is r = 3, where in [PS04, §3] it is observed
that the rational map Gr(2, n) 99K Gr(3, n) induced by applying the second Veronese map
to the columns of a 2× n matrix achieves the desired goal. This Pachter–Speyer map can
be generalized as follows:

Definition 2.2. The matrix morphism A2n → Arn,

(1)
(
x1 x2 · · · xn
y1 y2 · · · yn

)
7→


xr−1

1 xr−1
2 · · · xr−1

n

xr−2
1 y1 xr−2

2 y2 · · · xr−2
n yn

xr−3
1 y2

1 xr−3
2 y2

2 · · · xr−3
n y2

n

. . .
yr−1

1 yr−1
2 · · · yr−1

n

 ,

given by applying the (r − 1)-Veronese map to each column, descends to a rational map
of Grassmannians Gr(2, n) 99K Gr(r, n) that we shall call the column-wise (r − 1)-Veronese
Grassmannian map, or simply Veronese Grassmannian map for short.

The fact that this matrix map descends to the Grassmannians follows from the ele-
mentary observation that the image of each GL2-orbit is contained in a GLr-orbit. Note,
however, that the image of a full-rank matrix need not be a full-rank matrix, so at the
level of Grassmannians this really is just a rational map and not a regular morphism; for
instance, the full-rank matrix (

1 0 0 · · · 0

0 1 0 · · · 0

)
is sent to the following non-full-rank matrix:

1 0 0 · · · 0

0 0 0 · · · 0
...

0 1 0 · · · 0

 .

This column-wise Veronese Grassmannian map will play a central role in our paper.

3. RESOLUTION OF PACHTER–SPEYER’S SECOND QUESTION

Recall that for each treeG underlying an n-leaf phylogenetic tree (meaningG has leaves
labelled by 1, . . . , n but the edges do not carry weights) there is a polyhedral cone in the
space of phylogenetic trees Tn, let us call it T Gn , parameterizing phylogenetic trees on G.
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FIGURE 1. The graph G defining a 10-dimensional cone σ in the space of
4-dissimilarity vectors.
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FIGURE 2. The three graphs whose corresponding 11-dimensional cones
τ1, τ2, τ3 meet along the common face σ.

The restriction of the dissimilarity map dr to each such polyhedral cone is linear and so
the image dr(T Gn ) is a polyhedral cone in R(

n
r). By varying G, the polyhedral cones dr(T Gn )

provide a polyhedral decomposition of the space of r-dissimilarity vectors.

For each edge E of G, let TE be the phylogenetic tree on G where E has length 1 and all
the other edges have length 0. In phylogenetics, such trees TE are called split metrics. Then
the polyhedral cone dr(T Gn ) consists of all R-linear combinations of the vectors dr(TE) such
that the coefficient on dr(TE) is non-negative whenever E is an internal edge.

To show that the space of r-dissimilarity vectors dr(Tn) for r > 3 is not the tropical-
ization of the image of a map Gr(2, n) 99K Gr(r, n), we show a stronger result: dr(Tn) is
not even a tropical variety in general. This is because, as a polyhedral complex, dr(Tn)
is not balanced for r ≥ 4 (for the definition of balanced see [MS15, Definition 3.3.1], and
tropical varieties are balanced by [MS15, Theorem 3.3.5]). We check this explicitly in the
first non-trivial case:

Theorem 3.1. The 11-dimensional polyhedral complex d4(T7) ⊆ R(
7
4) = R35 is not balanced for

any choice of facet weights and hence it is not a tropical variety.

Proof. Consider the graph G in Figure 1 with a unique vertex of degree 4. This corre-
sponds to a codimension-one cone σ := d4(T G7 ) that is the common face of three maximal-
dimensional cones, call them τ1, τ2, τ3. Each τi corresponds to the graph obtained by in-
serting an edge Ei separating the 4 incident edges in G into two pairs of coincident edges
(see Figure 2). Since the edge Ei is internal, the cone τi is the R≥0-span of σ and the vector
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ρi := d4(TEi
). For d4(T7) to be balanced along σ it is necessary that ρ1, ρ2, ρ3 are linearly

dependent modulo the subspace 〈σ〉 spanned by σ.
Consider the 13 × 35 matrix whose columns are indexed by the size 4 subsets of [7]

(ordered lexicographically: {1, 2, 3, 4} < {1, 2, 3, 5} < · · · < {4, 5, 6, 7}), whose first 10
rows are the images under d4 of the split metrics defined by the edges in G, and whose
last three rows are the images of the split metrics defined by the edges Ei:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0

1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1

0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1

0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1

0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1


The last three rows are the vectors ρi (the only entry of ρi not equal to 1 is in the column

indexed by the unique 4-tuple of vertices whose induced subgraph does not contain Ei).
With computer assistance we check that this matrix has full rank. This implies that the
last three rows are linearly independent modulo the subspace 〈σ〉 spanned by the first 10
rows, which shows that tropical balancing is not possible at σ. �

4. WEIGHTED DISSIMILARITY VECTORS

In this section we tropicalize the Veronese Grassmannian map from Definition 2.2 and
show that the image of the tropicalized map is the space of phylogenetic trees, embedded
by the weighted dissimilarity vectors that we introduce in this paper. One of the main
steps is to recognize the Veronese Grassmannian map as the restriction of a monomial
map of tori; this crucially avails us of functoriality of tropicalization.

4.1. Coordinatizing the Veronese Grassmannian map. Recall that the Veronese Grass-
mannian map Gr(2, n) 99K Gr(r, n) in Definition 2.2 is expressed in terms of a matrix map
of affine spaces A2n → Arn. In order to tropicalize it we need to coordinatize the induced
map on Grassmannians in their Plücker embeddings. Since these Grassmannians are ob-
tained as GL-quotients, this means expressing the matrix map in terms of homogeneous
collections of SL-invariants, i.e., maximal minors. We do this by defining a morphism of
tori (k×)(

n
2) → (k×)(

n
r) that restricts to the Veronese Grassmannian map.

