EXAMPLES OF FUNNY CONES OF CURVES

JOE TENINI, HAN-BOM MOON

1. PRODUCT OF ELLIPTIC CURVES

Let *E* be a smooth projective complex irreducible genus *g* curve. $X = E \times E$. Pick $p \in E$. Let $f_1 = \{p\} \times E$, $f_2 = E \times \{p\}$, and δ be the diagonal.

- f_1, f_2, δ are independent in $N_1(X)$.
- For general E, f_1, f_2, δ span $N_1(X)$.
- $f_1\delta = f_2\delta = f_1f_2 = 1, f_1^2 = f_2^2 = 0, \delta^2 = 2 2g.$

If g = 1, X is an abelian surface.

Lemma 1.1. (1) $\overline{NE}(X) = Nef(X)$. (2) A class $\alpha \in N^1(X)_{\mathbb{R}}$ is nef $\Leftrightarrow \alpha^2 \ge 0$ and $\alpha \cdot h \ge 0$ for some h ample.

Proof. (1) On a surface, $Nef(X) \subset \overline{NE}(X)$ and we have equality $\Leftrightarrow C^2 \ge 0$ for all irreducible curves $C \subset X$.

If τ is a general automorphism of X, then $\tau C \equiv_{num} C$ and τC and C intersect properly. $\tau C \cdot C = C^2 \ge 0.$

(2) \Rightarrow is true for all surfaces. For \Leftarrow , first let's show that if *D* is a divisor such that $D^2 > 0$ and $D \cdot H > 0$ then for $n \gg 0$, nD is effective.

For $n \gg 0$, $D \cdot H > 0$ so $h^2(nD) = h^0(K - nD) = 0$ because $(K - nD) \cdot H$ becomes a negative number. So from

$$h^{0}(nD) - h^{1}(nD) + h^{2}(nD) = \frac{1}{2}nD(nD - K) + 1 + p_{a},$$

we get

$$h^{0}(nD) \ge \frac{1}{2}n^{2}D^{2} - \frac{1}{2}nDK + 1 + p_{a} > 0,$$

because $K \equiv 0$. Therefore nD is effective.

Then such *D* is nef because $D^2 > 0$.

Since all α is a limit of such *D*, α is also nef because nef cone is closed.

Let $af_1 + bf_2 + c\delta$ is nef. Then $(af_1 + bf_2 + c\delta)^2 \ge 0$ and $(af_1 + bf_2 + c\delta)(f_1 + f_2 + \delta) \ge 0$. By solving these inequalities, we get $ab + ac + bc \ge 0$ and $a + b + c \ge 0$. So it is a circular cone.

Date: March 22, 2013.

JOE TENINI, HAN-BOM MOON 2. Blow up of \mathbb{P}^2

(See [Har77, V. Ex.4.15].) Take \mathbb{P}^2 and blow-up at ≥ 10 general points. Then $N_1(X) = \langle e_i, \ell \rangle$, where ℓ is the line class and e_i are exceptional divisors. Fix $1 \gg \epsilon > 0$ such that $h = \ell - \epsilon \sum e_i$ is ample.

Then there exists a sequence $C_i \subset X$ of smooth rational curves such that $C_i^2 = -1$, $C_i \cdot h \to \infty$. These C_i are extremal rays of $\overline{NE}(X)$. Thus $\overline{NE}(X)$ has infinitely many extremal rays.

On the other hand, $C_i \cdot K = -1$ by adjunction formula. So all C_i lie on an affine hyperplane $K_{-1} := \{C \in \overline{NE}(X) \mid C \cdot K = -1\}$. If we draw a section of $\overline{NE}(X)$, (See [Laz04, Figure 1.7].) then C_i forms a set of points on the section such that whose accumulation points lie on $K_{\perp} = \{C \in \overline{NE}(X) \mid C \cdot K = 0\}$.

REFERENCES

- [Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 2
- [Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. 2