# NEF LINE BUNDLES AND DIVISORS - II 

JIE WANG, HAN-BOM MOON

Theorem 0.1 (Kleiman). If $D$ is a $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$-Cartier divisor on a complete scheme. Suppose that $D$ is nef ( $C \cdot D \geq 0$ for all irreducible curve $C$ ). Then

$$
D^{\operatorname{dim} V} \cdot V \geq 0
$$

for all closed subvariety $V \subset X$.
Therefore, a nef divisor is a limit of ample divisors. See Corollary 0.2 below.
Proof. Step 1. We may assume that $X$ is irreducible and reduced.
By some basic properties of nefness we discussed in last week. By using Chow's lemma, we may also assume that $X$ is projective. So let $X$ be a projective variety.

Step 2. We will use induction on dimension.
If $\operatorname{dim} X=1$, it is obvious. So assume the theorem for $\operatorname{dim} X=n-1$ i.e, $D^{k} \cdot V \geq 0$ for any subvariety $V$ with $\operatorname{dim} V=k \leq n-1$. Thus we need to show $D^{n} \geq 0$.

Step 3. Suppose that $D$ is a $\mathbb{Q}$-divisor with $D^{n}<0$.
Pick an ample $\mathbb{Z}$-divisor $H$ on $X$. Consider

$$
P(t)=(D+t H)^{n}=D^{n}+n D^{n-1} \cdot H t+\binom{n}{2} D^{n-2} H^{2} t^{2}+\cdots+H^{n} t^{n}
$$

$P(0)=D^{n}<0$. Then $D^{n-k} H^{k} \geq 0$ for all $1 \leq k \leq n$, because 1) $H^{k}$ is a $\mathbb{Q}$-effective cycle, and 2) induction hypothesis. Furthermore, $H^{n}$ is strictly positive by Nakai-Moishezon criterion.

Since the leading coefficient of $P(t)$ is positive, there exists $t_{0}>0$ such that $P\left(t_{0}\right)=0$. Pick $t_{1} \in \mathbb{Q}$ with $t_{1}>t_{0}$. Then $P\left(t_{1}\right)>0$.

Step 4.A $\mathbb{Q}$-divisor $D+t_{1} H$ is ample.
For any irreducible subvariety $V$ with $\operatorname{dim} V=k,\left(D+t_{1} H\right)^{k} \cdot V>0$ because all terms are nonnegative and $H^{k} \cdot V>0$. Also $\left(D+t_{1} H\right)^{n}>0$ by the construction of $t_{1}$. Therefore by Nakai-Moishezon criterion again, it is ample.

Step 5. Make a contradiction.
Now

$$
\begin{gathered}
P(t)=(D+t H)^{n}=(D+t H)(D+t H)^{n-1} \\
=D(D+t H)^{n-1}+t H(D+t H)^{n-1}=: R(t)+S(t)
\end{gathered}
$$

Date: February 22, 2013.

For all $t_{1} \in \mathbb{Q}$ with $t_{1}>t_{0}, D+t_{1} H$ is ample, so $\left(D+t_{1} H\right)^{n-1}$ is an effective $\mathbb{Q}$-curve. Thus $D\left(D+t_{1} H\right)^{n-1} \geq 0$ because $D$ is nef. Therefore $R\left(t_{1}\right) \geq 0$ for all $t_{1}>t_{0}$. By continuity, $R\left(t_{0}\right) \geq 0$.

On the other hand, $S\left(t_{0}\right)>0$ since

$$
S\left(t_{0}\right)=t_{0} H\left(D+t_{0} H\right)^{n-1}=t_{0} H D^{n-1}+t_{0}^{2} H^{2} D^{n-2}+\cdots t_{0}^{2} H^{n}
$$

where all terms are nonnegative and the last term is strictly positive. $0=P\left(t_{0}\right)=R\left(t_{0}\right)+$ $S\left(t_{0}\right)>0$, arise a contradiction.

Step 6.Case of $\mathbb{R}$-divisor.
Now suppose that $D$ is a nef $\mathbb{R}$-divisor. Fix $H_{1}, \cdots, H_{r}$ be ample divisor which span $N^{1}(X)_{\mathbb{R}}$. Consider $D+\epsilon_{1} H_{1}+\cdots+\epsilon_{r} H_{r}$ with $0 \leq \epsilon_{i} \ll 1$. We can choose $\epsilon_{i}$ such that $D+\epsilon_{1} H_{1}+\cdots+\epsilon_{r} H_{r}$ is a nef $\mathbb{Q}$-divisor. By the previous case of $\mathbb{Q}$-divisors, $\left(D+\epsilon_{1} H_{1}+\right.$ $\left.\cdots+\epsilon_{r} H_{r}\right)^{\operatorname{dim} V} \cdot V \geq 0$ for all irreducible closed subvariety $V \subset X$. By continuity again, $D^{\operatorname{dim} V} \cdot V \geq 0$, so it is nef.

Corollary 0.2. Let $D$ be a nef divisor and $H$ be an ample divisor. Then $D+\epsilon H$ is ample for all $\epsilon>0$.

Proof. (In a case of $\mathbb{Q}$-divisor) For any irreducible subvariety $V$ with $\operatorname{dim} V=k,(D+\epsilon H)^{k}$. $V>0$, because $D^{k-i} H^{i} V \geq 0$ for all $k \geq 1$ and $H^{k} \cdot V>0$.