Remark 4.1. Since technically in this paper we tropicalize projective varieties by first lift-
ing to affine cones and then restricting to dense tori, by a slight abuse of terminology
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we shall use the term Veronese Grassmannian map to refer to the rational map Gr(2, n) 99K
Gr(r, n) in Definition 2.2 as well as the induced morphism Gr(2, n)◦ → Gr(r, n)◦ (the fact
that the latter is indeed a regular morphism follows from Proposition 4.3 below); the con-
text will always make clear which meaning is intended.

Definition 4.2. For each 2 ≤ r ≤ n, let

ϕr : (k×)(
n
2) → (k×)(

n
r)

be the group scheme morphism induced from the k-algebra homomorphism

ϕ∗r : k[x±I ] → k[x±ij]

xI 7→
∏

i,j∈I,i<j

xij.

Proposition 4.3. The monomial morphism ϕr restricts to the Veronese Grassmannian map

Gr(2, n)◦ → Gr(r, n)◦.

Proof. By the first fundamental theorem of invariant theory, we need to see how the maxi-
mal minors of the right-hand matrix in (1) depend on the maximal minors of the left-hand
matrix. But the right-hand matrix is just a Vandermonde matrix where the columns have
been homogenized, so for any collection I ∈

(
[n]
r

)
of columns the corresponding maximal

minor is ∏
i,j∈I,i<j

(xiyj − xjyi) =
∏

i,j∈I,i<j

mij,

wheremij denotes the ij-maximal minor of the left-hand matrix. This shows the restricted
morphism ϕr|Gr(2,n)◦ is indeed induced by the column-wise Veronese map. �

Since ϕr is a toric morphism, we can now apply functoriality of tropicalization for toric
morphisms [MS15, Corollary 3.2.13] which tells us that the tropicalization of the closure
(in (k×)(

n
r)) of the image of the Veronese Grassmannian map coincides with the image

of the tropicalized map Trop(ϕr) restricted to the tropical Grassmannian Grtrop(2, n). As
we discussed earlier, Grtrop(2, n) is the space of 2-dissimilarity vectors, and Trop(ϕr) is
the linear map described explicitly in the following proposition (whose proof is trivial).
Our next steps are to go through this functoriality argument in detail, and to interpret
Trop(ϕr) as sending 2-dissimilarity vectors to the weighted dissimilarity vectors that we
introduce next.

Proposition 4.4. The monomial morphism

ϕr : (k×)(
n
2) → (k×)(

n
r)

tropicalizes to the linear map
Trop(ϕr) : R(

n
2) → R(

n
r)

whose I-component, for I ∈
(

[n]
r

)
, is
∑

i,j∈I,i<j xij .
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4.2. Weighted dissimilarity maps.

Definition 4.5. For each 2 ≤ r ≤ n, let

dwtr : Tn → R(
n
r)

be the weighted dissimilarity map sending a phylogenetic tree T to the weighted dissimilarity
vector defined as follows. For each I ∈

(
[n]
r

)
, let T (I) be the r-leaf subtree of T spanned by

the leaves indexed by I , and let the I-component of dwtr (T ) be the sum of the entries of the
dissimilarity vector d2(T (I)).

In other words, dwtr records for each r-leaf subtree the sum of all
(
r
2

)
path lengths in the

subtree. The usual r-dissimilarity map dr records for each r-leaf subtree the sum of all
edge lengths in the subtree, whereas dwtr is a “weighted” variant because it counts each
edge with multiplicity equal to the number of leaf-to-leaf paths in the subtree in which
the edge occurs.

Remark 4.6. Note that dwt3 = 2d3 since in a 3-leaf tree every edge is traversed exactly twice
among the

(
3
2

)
= 3 possible leaf-to-leaf paths, whereas for r > 3 the usual and weighted

dissimilarity maps are, in general, not simply scalar multiples of each other.

We will later show that the image of the weighted dissimilarity map is a tropical variety
(Theorem 4.13) and hence in particular is a balanced polyhedral complex. Before getting
to that general proof, one might be curious to see how the matrix used to establish non-
balancing in the proof of Theorem 3.1 changes when using the weighted dissimilarity
map.

Example 4.7. Replacing every instance of the dissimilarity map d4 with the weighted
dissimilarity map dwt4 in the construction of the 13× 35 matrix in the proof of Theorem 3.1
yields the following:

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0

3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 3 3 3 3 3 3 0 0 0 0 3 3 3 3 0

3 0 0 0 3 3 3 0 0 0 3 3 3 0 0 0 3 3 3 0 3 3 3 0 0 0 3 3 3 0 3 3 3 0 3

0 3 0 0 3 0 0 3 3 0 3 0 0 3 3 0 3 3 0 3 3 0 0 3 3 0 3 3 0 3 3 3 0 3 3

0 0 3 0 0 3 0 3 0 3 0 3 0 3 0 3 3 0 3 3 0 3 0 3 0 3 3 0 3 3 3 0 3 3 3

0 0 0 3 0 0 3 0 3 3 0 0 3 0 3 3 0 3 3 3 0 0 3 0 3 3 0 3 3 3 0 3 3 3 3

0 3 3 0 3 3 0 4 3 3 3 3 0 4 3 3 4 3 3 4 3 3 0 4 3 3 4 3 3 4 4 3 3 4 4

4 3 3 3 3 3 3 0 0 0 4 4 4 3 3 3 3 3 3 0 4 4 4 3 3 3 3 3 3 0 4 4 4 3 3

4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0

0 3 3 3 3 3 3 4 4 4 3 3 3 4 4 4 4 4 4 3 3 3 3 4 4 4 4 4 4 3 4 4 4 3 3

4 3 3 4 3 3 4 0 3 3 4 4 3 3 4 4 3 4 4 3 4 4 3 3 4 4 3 4 4 3 4 3 3 4 4

4 4 4 3 4 4 3 4 3 3 3 3 4 3 4 4 3 4 4 4 3 3 4 3 4 4 3 4 4 4 0 3 3 3 3



.

