\mathbb{Q} -DIVISORS AND \mathbb{R} -DIVISORS

JOE TENINI, HAN-BOM MOON

By introducing \mathbb{Q} -divisors and \mathbb{R} -divisors, we can apply some techniques from analysis (like perturbation) to study divisors.

Definition 0.1.

$$\operatorname{Div}_{\mathbb{Q}}(X) = \operatorname{Div}_{\mathbb{Z}}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$$

So for $D \in \text{Div}_{\mathbb{Q}}(X)$, $D = \sum c_i A_i$ where $c_i \in \mathbb{Q}$ and $A_i \in \text{Div}_{\mathbb{Z}}(X)$. By finding a common denominator, we can write D as D = cA where $A \in \text{Div}_{\mathbb{Z}}(X)$ and $c \in \mathbb{Q}$.

 $D \in \sum c_i A_i$ is **effective** if $c_i > 0$ and A_i are effective divisors.

Definition 0.2. (Support of *D*) Let $E \subset X$ be a codimension 1 subset. Then *E* is a **support** of *D* if $D = \sum c_i A_i$ such that $\cup |A_i| \subset E$.

We can define intersection product on $\text{Div}_{\mathbb{Q}}(X)$: Do intersections on integral divisors and extend linearly. Also we can define the numerical equivalence.

$$N^1(X)_{\mathbb{Q}} = N^1(X)_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}$$

Finally, two \mathbb{Q} -divisors D_1, D_2 are linearly equivalent if

$$rD_1 \equiv_{\lim,\mathbb{Z}} rD_2$$

for some $r \in \mathbb{Z}$.

Example 0.3. It can happen for $D_1, D_2 \in \text{Div}_{\mathbb{Z}}, D_1 \not\equiv_{\text{lin},\mathbb{Z}} D_2$ but $D_1 \equiv_{\text{lin},\mathbb{Q}} D_2$. Let *X* be an elliptic curve. Take a 2-torsion point $P \in X$ and the identity $O \in X$. Then $P - O \not\equiv_{\text{lin},\mathbb{Z}} 0$, but $2(P - O) \equiv_{\text{lin},\mathbb{Z}} 0$, so $P - O \equiv_{\text{lin},\mathbb{Q}} 0$.

We can also define pull-back of Q-divisor.

Definition 0.4. A Q-divisor *D* is **ample** if one of following holds.

(1) $D = \sum c_i A_i$ where $c_i > 0$ and A_i are ample.

(2) \exists an integer r > 0 such that rD is integral and ample.

(3) $D^{\dim V} \cdot [V] > 0$ for any irreducible closed subvariety $V \subset X$.

Proposition 0.5. Let X be a projective variety. Let H be an ample \mathbb{Q} -divisor and E be an arbitrary Cartier divisor. Then $H + \epsilon E$ is ample for every $0 < |\epsilon| \ll 1$.

Date: February 8, 2013.

Thus the ampleness is an open condition. Therefore $N^1(X)_{\mathbb{Q}}$ is spanned by ample divisors.

Remark 0.6. If *X* is normal,

$$\operatorname{Div}_{\mathbb{Z}}(X) \hookrightarrow \operatorname{WDiv}_{\mathbb{Z}}(X).$$

So

$$\operatorname{Div}_{\mathbb{Q}}(X) \hookrightarrow \operatorname{Wdiv}_{\mathbb{Q}}(X).$$

 $D \in WDiv_{\mathbb{Q}}(X)$ is \mathbb{Q} -Cartier if it lies in the image of this inclusion.

Example 0.7. Consider a quadric cone $V(xy - z^2)$ in \mathbb{P}^3 . A line class V(y, z) passing through the origin is a Weil divisor but not Cartier. But A = 2D is Cartier (See [Har77, II.6.5.2].) Now A is linearly equivalent to V(x) and V(y). Thus

$$A \cdot A = \dim_k k[x, y, z] / (xy - z^2)_{(x, y, z)} / (x, y) = \dim_k k[z] / (z^2) = 2.$$

Hence

$$D \cdot D = \frac{1}{2}A \cdot \frac{1}{2}A = \frac{1}{4}A \cdot A = \frac{1}{2}A$$

Remark 0.8. We can define the notion of \mathbb{R} -divisor by replacing \mathbb{Q} by \mathbb{R} . We want to define the notion of ample divisor as Definition 0.4. (1) \Rightarrow (3) is clear, but (3) \Rightarrow (1) is proved by Campana and Paternell in 70's. (2) is meaningless because we can't take a common denominator for real numbers.

REFERENCES

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 2