NEF LINE BUNDLES AND DIVISORS

XIAOYAN HU, HAN-BOM MOON

Recall the Nakai-Moishezon criterion. Let X be a projective variety. Pick $\delta \in N^1(X)_{\mathbb{Q}} = \text{Div}(X)/\text{Num}(X) \otimes \mathbb{Q}$. Then

$$\delta \text{ is ample } \Leftrightarrow \int_V \delta^{\dim V} > 0$$

for all irreducible closed subvariety *V* with $\dim V > 0$. Thus the limit of ample classes satisfies

$$\int_V \delta^{\dim V} \ge 0$$

Definition 0.1. Let *X* be a complete variety. A line bundle *L* on *X* is **nef** if

$$\int_C c_1(L) \ge 0$$

for all irreducible complete curve *C* on *X*. For $D \in CDiv(X)_{\mathbb{Q}}$ is **nef** if $D \cdot C \ge 0$ for all irreducible complete curve *C* on *X*.

Properties of nefness

Let X be a complete variety, L be a line bundle on X.

- If $f : Y \to X$ is proper, *L* is nef then f^*L is nef.
- If $f: Y \to X$ is proper and surjective, f^*L is nef then *L* is nef.
- L is nef $\Leftrightarrow L_{red}$ is nef on X_{red} .
- *L* is nef $\Leftrightarrow L|_V$ is nef for all irreducible component of *X*.

Proof. Fix C irreducible curve on Y. Then by projection formula,

$$f^*L \cdot [C] = L \cdot [f_*C] = \begin{cases} 0 & f_*C = \mathrm{pt} \\ \ge 0 & f_*C = C'. \end{cases}$$

Fix *C* irreducible curve on *X*. Then there is a curve \tilde{C} on *Y* such that $f_*[\tilde{C}] = m[C]$ by taking sufficient hyperplane intersections of $f^{-1}(C)$. Then

$$L \cdot m[C] = L \cdot f_*[\widetilde{C}] \ge 0,$$

so $L \cdot [C] \ge 0$.

Date: February 15, 2013.

XIAOYAN HU, HAN-BOM MOON

Let *X* be a complete variety and *L* be a globally generated line bundle on *X*. Then *L* is nef, because for any curve *C* and $x \in C$, we can find a section of *L* does not vanish at *x*, so $L \cdot C = \deg L|_C \ge 0$.

Proposition 0.2. Let X be a complete variety, D be an effective divisor. Suppose that $N_{D/X} = \mathcal{O}_D(D)$ is nef. Then D is nef.

Proof. Fix an irreducible curve *C* on *X*. If $C \not\subset D$, then $C \cdot D \ge 0$. If $C \subset D$,

$$D \cdot C = \deg \mathcal{O}_C(D) = \deg \mathcal{O}_D(D)|_C \ge 0$$

by nefness.

Proposition 0.3. Let X be a complete variety and G be a connected algebraic group acts on X transitively. Then any effective divisor D on X is nef.

Typical examples are abelian varieties, \mathbb{P}^n , Grassmannians, flag varieties.

Proof. Fix an effective divisor *D*. Fix an irreducible curve *C*. If $C \subset D$, then we can find $g \in G$ such that gD does not pass a point $x \in C$. Thus $gD \cdot C = D \cdot C \ge 0$ because $gD \equiv D$ since *G* is a connected group.

Theorem 0.4. (*Kleiman's theorem*) Let X be a complete variety, D be a nef \mathbb{R} -divisor on X. Then $D^k \cdot V \ge 0$ for all irreducible closed subvariety $V \subset X$ of dim V = k.