Recall that the first 10 rows are the images of the split metrics defined by the graph G

in Figure 1, and the last 3 rows are the images of the split metrics defined by the edges
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Ei in Figure 2. Note that dwt4 and d4 indeed are not scalar multiples of each other, but as
expected the locations of the zero entries in this matrix are the same as in the previous
matrix. For this matrix, the first 10 rows are linearly independent but the whole matrix
has rank 12. Hence, the last three rows are linearly dependent modulo the linear subspace
spanned by the previous 10, and this is what allows for balancing to hold here. Explicitly,
the one-dimensional left kernel is spanned by the vector

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1,−1,−1,−1),

which tells us that the sum of the images of the split metrics given by the 3 edgesEi equals
the sum of the images of the split metrics given by the 4 coincident edges in the graph G.

The following proposition, whose proof follows immediately from the definition and
Proposition 4.4, plays a fundamental role in this paper (indeed, we were led to the defini-
tion of the weighted dissimilarity map primarily so that this holds):

Proposition 4.8. The weighted dissimilarity map factors as follows:

dwtr = Trop(ϕr) ◦ d2.

Accordingly, in order to better understand the weighted dissimilarity map, we need to
first establish a key property of the linear map Trop(ϕr).

Lemma 4.9. For r ≤ n− 2 the map Trop(ϕr) is injective, and for r ∈ {2, n− 2} it is bijective.

Proof. This is trivial for r = 2, since ϕ2 is the identity map, so assume r ≥ 3. Let M be the
matrix associated to Trop(ϕr), namely:

(2) MIJ =

{
1 if J ⊆ I

0 otherwise.

We will construct an explicit left-inverse of M . Define the
(
n
2

)
×
(
n
r

)
matrix M+ by

M+
JI = (−1)i r − 2

r − i
· 1(

n−2
r−i

) ,
where i = |I ∩ J |. That is, for J ∈

(
[n]
2

)
and I ∈

(
[n]
r

)
we have

M+
JI =


1

(n−2
r−2)

if J ⊆ I

− r−2
r−1
· 1

(n−2
r−1)

if |J ∩ I| = 1

r−2
r
· 1

(n−2
r )

if J ∩ I = ∅.

We will show that M+M = Id by directly calculating its entries. First of all,

(M+M)JJ =
∑
I

M+
JIMIJ =

∑
I⊃J

M+
JI =

∑
I⊃J

1(
n−2
r−2

) =
1(
n−2
r−2

)(n− 2

r − 2

)
= 1.
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For J,K ∈
(

[n]
2

)
, we have

(M+M)JK =
∑
I

M+
JIMIK =

∑
I⊃J,K

1(
n−2
r−2

) − ∑
|I∩J |=1,I⊃K

r − 2

r − 1
· 1(

n−2
r−1

) + ∑
I∩J=∅,I⊃K

r − 2

r
· 1(

n−2
r

) .
If |J ∩K| = 1, then the condition in the third summation is impossible, since J ∩K 6= ∅,
so

(M+M)JK =

(
n−3
r−3

)(
n−2
r−2

) − r − 2

r − 1
·
(
n−3
r−2

)(
n−2
r−1

) = 0,

where the last equality follows from an elementary calculation. If instead J ∩K = ∅ then

(M+M)JK =

(
n−4
r−4

)(
n−2
r−2

) − r − 2

r − 1
·
2
(
n−4
r−3

)(
n−2
r−1

) +
r − 2

r
·
(
n−4
r−2

)(
n−2
r

) = 0,

where again the last equality is an elementary calculation.

The equality dimR(
n
2) = dimR(

n
n−2) then implies surjectivity when r = 2 or r = n−2. �

Remark 4.10. By Proposition 4.8, the matrixM+ constructed in the preceding proof, when
viewed as a linear map R(

n
r) → R(

n
2), sends the weighted r-dissimilarity vector of a phy-

logenetic tree to the corresponding 2-dissimilarity vector.

Corollary 4.11. For r ≤ n− 2, the weighted dissimilarity map dwtr : Tn → R(
n
r) is injective.

Proof. Lemma 4.9 and Proposition 4.8, together with the fact that the 2-dissimilarity map
is injective, show that dwtr is a composition of injective maps, and hence is injective. �

Corollary 4.12. For r ≤ n − 2, the space of phylogenetic trees Tn and the space of weighted
r-dissimilarity vectors are isomorphic as combinatorial polyhedral complexes. Furthermore, if
r ≤ n+1

2
then they are also isomorphic to the space of r-dissimilarity vectors.

Proof. This follows from the injectivity of dwtr in Corollary 4.11, the additional injectivity
of dr when r ≤ n+1

2
, and the observation that both maps are linear on each polyhedral

stratum of Tn. �

Although both the dissimilarity map and the weighted dissimilarity map provide Eu-
clidean embeddings of the space of phylogenetic trees, we have seen in §3 that the former
embedding is not a tropical variety; we show in the following subsection that the latter
embedding is tropical and we use the Veronese Grassmannian map to produce an alge-
braic variety realizing it as a tropicalization.
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4.3. Back to Pachter–Speyer’s second question. Recall that the second question of Pachter–
Speyer, whether the space of r-dissimilarity vectors is the tropicalization of the image of
a rational map of Grassmannians, ended up being false for the plain reason that higher
dissimilarity vectors are not a balanced polyhedral complex and hence cannot be a tropi-
cal variety. We now establish a positive answer to the variant of Pachter–Speyer’s second
question where dissimilarity vectors are replaced with weighted dissimilarity vectors:

Theorem 4.13. For r ≤ n, the space of weighted r-dissimilarity vectors is the tropicalization of
the image of the Veronese Grassmannian map Gr(2, n)◦ → Gr(r, n)◦.

