AMPLENESS

ADRIAN BRUNYATE, HAN-BOM MOON

Definition 0.1. A line bundle L on a complete scheme X is very ample if there exists an embedding $i: X \hookrightarrow \mathbb{P}^{N}$ such that $i^{*} \mathcal{O}(1)=L$. L is ample if there is $m \in \mathbb{N}$ such that L^{m} is very ample.

Theorem 0.2. The followings are equivalent.
(1) L is ample.
(2) For any coherent sheaf F on X, there exists m_{1} such that for all $m \geq m_{1}, H^{i}\left(X, L^{m} \otimes F\right)=$ 0 for $i>0$.
(3) There exists m_{2} such that for all $m \geq m_{2}, F \otimes L^{m}$ is globally generated.

Two Cartier divisors D_{1}, D_{2} are numerically equivalent if $D_{1} \cdot C=D_{2} \cdot C$ for every irreducible curve C.

Theorem 0.3 (Nakai-Moishezon). L is ample if and only iffor every irreducible closed subvariety V,

$$
\int_{V} c_{1}(L)^{\operatorname{dim} V}>0
$$

Corollary 0.4. Ampleness is preserved by numerical equivalence.
Example 0.5. Let $\mathbb{F}_{1}=\mathrm{Bl}_{p} \mathbb{P}^{2}$. Then $\mathrm{NS}\left(\mathbb{F}_{1}\right)=\langle e, f\rangle$ where e is the exceptional divisor, f is the proper transform of the line passing through p. Now $e^{2}=-1, e \cdot f=1, f^{2}=0$. So both e and f are not ample (self-intersection is not positive).

My claim is that an effective curve on \mathbb{F}_{1} is a non-negative linear combination of e and f. First of all, the pull-back of hyperplane on \mathbb{P}^{2} is $e+f$. It is not hard to see it is a base-point-free. Also, f is another base-point-free divisor because it is a fiber on the ruled surface \mathbb{F}_{1}. So if we have an effective curve C on \mathbb{F}_{1}, then both $C \cdot(e+f)$ and $C \cdot f$ are non-negative. If $C=a e+b f$, then $(a e+b f)(e+f)=b$ and $(a e+b f) f=a$. Therefore both a and b are non-negative and C is an effective linear combination of e and f. Thus the cone of effective curves is generated by e and f.

Now let $c e+d f$ be an ample divisor. By Nakai-Moishezon criterion, it is ample if and only if

$$
\text { - }(c e+d f)^{2}=-c^{2}+2 c d>0 \text { (the case that } V \text { is a point) and }
$$

- $(c e+d f)(a e+b f)=-a c+a d+b c>0$ for all non-negative a and b (the case that V is a curve).

Exercise 0.6. Check that we can replace the second condition to a simpler condition that $(c e+d f) e=-c+d>0$ and $(c e+d f) f=c>0$.

Thus we can obtain that $c e+d f$ is ample if and only if $c>d>0$.

