AMPLENESS

JOE TENINI, HAN-BOM MOON

Definition 0.1. Let X be a complete scheme and L be a line bundle. L is very ample if there is an embedding $X \hookrightarrow \mathbb{P}^{N}$ such that $L=\left.\mathcal{O}_{\mathbb{P}^{N}}(1)\right|_{X} . L$ is ample if there is $m \in \mathbb{N}$ such that L^{m} is very ample.

Example 0.2. (1) For a curve X, L is ample $\Leftrightarrow \operatorname{deg} L>0$.
(2) For a smooth curve X, D is very ample $\Leftrightarrow \forall P, Q \in X, \operatorname{dim}|D-P-Q|=\operatorname{dim}|D|-2$.
(3) If X is projective and $\operatorname{Pic} X=\mathbb{Z} \Rightarrow$ effectiveness implies ampleness.

Remark 0.3. For n-dimensional variety X and n ample divisors D_{1}, \cdots, D_{n}, then $D_{1} \cdots \cdots$ $D_{n}>0$.

Cohomological characterization of ampleness.
Theorem 0.4. (Cartan-Serre-Grothendieck) TFAE:
(1) L is ample;
(2) For a coherent sheaf $F, \exists m_{1}(F) \in \mathbb{N}$ such that $H^{i}\left(X, F \otimes L^{m}\right)=0$ for all $i>0, m \geq$ $m_{1}(F)$;
(3) For a coherent sheaf $F, \exists m_{2}(F) \in \mathbb{N}$ such that $F \otimes L^{m}$ is globally generated for $m \geq$ $m_{2}(F)$.
(4) $\exists m_{3} \in \mathbb{N}$ such that L^{m} is very ample for $m \geq m_{3}$.

Proof. $(1 \Rightarrow 2)$
Assume that L is very ample and $X \hookrightarrow \mathbb{P}^{r}$ is the embedding given by L. One can regard F as a sheaf on \mathbb{P}^{r} (extending by 0). It suffices to show that $H^{i}(F(m))=0$ for $i>0, m \gg 0$. See [Har77, Theorem III.5.2].
$(2 \Rightarrow 3)$
Fix $x \in X$, let $m_{x} \subset \mathcal{O}_{X}$ be the ideal sheaf of x. By (2), $H^{1}\left(X, m_{x} F \otimes L^{m}\right)=0$ for $m \geq m_{2}$.

$$
\begin{gathered}
0 \rightarrow m_{x} F \rightarrow F \rightarrow F / m_{x} F \rightarrow 0 \\
0 \rightarrow m_{x} F \otimes L^{m} \rightarrow F \otimes L^{m} \rightarrow F / m_{x} F \otimes L^{m} \rightarrow 0 \\
0 \rightarrow H^{0}\left(m_{x} F \otimes L^{m}\right) \rightarrow H^{0}\left(F \otimes L^{m}\right) \rightarrow H^{0}\left(F / m_{x} F\right) \rightarrow 0
\end{gathered}
$$

We can take common m by quasi-compactness of X. Thus it is globally generated.

$$
(3 \Rightarrow 4)
$$

\exists positive integer m_{2} such that L^{m} is globally generated for all $m \geq m_{2}$. Let $\varphi_{m}: X \rightarrow$ $\mathbb{P} H^{0}\left(X, L^{m}\right)$. Define $U_{m}=\left\{y \in X \mid L^{m} \otimes m_{y}\right.$ is globally generated $\}$. This is an open subset and $U_{m} \subset U_{m+1}$. Since X is noetherian, $X=U_{m}$ for some m.

The claim is it gives the proof of separation of points and separation of tangent vectors. Pick $x, y \in X$. Then since $L^{m} \otimes m_{y}$ is globally generated, there is a section $s \in H^{0}\left(L^{m} \otimes m_{y}\right)$ such that $s(x) \neq 0$. By the definition of $L^{m} \otimes m_{y}$, it gives a section s such that $s(x) \neq 0$ and $s(y)=0$. Therefore we obtain the separation of points. Moreover, from the global generation, the restriction morphism $H^{0}\left(X, L^{m} \otimes m_{y}\right) \rightarrow H^{0}\left(X,\left.L^{m} \otimes m_{y}\right|_{y}\right) \cong H^{0}\left(L^{m} \otimes\right.$ $\left.m_{y} / m_{y}^{2}\right)$ is surjective. Therefore for any tangent vector $v \in \operatorname{Hom}\left(m_{y} / m_{y}^{2}, \mathbb{C}\right)$, there is a section $s \in H^{0}\left(X, L^{m} \otimes m_{y}\right)$ such that $\left.s\right|_{y}(v) \neq 0$. It gives the separation of tangent vectors. $(4 \Rightarrow 1)$
This is just a definition.

References

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 1