Proof. By functoriality of tropicalization with respect to toric morphisms [MS15, Corol-
lary 3.2.13], we have that

Trop(ϕr)
(
Grtrop(2, n)

)
= Trop

(
ϕr(Gr(2, n)◦)

)
.

By Proposition 4.3, ϕr(Gr(2, n)◦) is the image of the Veronese Grassmannian map; by
Lemma 4.14, below, this image is closed in the torus so we can ignore the Zariski closure
in the right-hand side of this equality; by Proposition 4.8, the left-hand side is dwtr (Tn). �

Lemma 4.14. For r ≤ n, the image ϕr(Gr(2, n)◦) is closed in (k×)(
n
r).

Proof. Let x ∈ ϕr(Gr(2, n)◦) ⊆ (k×)(
n
r), and let R be a DVR with field of fractions K and

residue field k such that we have a map Spec(R) → ϕr(Gr(2, n)◦) with Spec(K) mapping
to ϕr(Gr(2, n)◦) and Spec(k) mapping to x. Let U ⊆ Arn be the open locus of matrices all
of whose maximal minors are nonzero. The SLr-quotient morphism U → Gr(r, n)◦ is a
locally trivial bundle in the Zariski topology, so we can lift Spec(R) → ϕr(Gr(2, n)◦) to a
map Spec(R)→ U ; fix a choice of lift. This is a matrix overR all of whose maximal minors
are nonzero — so in particular none of the columns of this matrix is the zero vector — and
whose restriction to Spec(K) is, up to the SLr-action, a matrix in the form shown in the
right-hand side of (1).

Because none of the columns of this matrix is zero, it descends to an R-point of the
(k×)n-quotient (Pr−1

R )n. The restriction of this latter R-point to Spec(K) is a configuration
of n points in Pr−1

K that lie on a rational normal curve, because the map in (1) simply
applies the (r−1)-Veronese map to each column and the SLr-action preserves the property
of the configuration lying on a rational normal curve. Therefore, the induced k-point is in
the Zariski closure of the locus of n points lying on a rational normal curve, and it is non-
degenerate by the non-vanishing of maximal minors. So by [CGMS18, Proposition 2.7]
this k-point is a configuration of n points on a quasi-Veronese curve (a non-degenerate
flat limit of rational normal curves, see [CGMS18, Definition 2.5]), which we denote by
C ⊆ Pr−1. We claim there is an actual rational normal curve C ′ ⊆ Pr−1 containing this
n-point configuration.
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If C is irreducible then it is a rational normal curve and we may set C ′ = C. Suppose
not, i.e., C is a reducible quasi-Veronese curve. We can then write C = C1 ∪ C2 where,
by [CGMS18, Lemma 2.6], C1 and C2 are connected, possibly reducible, quasi-Veronese
curves of positive degrees d1 and d2, respectively, with d1 + d2 = r − 1. The same lemma
shows that the projective linear subspace spanned by a degree di quasi-Veronese curve
is of dimension di. It follows that the number of points lying on Ci is at most di + 1, for
i = 1, 2, since otherwise the points on Ci would be linearly dependent and so any set of
r points containing these points would also be linearly dependent, contradicting the fact
that all maximal minors of the corresponding matrix are nonzero. Consequently,

n ≤ d1 + d2 + 2 = r + 1.

Thus we have at most r + 1 points in Pr−1, and they are in general linear position by
the nonzero maximal minors condition, so Castelnuovo’s lemma ([Har95, Theorem 1.18])
implies the existence of a rational normal curve C ′ through all n points, as claimed.

Any rational normal curve in Pr−1 is in the GLr-orbit of the standard Veronese rational
normal curve P1 ↪→ Pr−1. So, up to acting on the lift Spec(R)→ U by SLr, we can assume
that C ′ is the standard Veronese rational normal curve. This implies that the correspond-
ing limiting k-point in U is in the form shown in the right-hand side of (1), so its image x
under the SLr-quotient U → Gr(r, n)◦ is indeed in the image of ϕr. �

Remark 4.15. In [BC09, Theorem 3.2] Bocci–Cools introduce a piecewise linear map

φ(r) : R(
n
2) → R(

n
r)

that provides a factorization of the r-dissimilarity map, namely dr = φ(r)◦d2. On the other
hand, as shown in Proposition 4.8 our linear map Trop(ϕr) provides a factorization of our
weighted r-dissimilarity map, namely dwtr = Trop(ϕr) ◦ d2. Since Trop(ϕr) is injective,
we can choose a left inverse for it (such as the one explicitly constructed in the proof of
Lemma 4.9) and then composing this with φ(r) yields a piecewise linear map gr : R(

n
r) →

R(
n
r) such that the following diagram commutes:

Tn R(
n
2) R(

n
r)

R(
n
r).

d2

dr

dwt
r

Trop(ϕr)

φ(r)
gr

In particular, we obtain a factorization dr = gr ◦ dwtr . As we have seen, dwtr (Tn) is a tropical
variety in R(

n
r) whereas dr(Tn) is not. Intuitively, the map gr tilts rays in the space of

weighted dissimilarity vectors in such a way that certain collections of rays go from being
linearly dependent to being linearly independent, and this is what destroys the balancing
condition needed to be a tropical variety.
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5. TROPICAL BASES AND A GENERALIZED TREE-METRIC THEOREM

Recall that ϕr(Gr(2, n)◦) ⊆ Gr(r, n)◦ is a closed subvariety (in the ambient torus (k×)(
n
r))

whose tropicalization is the space of weighted r-dissimilarity vectors dwtr (Tn) ⊆ R(
n
r). In

order to find tropical equations for the tropicalization of this subvariety — and hence a
characterization of weighted dissimilarity vectors — we need to first find equations for
the subvariety ϕr(Gr(2, n)◦) itself.

