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ABSTRACT. We show that the derived categories of symmetric products of a curve are em-
bedded into the derived categories of the moduli spaces of vector bundles of large ranks
on the curve. It supports a prediction of the existence of a semiorthogonal decomposition
of the derived category of the moduli space, expected by a motivic computation. As an
application, we show that all Jacobian varieties, symmetric products of curves and all prin-
cipally polarized abelian varieties of dimension at most three, are Fano visitors. We also
obtain similar results for motives.

1. INTRODUCTION

Let X be a smooth projective curve of genus g ≥ 2, and L be a line bundle on X of
degree d. The moduli space MX(r, L) of rank r, determinant L semistable vector bundles
on X is one of the most intensively studied moduli spaces in the past decades. When
(r, d) = 1, it is a smooth projective Fano variety of dimension (r2 − 1)(g − 1) of index two
[Ram73].

1.1. Derived category of the moduli space of vector bundles. Since the pioneering works
of Narasimhan in [Nar17, Nar18] and Fonarev-Kuznetsov in [FK18], many works have
been done to understand the bounded derived category of coherent sheaves Db(MX(r, L))

of the moduli space, in particular its semiorthogonal decomposition. Narasimhan, and
independently Belmans–Galkin–Mukhopadhyay, conjectured that in the rank two case,
Db(MX(2, L)) has an explicit semiorthogonal decomposition [Lee18, BGM23], where all
indecomposable components are equivalent to Db(Xn), where Xn = Xn/Sn. A proof of
this conjecture was recently announced by Tevelev and Torres [TT21, Tev23].

For the higher rank case, based on motivic computation in [GL20], it has been conjec-
tured that Db(MX(r, L)) has a semiorthogonal decomposition whose components can be
described in terms of symmetric products Xn and its Jacobian Jac(X) [GL20, Conjecture
1.3]. As the initial step, building upon earlier works of Narasimhan in [Nar17, Nar18],
Fonarev-Kuznetsov in [FK18], Belmans-Mukhopadhyay in [BM19], we proved that Db(X)

can be embedded into Db(MX(r, L)) in [LM21, LM23] for any curve X , rank r ≥ 2 and co-
prime degree d. In this paper, we extend this result to symmetric products.
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Theorem A. Suppose that r > 2n. Then Db(Xn) is embedded into Db(MX(r, L)).

As we can see below, this result implies that Db(Jac(X)) is embedded into Db(MX(r, L))

if r > 2g.

1.2. Fano visitor problem. Mirror symmetry predicts that a mirror of a Fano variety is
given by a Landau-Ginzburg model, and people have tried to understand Fano varieties
via their Landau-Ginzburg mirrors. From this perspective, it is essential to know which
categories can appear as semiorthogonal components of the derived categories of Fano
varieties since we expect they will also appear as Fukaya-Seidel categories associated
with some critical loci of the Landau-Ginzburg mirrors.

On the other hand, studying semiorthogonal decompositions of derived categories of
Fano varieties has played an important role in the theory of derived categories. It has
many interesting (sometimes conjectural) consequences to birational geometry, especially
rationality, mirror symmetry, moduli spaces of ACM/Ulrich bundles, motives, quantum
cohomology, and other geometric properties of Fano varieties. When the derived category
of a Fano variety contains the derived category of a projective variety, those two varieties
are expected to interchange geometric information. See [KKLL17, KL23] and references
therein for more details. Therefore, it is an interesting question which categories can be
embedded into the derived categories of Fano varieties.

Definition 1.1. Let V be a smooth projective variety and W be a smooth projective Fano
variety. If there is a fully faithful functor Db(V ) ↪→ Db(W ), we say V is a Fano visitor, and
W is a Fano host. The smallest dimension of Fano hosts of V is called the Fano dimension
of V and denoted by Fdim V . If there is no Fano host, we say Fdim V =∞.

In 2011, Bondal asked the following fundamental question:

Question 1.2 (Bondal, [BBF16, Question 1.1]). Is every smooth projective variety a Fano
visitor?

