\mathbb{Q}-DIVISORS AND \mathbb{R}-DIVISORS

JOE TENINI, HAN-BOM MOON

By introducing \mathbb{Q}-divisors and \mathbb{R}-divisors, we can apply some techniques from analysis (like perturbation) to study divisors.

Definition 0.1.

$$
\operatorname{Div}_{\mathbb{Q}}(X)=\operatorname{Div}_{\mathbb{Z}}(X) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

So for $D \in \operatorname{Div}_{\mathbb{Q}}(X), D=\sum c_{i} A_{i}$ where $c_{i} \in \mathbb{Q}$ and $A_{i} \in \operatorname{Div}_{\mathbb{Z}}(X)$. By finding a common denominator, we can write D as $D=c A$ where $A \in \operatorname{Div}_{\mathbb{Z}}(X)$ and $c \in \mathbb{Q}$.
$D \in \sum c_{i} A_{i}$ is effective if $c_{i}>0$ and A_{i} are effective divisors.
Definition 0.2. (Support of D) Let $E \subset X$ be a codimension 1 subset. Then E is a support of D if $D=\sum c_{i} A_{i}$ such that $\cup\left|A_{i}\right| \subset E$.

We can define intersection product on $\operatorname{Div}_{\mathbb{Q}}(X)$: Do intersections on integral divisors and extend linearly. Also we can define the numerical equivalence.

$$
N^{1}(X)_{\mathbb{Q}}=N^{1}(X)_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}
$$

Finally, two \mathbb{Q}-divisors D_{1}, D_{2} are linearly equivalent if

$$
r D_{1} \equiv_{\operatorname{lin}, \mathbb{Z}} r D_{2}
$$

for some $r \in \mathbb{Z}$.
Example 0.3. It can happen for $D_{1}, D_{2} \in \operatorname{Div}_{\mathbb{Z}}, D_{1} \not \equiv_{\operatorname{lin}, \mathbb{Z}} D_{2}$ but $D_{1} \equiv_{\operatorname{lin}, \mathbb{Q}} D_{2}$. Let X be an elliptic curve. Take a 2-torsion point $P \in X$ and the identity $O \in X$. Then $P-O \not \equiv_{\operatorname{lin}, \mathbb{Z}} 0$, but $2(P-O) \equiv_{\operatorname{lin}, \mathbb{Z}} 0$, so $P-O \equiv_{\operatorname{lin}, \mathbb{Q}} 0$.

We can also define pull-back of \mathbb{Q}-divisor.
Definition 0.4. A \mathbb{Q}-divisor D is ample if one of following holds.
(1) $D=\sum c_{i} A_{i}$ where $c_{i}>0$ and A_{i} are ample.
(2) \exists an integer $r>0$ such that $r D$ is integral and ample.
(3) $D^{\operatorname{dim} V} \cdot[V]>0$ for any irreducible closed subvariety $V \subset X$.

Proposition 0.5. Let X be a projective variety. Let H be an ample \mathbb{Q}-divisor and E be an arbitrary Cartier divisor. Then $H+\epsilon E$ is ample for every $0<|\epsilon| \ll 1$.

Thus the ampleness is an open condition. Therefore $N^{1}(X)_{\mathbb{Q}}$ is spanned by ample divisors.

Remark 0.6. If X is normal,

$$
\operatorname{Div}_{\mathbb{Z}}(X) \hookrightarrow \operatorname{WDiv}_{\mathbb{Z}}(X) .
$$

So

$$
\operatorname{Div}_{\mathbb{Q}}(X) \hookrightarrow \operatorname{Wdiv}_{\mathbb{Q}}(X) .
$$

$D \in \operatorname{WDiv}_{\mathbb{Q}}(X)$ is \mathbb{Q}-Cartier if it lies in the image of this inclusion.
Example 0.7. Consider a quadric cone $V\left(x y-z^{2}\right)$ in \mathbb{P}^{3}. A line class $V(y, z)$ passing through the origin is a Weil divisor but not Cartier. But $A=2 D$ is Cartier (See [Har77, II.6.5.2].) Now A is linearly equivalent to $V(x)$ and $V(y)$. Thus

$$
A \cdot A=\operatorname{dim}_{k} k[x, y, z] /\left(x y-z^{2}\right)_{(x, y, z)} /(x, y)=\operatorname{dim}_{k} k[z] /\left(z^{2}\right)=2 .
$$

Hence

$$
D \cdot D=\frac{1}{2} A \cdot \frac{1}{2} A=\frac{1}{4} A \cdot A=\frac{1}{2} .
$$

Remark 0.8. We can define the notion of \mathbb{R}-divisor by replacing \mathbb{Q} by \mathbb{R}. We want to define the notion of ample divisor as Definition 0.4 . (1) $\Rightarrow(3)$ is clear, but $(3) \Rightarrow(1)$ is proved by Campana and Paternell in 70's. (2) is meaningless because we can't take a common denominator for real numbers.

REFERENCES

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 2