5.1. Gelfand–MacPherson correspondence. The proof of Lemma 4.14 shows that points
of ϕr(Gr(2, n)◦) correspond to configurations of n points in Pr−1 that lie on a rational nor-
mal curve. This correspondence is in essence the Gelfand–MacPherson correspondence,
which identifies generic GLr-orbits in (Pr−1)n with generic (k×)n-orbits in Gr(r, n), and
vice-versa (cf. [Kap93, §2.2]). In fact:

Proposition 5.1. For r ≤ n, ϕr(Gr(2, n)◦) corresponds under Gelfand–MacPherson to the open
locus in (Pr−1)n of configurations of n distinct points that lie on a rational normal curve.

Proof. The proof of Lemma 4.14 shows that each point of ϕr(Gr(2, n)◦) corresponds to a
configuration of n points on a rational normal curve, and these points must be distinct
since otherwise two columns in the matrix of coordinates would be proportional and
hence any maximal minor containing these columns would be zero, contradicting the fact
that all maximal minors are nonzero. Conversely, it is a classical fact (coming from the
Vandermonde determinant) that distinct points on a rational normal curve are linearly
independent, so any configuration of such points corresponds to a matrix all of whose
maximal minors are nonzero, and as noted in the proof of Lemma 4.14 such a matrix
yields a point of ϕr(Gr(2, n)◦). �

In particular, any SLr-invariant polynomial that vanishes on the locus in (Pr−1)n of con-
figurations lying on a rational normal curve corresponds to a (k×)n-invariant polynomial
that vanishes on ϕr(Gr(2, n)◦). In other words, to find the ideal defining ϕr(Gr(2, n)◦),
a natural place to look is the ideal defining the Zariski closure in (Pr−1)n of the locus of
points lying on a rational normal curve. This latter closed subvariety, and the ideal defin-
ing it, was the focus of the paper [CGMS18], where it is denoted Vr−1,n ⊆ (Pr−1)n (since it
parameterizes configurations on a quasi-Veronese curve).

Two potential issues arise with this strategy: (1) generators for the ideal of Vr−1,n are
not fully known in general, and (2) not all the generators for this ideal are SLr-invariant
[CGMS18, Remark 4.24]. However, we will establish in this section that the generators
that are known from [CGMS18] (all of which are SLr-invariant) suffice to cut out the trop-
icalization of ϕr(Gr(2, n)◦). We begin by reviewing these equations.

5.2. Equations for points to lie on a rational normal curve. The closure Vr−1,n ⊆ (Pr−1)n

of the locus of n points lying on a rational normal curve in Pr−1 is the whole space if r = 2
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or r ≥ n − 2. Thus, we will assume 3 ≤ r ≤ n − 3 from now on. The first nontrivial
example of Vr−1,n ⊆ (Pr−1)n is V2,6, which parametrizes six-tuples of points in P2 that lie
on a conic. This is an irreducible hypersurface in (P2)6 defined by the vanishing of the
following SL3-invariant polynomial expressed as a quartic binomial in bracket notation
(see [Stu08, Equation (3.4.9)] and [CGMS18, Remark 3.3]):

φ = |123||145||246||356| − |124||135||236||456|.

The notation |ijk| here denotes the determinant of the 3×3 submatrix, of a 3×6 matrix of
coordinates on (P2)6, with columns ijk. This bracket expression is not fully S6-symmetric
because brackets satisfy many non-trivial Plücker relations. Indeed, up to obvious sign
changes there are 15 different presentations of φ, as we next describe.

LetG be the graph with vertex set
(

[6]
3

)
where vertices I and J are connected if |I∩J | = 2.

A straightforward combinatorial argument shows that G has 15 subgraphs isomorphic to
the 3-dimensional cube, and these form a single orbit under the natural S6-action. A cube
is a bipartite graph, so for each cube subgraph we can uniquely divide the vertex set
into black and white subsets, which we label B and W respectively, where we adopt the
convention that the smallest triplet in the lexicographic order is black. For each vertex
I = {i, j, k} we have the associated bracket mI := |ijk|, and for each cube C in G we may
define a polynomial

φC :=
∏
I∈B

mI −
∏
J∈W

mJ .

Example 5.2. The subgraph C generated by

{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 6}, {2, 4, 6}, {3, 5, 6}, {4, 5, 6}

is a cube, and the corresponding black-white bipartition is

B := {{1, 2, 3}, {1, 4, 5}, {2, 4, 6}, {3, 5, 6}}, W := {{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {4, 5, 6}},

so in this case φC coincides with the polynomial φ presented above.

Lemma 5.3. For each cube C, we have V (φC) = V (φ) as subvarieties of (P2)6.

Proof. As noted above, φ = φC where C is the cube in Example 5.2, so it suffices to show
that if C ′ is another cube then V (φC) = V (φC′). By geometric considerations, the irre-
ducible hypersurface V2,6 = V (φC) is invariant under the natural S6-action on (P2)6. This
implies that any S6-permutation of φC must be a polynomial whose vanishing locus is
also V2,6. The transitive S6-action on the set of cubes is compatible with the action on
bracket polynomials induced from the permutation action on (P2)6. Therefore, for any
cube C ′ there exists a permutation σ ∈ S6 for which σ · C = C ′ and

V (φC) = V (σ · φC) = V (φσ·C) = V (φC′),

as desired. �
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Remark 5.4. Even though all 15 polynomials φC define the hypersurface V2,6 (and so this
discussion of cubes and bipartitions did not arise in [CGMS18]), when we turn attention
to tropicalization later in this section we will need the extra flexibility provided by the
choice of cube C.