In other words, he asked if Fdim V < ∞ for every smooth projective variety V . It
was predicted by Orlov [Orl09, Conjecture 10] and recently proved by Olander [Ola21,
Theorem 2] that Db(V ) ↪→ Db(W ) implies dimV ≤ dimW . This implies that dimV ≤
Fdim V and clearly dimV = Fdim V if V is a Fano variety. Thus, one can use the Fano
defect Fdim V − dimV to measure how the given variety V is different from the class of
Fano varieties.

There are a few cases which the affirmative answer to the Fano visitor problem is
known. Examples of Fano visitors include all curves [Nar17, Nar18, FK18], all com-
plete intersections [KKLL17], Hirzebruch surfaces [KL23], and general Enriques surfaces
[Kuz19].
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Theorem A immediately implies that for any genus g ≥ 2 curve X and n ∈ Z≥0, its
symmetric product Xn is a Fano visitor, and Fdim Xn ≤ ((2n + 1)2 − 1)(g − 1). On the
other hand, Db(Jac(X)) is embedded into Db(Xg) (Section 7). Thus, we obtain:

Theorem B. For any nonsingular projective curve X of genus g ≥ 2, its Jacobian Jac(X) is a
Fano visitor, and Fdim Jac(X) ≤ dim MX(2g + 1, L) = 4(g + 1)g(g − 1).

1.3. Idea of proof. Let MX(r, L) be the moduli stack of rank r, determinant L vector
bundles on X . Let E be the universal bundle over X × MX(r, L). Choosing a section
σ : MX(r, L)→MX(r, L)s, we have a Poincaré bundle σ∗E over X ×MX(r, L).

Inspired by earlier works in [LN21, TT21], define the Fourier-Mukai kernel F over
Xn×MX(r, L) by taking the Sn-invariant part of the push-forward q∗(

⊗
i q
∗
i σ
∗E)Sn , where

q : Xn × MX(r, L) → Xn × MX(r, L) is the projection (Section 3.1). Then F is a rank
rn vector bundle over Xn × MX(r, L). We consider the Fourier-Mukai transform ΦF :

Db(Xn)→ Db(MX(r, L)) and show that ΦF is fully-faithful.

Applying the Bondal-Orlov criterion (Theorem 3.6), the fully-faithfulness can be shown
by evaluating cohomology groups of the form Fp ⊗ F∗q. Using the deformation of vector
bundles, we may replace the problem by computation of cohomology of bundles of the
form

⊗
i=1 SλiEpi , where pi are distinct points and SλiEpi are Schur functors of the bundle

Epi associated to partitions λi.

The cohomology groups of these ‘standard’ bundles can be evaluated by employing
the Borel-Weil-Bott-Teleman theory (Section 5.1, [Tel98]) once the bundles are over the
moduli stack MX(r,O) of all bundles with trivial determinants. Under the numerical
condition r > 2n, we identify these cohomologies with that over MX(r, L) by studying
the contribution of the unstable locus (Section 4, [HL15]) and geometry of moduli spaces
of parabolic bundles (Section 2.1).

1.4. Some questions. Here we leave some questions for the interested readers.

We believe the large rank assumption (r > 2n) is not essential, but in our proof, it
is required to eliminate the contribution of the unstable locus (Section 4.2) and realize
cohomological boundedness via the deformation argument. Our combinatorial approach
does not seem to work for larger r (Section 5.2).

Question 1.3. Can we lift the large rank assumption from Theorem A?

From a motivic computation and earlier results [GL20, LM21, LM23], it is expected that
many copies of Db(Xn) are embedded in Db(MX(r, L)) and these copies are obtained by
twisting the image with the pluricanonical divisor.

Question 1.4. Find an explicit semiorthogonal decomposition of Db(MX(r, L)).



4 KYOUNG-SEOG LEE AND HAN-BOM MOON

In our earlier work [LM21, LM23], the vanishing of cohomology was also used to show
that Ep is an arithmetically Cohen-Macaulay (ACM) bundle on MX(r, L) for any p ∈ X .

Question 1.5. For any p ⊂ X and a collection of partitions λ1, λ2, · · · , λk, under which
condition is the product of Schur functors

⊗k
i=1 SλiEpi an ACM bundle? Using this, can we

show that MX(r, L) has nontrivial families of ACM bundles with arbitrary dimensions?
In other words, is MX(r, L) of wild representation type [CH11]?

