VOLUME OF BIG DIVISORS

ADRIAN BRUNYATE, HAN-BOM MOON

Definition 0.1. Let X be a projective variety. A line bundle L is big if $\kappa(X, L)=\operatorname{dim} X$.
Definition 0.2. Let X be n dimensional irreducible variety and L be a big line bundle on X.

$$
\operatorname{Vol}_{X}(L)=\limsup _{m \rightarrow \infty} \frac{h^{0}(X, m L)}{m^{n} / n!}
$$

Remark 0.3. By asymptotic Riemann-Roch theorem ([Laz04, Corollary 1.4.41]), if L is nef, $\operatorname{Vol}_{X}(L)=L^{n}$.

We will show that vol_{X} gives a map $\mathbb{N}_{\mathbb{R}}^{1}(X) \rightarrow \mathbb{R}$ and moreover that it is birational in the sense that if $\nu: X^{\prime} \rightarrow X$ is birational map, then

$$
\operatorname{Vol}_{X^{\prime}}\left(\nu^{*} L\right)=\operatorname{Vol}_{X}(L)
$$

Example 0.4. If $X=\mathbb{P}^{n}$ and $L=\mathcal{O}(k)$, then $h^{0}(X, m L)=\binom{n+m k}{n}$.

$$
\binom{n+m k}{n} \sim \frac{(m k)^{n}}{n!}
$$

So $\operatorname{Vol}_{\mathbb{P}^{n}}(\mathcal{O}(k))=k^{n}$.
Remark 0.5. (1) $\operatorname{Vol}_{X}(a L)=a^{n} \operatorname{Vol}_{X}(L)$.
We need to show

$$
\limsup _{k \rightarrow \infty} \frac{h^{0}(X, k L)}{k^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}(X, a k L)}{(a k)^{n}} .
$$

Since L is big, there is r_{0} such that if $r \in \mathbb{N}(X, L)$ and $r \geq r_{0}$ then $H^{0}(X, r L) \neq 0$ ([Laz04, Lemma 2.2.3]). Similarly, we can find $q \gg 0$ such that $H^{0}(X,(q a-r) L) \neq 0$. Then there are injective morphisms

$$
H^{0}(X, k a L) \hookrightarrow H^{0}(X,(k a+r) L) \hookrightarrow H^{0}(X,(q+k) a L) .
$$

Thus

$$
\limsup _{k \rightarrow \infty} \frac{h^{0}(X, k a L)}{(k a)^{n}} \leq \limsup _{k \rightarrow \infty} \frac{h^{0}(X,(k a+r) L)}{(k a)^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}(X,(k a+r) L)}{(k a+r)^{n}} .
$$

Similarly,

$$
\limsup _{k \rightarrow \infty} \frac{h^{0}(X,(k a+r) L)}{(k a+r)^{n}} \leq \limsup _{k \rightarrow \infty} \frac{h^{0}(X,(q+k) a L)}{(k a+r)^{n}}
$$

$$
=\limsup _{k \rightarrow \infty} \frac{h^{0}(X,(q+k) a L)}{((q+k) a)^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}(X, k a L)}{(k a)^{n}} .
$$

So if we define

$$
V_{i}=\limsup _{k \rightarrow \infty} \frac{h^{0}(X,(k a+i) L)}{(k a+i)^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}(X,(k a+i) L)}{(k a)^{n}}
$$

then $V_{i} \leq V_{0}$ for all i such that $k a+i \in \mathbb{N}(X, L)$. Since $\operatorname{Vol}_{X}(L)=\max \left\{V_{i} \mid k a+i \in\right.$ $\mathbb{N}(X, L)\}$, all of them are same to $\operatorname{Vol}_{X}(L)$.
(2) $\lim _{p \rightarrow \infty} \frac{1}{p^{n}} \operatorname{Vol}(p L-N)=\operatorname{Vol}(L)$ for any N.