For n > 6, V2,n is defined scheme-theoretically by the
(
n
6

)
polynomials obtained by

pulling φ back along the projection maps (P2)n → (P2)6 [CGMS18, Theorem 3.6].

For r > 3 things get trickier; the polynomials found in [CGMS18] were obtained as
follows. The idea is to take the polynomial for V2,6, pull it back to (P2)r+3, apply the Gale
transformation which, up to a constant, in bracket form is simply taking the complement
of each index set (see [CGMS18, Proposition 4.5]) to get a polynomial on (Pr−1)r+3, then
pull this back to (Pr−1)n. More formally:

(1) Choose S ∈
(

[n]
r+3

)
, T ∈

(
[r+3]

6

)
, and a cube C in

(
[6]
3

)
.

(2) Take the pull-back π∗T (φC) along the projection πT : (P2)r+3 → (P2)6.
(3) Take the Gale transform π̂∗T (φC).
(4) Take the pull-back π∗S(π̂∗T (φC)) along the projection πS : (Pr−1)n → (Pr−1)r+3.

In slightly different notation, by using [CS19, Proposition 4.1 and Remark 4.2] we can
rewrite the resulting polynomials explicitly as follows. For each

I = {i1 < . . . < i6} ∈
(
[n]

6

)
and J ∈

(
[n] \ I
r − 3

)
,

let C be a cube in I and let B,W be the corresponding bipartition. For instance, the choice
of cube in Example 5.2 yields

B = {{i1, i2, i3}, {i1, i4, i5}, {i2, i4, i6}, {i3, i5, i6}},
W = {{i1, i2, i4}, {i1, i3, i5}, {i2, i3, i6}, {i4, i5, i6}}.

Then let
ψC,I,J :=

∏
K∈B

mJtK −
∏
K∈W

mJtK .

Each ψC,I,J vanishes on Vr−1,n by [CGMS18, Lemma 4.17].

5.3. Tropical basis. Since these SLr-invariant polynomials ψC,I,J are expressed in bracket
form (i.e., they are written as polynomials in the maximal minors) they can immediately
be interpreted as polynomial functions on the Grassmannian Gr(r, n); this is done sim-
ply by viewing each minor as the corresponding Plücker coordinate function. These are
quartic binomials on the Grassmannian, and the choice of cube C corresponds to all 15
possible ways of lifting this to a quartic binomial on the ambient P(

n
r)−1.

Definition 5.5. Let Sr−1,n be the set of bracket binomials ψC,I,J from §5.2, and let Jr,n ⊆
k[x±I ]I∈([n]

r )
be the ideal generated by Sr−1,n and the Plücker relations for Gr(r, n).
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Note: If r = 2 or r = n − 2, then
(

[n]\I
r−3

)
= ∅ for any I ∈

(
[n]
6

)
, so it is safe to extend the

preceding definition by setting Sr−1,n = ∅ in these cases.

Proposition 5.6. The set-theoretic vanishing locus in (k×)(
n
r) of the ideal Jr,n is ϕr(Gr(2, n)◦).

Proof. The result is trivial for r = 2, so let r ≥ 3. First, we shall establish the set-theoretic
containment ϕr(Gr(2, n)◦) ⊆ V (Jr,n). By definition the left-hand side is contained in
Gr(r, n)◦, so all the Plücker relations vanish on it. On the other hand, since each ψC,I,J van-
ishes on Vr−1,n, when viewed as a Grassmannian polynomial it vanishes on ϕr(Gr(2, n)◦)

by Proposition 5.1. So it suffices to establish the reverse set-theoretic containment.

Let p ∈ V (Jr,n), and letM(p) be any matrix (necessarily with nonzero maximal minors)
in the corresponding GLr-orbit. Let p′ be any collection of r+3 columns in M(p), viewed
as a configuration of r + 3 points in Pr−1. Due to the nonzero maximal minors, p′ is in
general linear position, so we can choose a Gale dual configuration q′ ∈ (P2)r+3 and it
too is in general linear position by [CGMS18, Proposition 4.5]. Now ψC,I,J(p

′) = 0 for
all I, J involving the labels of the points in p′, so by [CGMS18, Theorem 3.6] q′ must
lie on a conic. This conic must be smooth, since q′ is in general linear position. It now
follows from a classical result of Goppa (see [EP00, Corollary 3.2]) that the configuration
p′ also lies on a rational normal curve, call it X . Now replace a single point of p′ with
one of the other columns of M(p) and apply the same argument to deduce that this new
configuration lies on a rational normal curve X ′. But these two rational normal curves
have r + 2 points in common, so by Castelnuovo’s lemma we have X = X ′. Repeating
this for the remaining columns shows that the full configuration given by M(p) lies on a
rational normal curve, and hence p ∈ ϕr(Gr(2, n)◦) as desired. �

Remark 5.7. We expect that V (Jr,n) = ϕr(Gr(2, n)◦) as subschemes of (k×)(
n
r), not just

subvarieties, but we have not been able to establish this.

By viewing ψC,I,J as a polynomial on A(
n
r), we can tropicalize it to obtain a tropical

polynomial Trop(ψC,I,J) on R(
n
r). Moreover, since ψC,I,J is a binomial, the corresponding

tropical hypersurface is a classical hyperplane. Concretely, for coordinates xS on R(
n
r),

where S ∈
(

[n]
r

)
, the tropical hypersurface V trop(Trop(ψC,I,J)) is given by

(3)
∑
K∈B

xJtK −
∑
K∈W

xJtK = 0.

