ASYMPTOTIC THEORY

JIE WANG, HAN-BOM MOON

Let *X* be a normal projective variety over \mathbb{C} . Recall that if *L* is an ample line bundle on *X*, then L^m is very ample for $m \ge m_0$. So we have

$$\varphi_{|L^m|}: X \to \mathbb{P}H^0(X, L^m)$$

 $x \mapsto$ hyperplane of sections $s \in H^0(L^m), s(x) = 0$

If $\{s_0, \cdots, s_N\}$ is a basis of $H^0(X, L^m)$,

$$x \mapsto (s_0(x) : \cdots : s_N(x))$$

Then $\varphi_{|L^m|}(X) \cong X$ since L^m is very ample.

Asymptotic theory studies $\varphi_{|L^m|}$ for arbitrary *L*.

Definition 0.1.

$$\mathbb{N}(L) := \{ n \in \mathbb{N} | H^0(X, L^n) \neq 0 \}$$

Note that $\mathbb{N}(L)$ is a semi-group, i.e., $m, n \in \mathbb{N}(L) \Rightarrow n + m \in \mathbb{N}(L)$. There exists *e* such that for all $m \in \mathbb{N}(L)$ large enough, e|m. *e* is called the **exponent** of *L*.

Example 0.2. Let N be a semi-group generated by 4, 6. Then $N = \{4, 6, 8, 10, 12, \dots\}$. So we can take e = 2.

Example 0.3. Let *X* be an elliptic curve. $L \in \text{Pic}^{0}(X)$, torsion of order *e*, i.e., $L^{e} \cong \mathcal{O}_{X}$ and $L^{m} \not\cong \mathcal{O}_{X}$ for 0 < m < e. Then $\mathbb{N}(L) = \{e, 2e, 3e, \cdots\}$.

For $m \in \mathbb{N}(L)$, we have a rational map

$$\varphi_m = \varphi_{|L^m|} : X \dashrightarrow \mathbb{P}H^0(X, L^m).$$

Let $Y_m = \operatorname{im} \varphi_m \subset \mathbb{P} H^0(X, L^m)$.

Definition 0.4. The **Iitaka dimension** of *L* is

$$\kappa(X,L) := \max_{m \in \mathbb{N}(L)} \{\dim Y_m\}.$$

If $L = K_X$, then $\kappa(X, K_X)$ is Kodaira dimension of X. If $\mathbb{N}(L) = \{0\}$, set $\kappa(X, L) = -\infty$. By definition, $\kappa(X, L) \leq \dim X$.

Date: March 29, 2013.

Example 0.5. Let $X = Y \times E$, where E is an elliptic curve and $\eta \in \text{Pic}^{0}(E)$ is an *e*-torsion. Let Y be a projective variety and B be a very ample line bundle on Y. Set $L = \pi_{1}^{*}B \otimes \pi_{2}^{*}\eta = B \boxtimes \eta$. $L^{m} = \pi_{1}^{*}B^{m} \otimes \pi_{2}^{*}\eta^{m}$. So

$$H^{0}(L^{m}) = H^{0}(Y \times E, \pi_{1}^{*}B^{m} \otimes \pi_{2}^{*}\eta^{m}) = H^{0}(Y, B^{m}) \otimes H^{0}(E, \eta^{m}).$$

If *e* does not divide *m*, $H^0(L^m) = 0$. If e|m, $H^0(L^m) \cong H^0(Y, B^m)$. L^m is base point free, and $\kappa(X, L) = \dim Y$.

Remark 0.6. Iitaka dimension is not a deformation invariant (fix *X* and deform *L*). For example, if *X* is any smooth projective variety with nontrivial $\operatorname{Pic}^{0}(X)$ and take $L \in \operatorname{Pic}^{0}(X)$. If $L \cong \mathcal{O}_{X}$ or more generally, if *L* is torsion, $\kappa(X, L) = 0$. But if *L* is not torsion, $H^{0}(X, L^{m}) = 0$ for all m > 0 so $\kappa(X, L) = -\infty$.

Proposition 0.7. For $m \in \mathbb{N}(L)$ with $m \ge m_0$, dim $Y_m = \kappa(X, L)$.

Proof. We may assume that e(L) = 1 by replacing L by L^e . Let k_0 be a power realizing Iitaka dimension, i.e., $\dim Y_{k_0} = \kappa(X, L)$. We will show that $\dim Y_{k_0+p} = \dim Y_{k_0} = \kappa(X, L)$. The reason is $\varphi_{|L^{k_0}|}$ factor through $\varphi_{|L^{k_0+p}|}$.

$$X \xrightarrow{\varphi_{|L^{k_0}+p|}}_{\varphi_{|L^{k_0}|} \searrow y} Y_{k_0+p}$$

We have a map

$$H^0(L^{k_0}) \stackrel{\otimes s_p}{\hookrightarrow} H^0(L^{k_0+p})$$

by tensoring a fixed section $s_p \in H^0(L^p)$. So we can regard $H^0(L^{k_0})$ as a sub-linear system of $H^0(L^{k_0+p})$.