NEF LINE BUNDLES AND DIVISORS - II

JIE WANG, HAN-BOM MOON

Theorem 0.1 (Kleiman). If D is a \mathbb{Z} , \mathbb{Q} , \mathbb{R} -Cartier divisor on a complete scheme. Suppose that D is nef ($C \cdot D \ge 0$ for all irreducible curve C). Then

$$D^{\dim V} \cdot V \ge 0$$

for all closed subvariety $V \subset X$.

Therefore, a nef divisor is a limit of ample divisors. See Corollary 0.2 below.

Proof. Step 1. We may assume that *X* is irreducible and reduced. By some basic properties of nefness we discussed in last week. By using Chow's lemma, we may also assume that *X* is projective. So let *X* be a projective variety.

Step 2. We will use induction on dimension.

If dim X = 1, it is obvious. So assume the theorem for dim X = n - 1 i.e, $D^k \cdot V \ge 0$ for any subvariety V with dim $V = k \le n - 1$. Thus we need to show $D^n \ge 0$.

Step 3. Suppose that *D* is a \mathbb{Q} -divisor with $D^n < 0$. Pick an ample \mathbb{Z} -divisor *H* on *X*. Consider

$$P(t) = (D + tH)^{n} = D^{n} + nD^{n-1} \cdot Ht + \binom{n}{2}D^{n-2}H^{2}t^{2} + \dots + H^{n}t^{n}.$$

 $P(0) = D^n < 0$. Then $D^{n-k}H^k \ge 0$ for all $1 \le k \le n$, because 1) H^k is a Q-effective cycle, and 2) induction hypothesis. Furthermore, H^n is strictly positive by Nakai-Moishezon criterion.

Since the leading coefficient of P(t) is positive, there exists $t_0 > 0$ such that $P(t_0) = 0$. Pick $t_1 \in \mathbb{Q}$ with $t_1 > t_0$. Then $P(t_1) > 0$.

Step 4.A \mathbb{Q} -divisor $D + t_1 H$ is ample.

For any irreducible subvariety *V* with dim V = k, $(D + t_1H)^k \cdot V > 0$ because all terms are nonnegative and $H^k \cdot V > 0$. Also $(D + t_1H)^n > 0$ by the construction of t_1 . Therefore by Nakai-Moishezon criterion again, it is ample.

Step 5. Make a contradiction.

Now

$$P(t) = (D + tH)^n = (D + tH)(D + tH)^{n-1}$$

= $D(D + tH)^{n-1} + tH(D + tH)^{n-1} =: R(t) + S(t).$

Date: February 22, 2013.

For all $t_1 \in \mathbb{Q}$ with $t_1 > t_0$, $D + t_1H$ is ample, so $(D + t_1H)^{n-1}$ is an effective \mathbb{Q} -curve. Thus $D(D + t_1H)^{n-1} \ge 0$ because D is nef. Therefore $R(t_1) \ge 0$ for all $t_1 > t_0$. By continuity, $R(t_0) \ge 0$.

On the other hand, $S(t_0) > 0$ since

$$S(t_0) = t_0 H (D + t_0 H)^{n-1} = t_0 H D^{n-1} + t_0^2 H^2 D^{n-2} + \dots + t_0^2 H^n$$

where all terms are nonnegative and the last term is strictly positive. $0 = P(t_0) = R(t_0) + S(t_0) > 0$, arise a contradiction.

Step 6.Case of \mathbb{R} -divisor.

Now suppose that D is a nef \mathbb{R} -divisor. Fix H_1, \dots, H_r be ample divisor which span $N^1(X)_{\mathbb{R}}$. Consider $D + \epsilon_1 H_1 + \dots + \epsilon_r H_r$ with $0 \le \epsilon_i \ll 1$. We can choose ϵ_i such that $D + \epsilon_1 H_1 + \dots + \epsilon_r H_r$ is a nef \mathbb{Q} -divisor. By the previous case of \mathbb{Q} -divisors, $(D + \epsilon_1 H_1 + \dots + \epsilon_r H_r)^{\dim V} \cdot V \ge 0$ for all irreducible closed subvariety $V \subset X$. By continuity again, $D^{\dim V} \cdot V \ge 0$, so it is nef.

Corollary 0.2. Let D be a nef divisor and H be an ample divisor. Then $D + \epsilon H$ is ample for all $\epsilon > 0$.

Proof. (In a case of \mathbb{Q} -divisor) For any irreducible subvariety V with dim V = k, $(D + \epsilon H)^k \cdot V > 0$, because $D^{k-i}H^iV \ge 0$ for all $k \ge 1$ and $H^k \cdot V > 0$.