We first show that the above classical hyperplanes cut out the image of the injective
classically-linear map Trop(ϕr) : R(

n
2) ↪→ R(

n
r) (recall Lemma 4.9):

Proposition 5.8. For 2 ≤ r ≤ n− 2, we have⋂
ψC,I,J∈Sr−1,n

V trop(Trop(ψC,I,J)) = Trop(ϕr)
(
R(

n
2)
)
.
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Proof. If r = 2 or n−2, then Sr−1,n = ∅ so the left-hand side is R(
n
r), but so is the right-hand

side due to the bijectivity of Trop(ϕr) in these cases established in Lemma 4.9. So assume
that 3 ≤ r ≤ n− 3.

Let N be the
((
n
6

)
·
(
n−6
r−3

)
· 15
)
×
(
n
r

)
matrix whose rows encode the coefficients of the

linear forms in (3), so that kerN is the intersection on the left-side of the proposition
statement. Let M be the matrix associated to Trop(ϕr), which was described explicitly in
the proof of Lemma 4.9. Our task is thus to prove kerN = imM .

We shall first show that NM = 0, i.e., imM ⊆ kerN . From the definition of M , this is
equivalent to the following: for each ψC,I,J and each A ∈

(
[n]
2

)
, the number of terms xS in

(3) with a positive coefficient for which A ⊆ S equals the number of such terms with a
negative coefficient. If we write the bipartition corresponding to the cube C as

B = {B1, B2, B3, B4}, W = {W1,W2,W3,W4},

then the positive terms of ψC,I,J are xJtBj
for j = 1, 2, 3, 4 and the negative terms are xJtWj

for j = 1, 2, 3, 4. So we need to show that the number of j for which A ⊆ J tBj equals the
number of j for which A ⊆ J tWj . This follows immediately from the observations that
(1) each element of I occurs in exactly two Bj and two Wj , and (2) if a pair of elements of
I occurs in a Bj or a Wj then it occurs in exactly one Bj and one Wj .

Having shown that imM ⊆ kerN , since rankM =
(
n
2

)
(Lemma 4.9) it now suffices to

show that dim(kerN) ≤
(
n
2

)
, or equivalently, rankN ≥

(
n
r

)
−
(
n
2

)
. To do this, we will

find
(
n
r

)
−
(
n
2

)
linearly independent rows in N . Order the columns of N according to the

lexicographic order on
(

[n]
r

)
. We will first find a collection of rows where the left-most

nonzero entries all occur in distinct columns, since such rows are necessarily linearly
independent, and then we will show that this collection has

(
n
r

)
−
(
n
2

)
elements in it.

Consider a column I ∈
(

[n]
r

)
. Let K = {a < b < c} ⊆ I be the subset comprising the 3

smallest elements and let Kc = I \K be the remaining r− 3 elements. Choose another set
of 3 elements K ′ = {d < e < f} in [n] \ I satisfying a < d, b < e, and c < f . Consider the
following cube C on K tK ′:

{a, b, c}, {a, b, f}, {a, e, c}, {a, e, f}, {b, d, c}, {b, d, f}, {c, d, e}, {d, e, f}.

Notice that K is the smallest vertex of the cube in lexicographic order. Let B tW be the
usual bipartition of C, so in particular K ∈ B. Then the vector (aJ) where

aJ =


1 if J = T tKc, T ∈ B
−1 if J = T tKc, T ∈ W
0 otherwise,

is a row of N such that the first nonzero entry is aI = 1. Let pn,r be the number of columns
I for which we can construct a row (aJ) by the above description. We will show that
pn,r =

(
n
r

)
−
(
n
2

)
by using induction on n. It is obvious that pr+2,r = 0.
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Now we count the possibilities. First of all, in K = {a < b < c} we have that a = 1 or
a > 1. The number of cases with a > 1 is precisely pn−1,r, which by inductive assumption
is equal to

(
n−1
r

)
−
(
n−1

2

)
. Thus we only have to count the cases with a = 1.

The possible range of c is 3 ≤ c ≤ n−r+2, as we need at least r−2 elements in [n] larger
than c, namely, Kc ∪ {f}. When c < n − r + 2, then b can be any number between 2 and
c−1, so the number of possibilities for b is c−2. In this case, the number of ways to choose
Kc is

(
n−c
r−3

)
. When c = n − r + 2, then b cannot be c − 1, because we need two elements

larger than c (for e and f ) to make a cube where the smallest term is K, but in [n] \ K,
there is only one element larger than b. So for b we have c− 3 = n− r− 1 possibilities and(
n−c
r−3

)
=
(
r−2
r−3

)
possibilities for Kc.

In summary, the number of ways to make such a construction is
n−r+1∑
c=3

(c− 2)

(
n− c
r − 3

)
+ (n− r − 1)

(
r − 2

r − 3

)
=

n−r+2∑
c=3

(c− 2)

(
n− c
r − 3

)
−
(
r − 2

r − 3

)
=

n−r∑
i=1

i

(
n− 2− i
r − 3

)
− (r − 2).

Thus we obtain a recursive formula

pn,r =
n−r∑
i=1

i

(
n− 2− i
r − 3

)
− (r − 2) + pn−1,r.

From the inductive assumption and the lemma below, we obtain that pn,r =
(
n
r

)
−
(
n
2

)
. �

Lemma 5.9.
n−r∑
i=1

i

(
n− 2− i
r − 3

)
− (r − 2) =

((
n

r

)
−
(
n

2

))
−
((

n− 1

r

)
−
(
n− 1

2

))
.

