# ASYMPTOTIC THEORY 

JIE WANG, HAN-BOM MOON

Let $X$ be a normal projective variety over $\mathbb{C}$. Recall that if $L$ is an ample line bundle on $X$, then $L^{m}$ is very ample for $m \geq m_{0}$. So we have

$$
\begin{aligned}
\varphi_{\left|L^{m}\right|}: X & \rightarrow \mathbb{P} H^{0}\left(X, L^{m}\right) \\
x & \mapsto \text { hyperplane of sections } s \in H^{0}\left(L^{m}\right), s(x)=0
\end{aligned}
$$

If $\left\{s_{0}, \cdots, s_{N}\right\}$ is a basis of $H^{0}\left(X, L^{m}\right)$,

$$
x \mapsto\left(s_{0}(x): \cdots: s_{N}(x)\right)
$$

Then $\varphi_{\left|L^{m}\right|}(X) \cong X$ since $L^{m}$ is very ample.
Asymptotic theory studies $\varphi_{\left|L^{m}\right|}$ for arbitrary $L$.

## Definition 0.1.

$$
\mathbb{N}(L):=\left\{n \in \mathbb{N} \mid H^{0}\left(X, L^{n}\right) \neq 0\right\}
$$

Note that $\mathbb{N}(L)$ is a semi-group, i.e., $m, n \in \mathbb{N}(L) \Rightarrow n+m \in \mathbb{N}(L)$. There exists $e$ such that for all $m \in \mathbb{N}(L)$ large enough, $e \mid m$. $e$ is called the exponent of $L$.

Example 0.2. Let $N$ be a semi-group generated by 4,6 . Then $N=\{4,6,8,10,12, \cdots\}$. So we can take $e=2$.

Example 0.3. Let $X$ be an elliptic curve. $L \in \operatorname{Pic}^{0}(X)$, torsion of order $e$, i.e., $L^{e} \cong \mathcal{O}_{X}$ and $L^{m} \not \not \mathcal{O}_{X}$ for $0<m<e$. Then $\mathbb{N}(L)=\{e, 2 e, 3 e, \cdots\}$.

For $m \in \mathbb{N}(L)$, we have a rational map

$$
\varphi_{m}=\varphi_{\left|L^{m}\right|}: X \rightarrow \mathbb{P} H^{0}\left(X, L^{m}\right)
$$

Let $Y_{m}=\operatorname{im} \varphi_{m} \subset \mathbb{P} H^{0}\left(X, L^{m}\right)$.
Definition 0.4. The Iitaka dimension of $L$ is

$$
\kappa(X, L):=\max _{m \in \mathbb{N}(L)}\left\{\operatorname{dim} Y_{m}\right\}
$$

If $L=K_{X}$, then $\kappa\left(X, K_{X}\right)$ is Kodaira dimension of $X$. If $\mathbb{N}(L)=\{0\}$, set $\kappa(X, L)=-\infty$. By definition, $\kappa(X, L) \leq \operatorname{dim} X$.

Example 0.5. Let $X=Y \times E$, where $E$ is an elliptic curve and $\eta \in \operatorname{Pic}^{0}(E)$ is an $e$-torsion. Let $Y$ be a projective variety and $B$ be a very ample line bundle on $Y$. Set $L=\pi_{1}^{*} B \otimes \pi_{2}^{*} \eta=$ $B \boxtimes \eta . L^{m}=\pi_{1}^{*} B^{m} \otimes \pi_{2}^{*} \eta^{m}$. So

$$
H^{0}\left(L^{m}\right)=H^{0}\left(Y \times E, \pi_{1}^{*} B^{m} \otimes \pi_{2}^{*} \eta^{m}\right)=H^{0}\left(Y, B^{m}\right) \otimes H^{0}\left(E, \eta^{m}\right)
$$

If $e$ does not divide $m, H^{0}\left(L^{m}\right)=0$. If $e \mid m, H^{0}\left(L^{m}\right) \cong H^{0}\left(Y, B^{m}\right) . L^{m}$ is base point free, and $\kappa(X, L)=\operatorname{dim} Y$.

Remark 0.6. Iitaka dimension is not a deformation invariant (fix $X$ and deform $L$ ). For example, if $X$ is any smooth projective variety with nontrivial $\operatorname{Pic}^{0}(X)$ and take $L \in \operatorname{Pic}^{0}(X)$. If $L \cong \mathcal{O}_{X}$ or more generally, if $L$ is torsion, $\kappa(X, L)=0$. But if $L$ is not torsion, $H^{0}\left(X, L^{m}\right)=0$ for all $m>0$ so $\kappa(X, L)=-\infty$.

Proposition 0.7. For $m \in \mathbb{N}(L)$ with $m \geq m_{0}, \operatorname{dim} Y_{m}=\kappa(X, L)$.
Proof. We may assume that $e(L)=1$ by replacing $L$ by $L^{e}$. Let $k_{0}$ be a power realizing Iitaka dimension, i.e., $\operatorname{dim} Y_{k_{0}}=\kappa(X, L)$. We will show that $\operatorname{dim} Y_{k_{0}+p}=\operatorname{dim} Y_{k_{0}}=\kappa(X, L)$. The reason is $\varphi_{\left|L^{k_{0}}\right|}$ factor through $\varphi_{\left|L^{k_{0}+p}\right|}$.


We have a map

$$
H^{0}\left(L^{k_{0}}\right) \stackrel{\otimes s_{p}}{\longrightarrow} H^{0}\left(L^{k_{0}+p}\right)
$$

by tensoring a fixed section $s_{p} \in H^{0}\left(L^{p}\right)$. So we can regard $H^{0}\left(L^{k_{0}}\right)$ as a sub-linear system of $H^{0}\left(L^{k_{0}+p}\right)$.