A natural question that arises from Theorem B is the following.

Question 1.6. Is every abelian variety a Fano visitor?

It turns out that a parallel question for motives is true as follows. See Section 7 for
details.

Proposition 1.7. All symmetric products of curves and abelian varieties are motivic Fano visitors.

1.5. Structure of the paper. Section 2 reviews the moduli space/stack of parabolic bun-
dles, functorial morphisms between them, Schur functors of the universal bundle, and
the GIT construction. All results are classical. Section 3 defines the Fourier-Mukai kernel
F. Section 4 explains the negligibility of the contribution of unstable loci. In Section 5,
employing the Borel-Weil-Bott-Teleman theory, we prove the boundedness and triviality
of certain vector bundles, which is a necessary condition in the Bondal-Orlov criterion.
Section 6 shows the simpleness of the restricted Fourier-Mukai kernel and completes the
proof of Theorem A. In the last section (Section 7), we prove Theorem B and discuss the
Fano visitor problem for motives.

Convention. We work over C. We use X to denote a smooth projective curve of genus
g ≥ 2 and L is a line bundle of degree d on X .

Acknowledgement. Part of this work was done when the first author was working at the
Institute of the Mathematical Sciences of the Americas, University of Miami as an IMSA,
Research Assistant Professor. He thanks Ludmil Katzarkov and Simons Foundation for
partially supporting this work via Simons Investigator Award-HMS. He also thanks to
Claire Voisin for helpful discussions and telling him about her work on Fano visitor prob-
lem for motives.

2. MODULI SPACE OF PARABOLIC BUNDLES

In this section, we give an overview of the moduli space of parabolic bundles.
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2.1. Moduli spaces of parabolic bundles. Let X be a smooth projective curve of genus
g and let p = (p1, · · · , pk) be an ordered set of distinct closed points on X . For notational
simplicity, we only discuss parabolic bundles with full flags.

Definition 2.1. A parabolic bundle over (X,p) is a collection of data (E, {W i
•}) where

(1) E is a rank r vector bundle over X ;
(2) For each 1 ≤ i ≤ k, W i

• ∈ Fl(E|pi), in other words, W i
• is a strictly increasing

sequence of subspaces of E|pi as follows.

0 ( W i
1 ( W i

2 ( · · · ( W i
r−1 ( E|pi

Definition 2.2. LetMX,p(r, L) (resp. MX,p(r, d)) be the moduli stack of rank r, determi-
nant L (resp. degree d) parabolic bundles over (X,p).

When k = 0, so there is no parabolic point, thenMX,p(r, L) is the moduli stackMX(r, L)

of rank r vector bundles. Let E be the universal bundle over X ×MX(r, L). There is a
forgetful morphism π : MX,p(r, L) → MX(r, L) and for each point [E] ∈ MX(r, L), its
fiber π−1([E]) is a product of flag varieties

∏k
i=1 Fl(E|pi). Thus,

MX,p(r, L) = ×MX(r,L)Fl(E|pi).

To obtain a separated moduli stack with projective moduli space, one can employ a
stability condition. For the moduli space of vector bundles, there is a standard notion of
slope stability, but for parabolic bundles, the stability condition depends on numerical
data, and they form a family.

Definition 2.3. A parabolic weight a is a collection of data a = (a1•, · · · , ak•) where each ai• is
a length r strictly decreasing sequence of real numbers

1 > ai1 > ai2 > · · · > air−1 > air ≥ 0.

If air = 0 for all i, we say a is normalized.

For a pointed curve (X,p) with |p| = k, the space of normalized parabolic weights is
the interior of ∆k

r−1, where ∆r−1 is an (r−1)-dimensional simplex. Indeed, ∆r−1 = {(xi) ∈
Rr |

∑r
i=1 xi = 1, xi ≥ 0} and int ∆r−1 is identified with the set of parabolic weights on a

single point, after setting ai0 = 1, via ai• 7→ (aij − aij+1)0≤j≤r−1 ∈ ∆r−1.