Proof. First, note that
(
n
r

)
−
(
n−1
r

)
=
(
n−1
r−1

)
and

(
n
2

)
−
(
n−1

2

)
= n − 1, so the right-hand side

in the formula equals
(
n−1
r−1

)
− (n− 1). Thus, the identity we need to show is equivalent to

n−r∑
i=1

i

(
n− 2− i
r − 3

)
=

(
n− 1

r − 1

)
− (n− r + 1),

which in turn is equivalent to
n−r+1∑
i=1

i

(
n− 2− i
r − 3

)
=

(
n− 1

r − 1

)
.

By using the substitution m = n− 1 and s = r − 1, this is equivalent to
m−s+1∑
i=1

i

(
m− 1− i
s− 2

)
=

(
m

s

)
.



20 ALESSIO CAMINATA, NOAH GIANSIRACUSA, HAN-BOM MOON, AND LUCA SCHAFFLER

This last form of the identity can be established by combinatorial considerations: the term
i
(
m−1−i
s−2

)
is precisely the number of ways one can choose a subset of [m] of cardinality s

whose second smallest entry is i+ 1. �

Remark 5.10. The analogue of Proposition 5.8 for the unweighted dissimilarity map does
not hold. As we discussed in Remark 4.15, for the r-dissimilarity map we have that
Trop(ϕr) is replaced by the Bocci–Cools piecewise linear map φ(r). Hence, in general
φ(r)

(
R(

n
2)
)

is not equal to the intersection of tropical hypersurfaces V trop(Trop(ψC,I,J)),

which is instead a linear subspace of R(
n
r) as Proposition 5.8 shows.

The three-term Plücker relations are the polynomials

xijAxklA − xikAxjlA + xilAxjkA,

1 ≤ i < j < k < l ≤ n, A ∈
(
[n] \ {i, j, k, l}

r − 2

)
with the standard convention that index sets are permuted to be increasing and the corre-
sponding permutation signs are included when doing so. These do not generate the full
ideal of Plücker relations in general, but they do so when passing to the Laurent polyno-
mial ring so they define Gr(r, n)◦ in the torus (k×)(

n
r). In particular, in Definition 5.5 we

could have defined the same ideal Jr,n by using only the 3-term Plücker relations rather
than all the Plücker relations.

For r = 2, the three-term Plücker relations form a tropical basis for the ideal of Plücker
relations [MS15, Corollary 4.3.12], which means (1) as already noted, they generate the
ideal of Plücker relations in the Laurent polynomial ring, and (2) the intersection of the
tropical hypersurfaces

V trop(Trop(xijxkl − xikxjl + xilxjk))

for 1 ≤ i < j < k < l ≤ n equals Grtrop(2, n) in R(
n
2).

Theorem 5.11. Fix 2 ≤ r ≤ n − 2. The three-term Plücker relations together with the bracket
binomials ψC,I,J form a tropical basis for the ideal Jr,n.

Proof. We already noted above that these polynomials generate Jr,n, since we are working
in the Laurent polynomial ring. So, we just need to show that the intersection of the
tropical hypersurfaces defined by these polynomials coincides with the tropicalization of
the vanishing locus of the ideal Jr,n. By Proposition 5.6 we have V (Jr,n) = ϕr(Gr(2, n)◦),
and by Theorem 4.13 we have Trop(ϕr(Gr(2, n)◦)) = dwtr (Tn). Thus, our task is reduced to
showing that the intersection of the tropical hypersurfaces associated to the polynomials
in the theorem statement equals the space of weighted r-dissimilarity vectors dwtr (Tn).

Proposition 4.8 shows that dwtr (Tn) = Trop(ϕr)
(
Grtrop(2, n)

)
, and Proposition 5.8 shows

that the intersection of the tropical hypersurfaces associated to theψC,I,J is Trop(ϕr)
(
R(

n
2)
)

.
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Thus, all that remains is to show that the pull-backs along ϕr of the three-term Plücker re-
lations define Grtrop(2, n); indeed, this suffices since ϕr is a monomial map hence pulling
back along it commutes with tropicalization. From the definition of ϕr we have

ϕ∗r(xijAxklA − xikAxjlA + xilAxjkA) =

(xijxkl − xikxjl + xilxjk)
∏

B∈(A2)

x2
B

∏
t∈A

xitxjtxktxlt,

so in the Laurent polynomial ring the three-term Plücker relations for Gr(r, n)◦ pull back
to the three-term Plücker relations for Gr(2, n)◦, which as we noted above are a tropical
basis. �

Remark 5.12. It follows from this proof that not all of the bracket binomials ψC,I,J are
needed to form this tropical basis. Indeed, the only role they play is cutting out the
codimension

(
n
r

)
−
(
n
2

)
linear subspace that is the image of Trop(ϕr), so this codimen-

sion is the number that is actually needed if they are chosen correctly. Similarly, not all
the three-term Plücker relations are needed: for each 4-tuple i, j, k, l, only a single choice
of A ∈

(
[n]\{i,j,k,l}

r−2

)
is needed (and any such choice will do).

As an immediate corollary, by spelling out explicitly the conditions defining the trop-
ical hypersurfaces for each polynomial in this tropical basis we obtain a characteriza-
tion of weighted dissimilarity vectors, generalizing the classic tree-metric theorem for
2-dissimilarity vectors:

Corollary 5.13. A vector w = (wI)I∈([n]
r )
∈ R(

n
r) is a weighted r-dissimilarity vector if and only

if the following two conditions hold:

(1) for each 4-tuple {i, j, k, l} ⊆ [n] there exists an A ⊆ [n] \ {i, j, k, l} of size r− 2 such that
two of the following expressions equal each other and are greater than or equal to the third:

wijA + wklA, wikA + wjlA, wilA + wjkA;

(2) for each I ∈
(

[n]
6

)
, J ∈

(
[n]\I
r−3

)
, and for each cube C in I with corresponding bipartition

B,W we have ∑
K∈B

wJtK =
∑
K∈W

wJtK .
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