NEF LINE BUNDLES AND DIVISORS - II

ADRIAN BRUNYATE, HAN-BOM MOON

A ruled surface $\pi : X \to C$ corresponds to a rank 2 vector bundle U over a curve C is defined by $X = \mathbb{P}(U)$. Assume that deg U is even. So by twisting, we can assume that deg U = 0.

 $N^1(X)_{\mathbb{R}} = \langle E = c_1(\mathcal{O}_{\mathbb{P}(U)}(1)), F \rangle$ where $E^2 = 0, EF = 1, F^2 = 0$. So the nef cone is a nonnegative linear combination of E and F.

There are two cases.

(1) (*U* unstable) There is a quotient line bundle *A* of *U* with negative degree *a* so $\mathbb{P}(A) \hookrightarrow X$. Note that as a numerical class, $[\mathbb{P}(A)] = xE + yF$. $[\mathbb{P}(A)] \cdot F = 1$ because $[\mathbb{P}(A)]$ is a section. So x = 1. Moreover, there is a tautological sequence

$$0 \to S \to \pi^* U \to \mathcal{O}_X(1) \to 0.$$

By definition of the tautological quotient $\mathcal{O}_X(1)$, at a point $x \in C$ and its fiber $\mathbb{P}(A)|_x, \mathcal{O}_X(1)|_{\mathbb{P}(A)} = A_x$. Therefore $\mathcal{O}_X(1)|_{\mathbb{P}(A)} = A$ and $\mathbb{P}(A) \cdot E = \deg E|_{\mathbb{P}(A)} = \deg \mathcal{O}_X(1)|_{\mathbb{P}(A)} = \deg A = a$. So y = a. Thus $[\mathbb{P}(A)]^2 = (E + aF)^2 = 2a < 0$. Therefore $[\mathbb{P}(A)]$ is an extremal ray of $\overline{NE}(X)$. (Another extremal ray is *F*.)

By taking the dual cone, we conclude that the nef cone is generated by E - aF and F.

(2) (U is semistable) U has no negative degree quotient line bundles. If U is semistable, then so is S^mU. Then H⁰(C, S^mU ⊗ A) = Hom(A*, S^mU) ≠ 0 only if deg A ≥ 0 by semistability of S^mU. Note that any effective curve is a section of O_{P(U)}(m) ⊗ π*(A) with nonnegative m, because one extremal ray of NE(X) is F, the pull-back of [p] ∈ C. And H⁰(X, O_{P(U)}(m) ⊗ π*A) = H⁰(C, S^mU ⊗ A) by Leray spectral sequence. So we see deg A ≥ 0. Thus Nef(X) = NE(X).

On the other hand, if g(C) > 2 and C and U are sufficiently general, there a deg 0 line bundle A such that $H^0(C, S^mU \otimes A) = 0$ for all $m \ge 1$ so $E \notin NE(X)$. In summary, NE(X) is not closed.

Date: March 8, 2013.