EXAMPLES OF FUNNY CONES OF CURVES

JOE TENINI, HAN-BOM MOON

1. Product of elliptic curves

Let E be a smooth projective complex irreducible genus g curve. $X=E \times E$. Pick $p \in E$. Let $f_{1}=\{p\} \times E, f_{2}=E \times\{p\}$, and δ be the diagonal.

- f_{1}, f_{2}, δ are independent in $\mathrm{N}_{1}(X)$.
- For general E, f_{1}, f_{2}, δ span $\mathrm{N}_{1}(X)$.
- $f_{1} \delta=f_{2} \delta=f_{1} f_{2}=1, f_{1}^{2}=f_{2}^{2}=0, \delta^{2}=2-2 g$.

If $g=1, X$ is an abelian surface.
Lemma 1.1. (1) $\overline{\mathrm{NE}}(X)=\operatorname{Nef}(X)$.
(2) A class $\alpha \in \mathrm{N}^{1}(X)_{\mathbb{R}}$ is nef $\Leftrightarrow \alpha^{2} \geq 0$ and $\alpha \cdot h \geq 0$ for some h ample.

Proof. (1) On a surface, $\operatorname{Nef}(X) \subset \overline{\mathrm{NE}}(X)$ and we have equality $\Leftrightarrow C^{2} \geq 0$ for all irreducible curves $C \subset X$.

If τ is a general automorphism of X, then $\tau C \equiv_{n u m} C$ and τC and C intersect properly. $\tau C \cdot C=C^{2} \geq 0$.
(2) \Rightarrow is true for all surfaces. For \Leftarrow, first let's show that if D is a divisor such that $D^{2}>0$ and $D \cdot H>0$ then for $n \gg 0, n D$ is effective.

For $n \gg 0, D \cdot H>0$ so $h^{2}(n D)=h^{0}(K-n D)=0$ because $(K-n D) \cdot H$ becomes a negative number. So from

$$
h^{0}(n D)-h^{1}(n D)+h^{2}(n D)=\frac{1}{2} n D(n D-K)+1+p_{a}
$$

we get

$$
h^{0}(n D) \geq \frac{1}{2} n^{2} D^{2}-\frac{1}{2} n D K+1+p_{a}>0
$$

because $K \equiv 0$. Therefore $n D$ is effective.
Then such D is nef because $D^{2}>0$.
Since all α is a limit of such D, α is also nef because nef cone is closed.
Let $a f_{1}+b f_{2}+c \delta$ is nef. Then $\left(a f_{1}+b f_{2}+c \delta\right)^{2} \geq 0$ and $\left(a f_{1}+b f_{2}+c \delta\right)\left(f_{1}+f_{2}+\delta\right) \geq 0$. By solving these inequalities, we get $a b+a c+b c \geq 0$ and $a+b+c \geq 0$. So it is a circular cone.

2. BlOW UP OF \mathbb{P}^{2}

(See [Har77, V. Ex.4.15].) Take \mathbb{P}^{2} and blow-up at ≥ 10 general points. Then $\mathrm{N}_{1}(X)=$ $\left\langle e_{i}, \ell\right\rangle$, where ℓ is the line class and e_{i} are exceptional divisors. Fix $1 \gg \epsilon>0$ such that $h=\ell-\epsilon \sum e_{i}$ is ample.

Then there exists a sequence $C_{i} \subset X$ of smooth rational curves such that $C_{i}^{2}=-1$, $C_{i} \cdot h \rightarrow \infty$. These C_{i} are extremal rays of $\overline{\mathrm{NE}}(X)$. Thus $\overline{\mathrm{NE}}(X)$ has infinitely many extremal rays.

On the other hand, $C_{i} \cdot K=-1$ by adjunction formula. So all C_{i} lie on an affine hyperplane $K_{-1}:=\{C \in \overline{\mathrm{NE}}(X) \mid C \cdot K=-1\}$. If we draw a section of $\overline{\mathrm{NE}}(X)$, (See [Laz04, Figure 1.7].) then C_{i} forms a set of points on the section such that whose accumulation points lie on $K_{\perp}=\{C \in \overline{\mathrm{NE}}(X) \mid C \cdot K=0\}$.

REFERENCES

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 2
[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. 2