If $N=A-B$ for two effective divisors A and B, since L is big, there exists $r>0$ such that $r L-B$ is effective. Then

$$
\begin{gathered}
\limsup _{k \rightarrow \infty} \frac{h^{0}(k L-N)}{k^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}((k-r) L-N)}{(k-r)^{n}} \\
=\limsup _{k \rightarrow \infty} \frac{h^{0}((k-r) L-N)}{k^{n}}=\limsup _{k \rightarrow \infty} \frac{h^{0}(k L-A-(r L-B))}{k^{n}}
\end{gathered}
$$

So we may assume that N is effective.
Let N^{\prime} be a very ample line bundle such that $N^{\prime}+N$ is very ample. Then

$$
\operatorname{Vol}_{X}\left(p L-\left(N+N^{\prime}\right)\right) \leq \operatorname{Vol}_{X}(p L-N) \leq \operatorname{Vol}_{X}(p L)
$$

so

$$
\begin{gathered}
\lim _{p \rightarrow \infty} \frac{1}{p^{n}} \operatorname{Vol}_{X}\left(p L-\left(N+N^{\prime}\right)\right) \leq \lim _{p \rightarrow \infty} \frac{1}{p^{n}} \operatorname{Vol}_{X}(p L-N) \\
\leq \lim _{p \rightarrow \infty} \frac{1}{p^{n}} \operatorname{Vol}_{X}(p L)=\operatorname{Vol}_{X}(L)
\end{gathered}
$$

Thus it is enough to check a very ample N.
Pick k general elements $E_{i} \in|N|$. From the exact sequence

$$
0 \rightarrow H^{0}(X, k(p L-N)) \rightarrow H^{0}(X, k p L) \rightarrow \bigoplus_{k} H^{0}\left(E_{i},\left.k p L\right|_{E_{i}}\right)
$$

If we take general elements E_{i}, then $h^{0}\left(E_{i},\left.m p L\right|_{E_{i}}\right)$ is independent from i. Thus

$$
h^{0}(X, m(p L-N)) \geq h^{0}(X, m p L)-m h^{0}\left(X, E_{i},\left.m p L\right|_{E_{i}}\right)
$$

and

$$
\operatorname{Vol}_{X}(p L-N) \geq \operatorname{Vol}_{X}(p L)-O\left(p^{n-1}\right) .
$$

Therefore, $\lim _{p \rightarrow \infty} \frac{1}{p^{n}} \operatorname{Vol}_{X}(p L-N) \geq \operatorname{Vol}_{X}(L)$.
Since $\operatorname{Vol}_{X}(p L-N) \leq \operatorname{Vol}_{X}(p L)=p^{n} \operatorname{Vol}_{X}(L)$, the opposite inequality is clear.
Theorem 0.6. (Fujita vanishing theorem) For an ample divisor B and a coherent sheaf F, then there exists $n_{0}>0$ which depends only on B and F, such that

$$
H^{i}(X, F \otimes \mathcal{O}(n B+A))=0
$$

for all $n \geq n_{0}, i>0$ and all nef divisor A.
Lemma 0.7. There exists N such that $N+P$ is effective for all numerically trivial P.

Proof. Choose an ample divisor B. By Fujita vanishing theorem, there is k such that $H^{i}(X, k B+A)=0$ for all nef A. Note that $P+(n-i) B$ is nef for $i<n$. So $H^{i}(X, k B+$ $P+(n-i) B)=0$ for $i>0$. In particular, $k B+P+n B$ is 0 -regular with respect to B (See [Laz04, Definition 1.8.4 and Theorem 1.8.5].). So $k B+P+n B$ is globally generated for all P. Thus we can take $N=k B+n B$.

Proposition 0.8. $\mathrm{Vol}_{X}(L)$ is a numerical invariant.
Proof. Enough to show that $\operatorname{Vol}_{X}(D+P) \leq \operatorname{Vol}_{X}(D)$ for a numerically trivial P. By the lemma above, choose N such that $H^{0}(X, N-p P) \neq 0$ and chose a section for each p. Then we get

$$
H^{0}(X, m p(D+P)-N) \hookrightarrow H^{0}(X, m p D)
$$

So by Remark 0.5 (2) above, we get the result.

References

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. 1,3