Definition 2.4. Let (E, {W i
•}) be a parabolic bundle. The parabolic degree of (E, {W i

•}) with
respect to a is

pardega(E, {W i
•}) := degE +

k∑
i=1

r∑
j=1

aij.

Its parabolic slope is

µa(E, {W i
•}) =

pardega(E, {W i
•})

rank E
.



6 KYOUNG-SEOG LEE AND HAN-BOM MOON

Fix a parabolic bundle (E, {W i
•}) over (X,p). Let F ⊂ E be a subbundle. For each point

pi, consider a (non-strictly increasing) filtration

W i
1 ∩ F |pi ⊂ W i

2 ∩ F |pi ⊂ · · · ⊂ W i
r−1 ∩ F |pi

of F |pi . We define a full flag W |iF• of F |pi , by taking (W |iF )j as W i
` ∩ Fpi with the smallest

index ` such that dim(W i
` ∩ Fpi) = j. We also define the induced parabolic weight b =

(bk•) as bij = ai`, hence a (non-normalized) parabolic subbundle (F, {W |iF•}). By taking the
quotient bundle Q = E/F and the quotient filtration im (W i

j → Q|pi), one can define a
quotient parabolic bundle (Q, {(W/F )i•}) in a similar way. We define the quotient parabolic
weight c on (Q, {(W/F )i•}) by taking the complementary weight data of b.

Definition 2.5. Fix a parabolic weight a. We say a parabolic bundle (E, {W i
•}) is a-(semi)-

stable if for any parabolic subbundle (F, {W |iF•}) with induced parabolic weight b,

µb(F, {W |iF•})(≤) < µa(E, {W i
•}).

LetMX,p(r, L, a) ⊂ MX,p(r, L) be the substack of a-semistable parabolic bundles. There
is a good moduli space p : MX,p(r, L, a) → MX,p(r, L, a), which is a normal projective
variety.

If a is general, then the stability and the semistability coincide. Then MX,p(r, L, a) is
a smooth projective variety [MS80]. When k = 0, we denote the moduli stack of stable
(resp. semistable) bundles byMX(r, L)s (resp.MX(r, L)ss).

2.2. Functorial morphisms. Because of the connection between type A conformal blocks
and the moduli stack of (untwisted) principal parabolic SLr-bundles [BL94, Pau96, MY20,
MY21], the case of L = O has been spelled out most explicitly in literature. For a general
L ∈ Picd(X), we may describe MX,p(r, L, a) as a contraction of MX,p′(r,O, a′) for some
p′ and a′. In this section, we describe functorial morphisms between moduli stacks and
moduli spaces.

Let p := (p1, · · · , pk) and p′ := p t {pk+1}. Fix d such that 1 ≤ d ≤ r− 1. For a parabolic
bundle (E, {W i

•}1≤i≤k+1) ∈MX,p′(r,O), consider the following epimorphism

(1) E → E|pk+1
→ Epk+1

/W k+1
d → 0.

Let Ed−r be the kernel. Then Ed−r is a vector bundle of the determinantO(−(r−d)pk+1) =

O((d−r)pk+1). Forgetting all flags on pk+1, we have an induced parabolic bundle (E, {W i
•}1≤i≤k)

over (X,p). The map (E, {W i
•}1≤i≤k+1) 7→ (Ed−r, {W i

•}1≤i≤k) induces a morphism of stacks

md :MX,p′(r,O)→MX,p(r,O((d− r)pk+1)).

By selecting a stability appropriately, we may induce a morphism between their good
moduli spaces. Let a ∈ ∆k

r−1 be a general parabolic weight. For the (k + 1)-st point, we
define ak+1

• as ak+1
j < ε for j > d and ak+1

j > 1− ε for j ≤ d, for sufficiently small ε > 0. We
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set a′ := a ∪ ak+1
• . By comparing the stabilities (Consult the proof of [LM23, Proposition

2.9]), we have an induced morphism of stacks

md :MX,p′(r,O, a′)→MX,p(r,O((d− r)pk+1), a)

and the corresponding morphism between their good moduli spaces (we use the same
notation, if there is no chance of confusion)

(2) md : MX,p′(r,O, a′)→ MX,p(r,O((d− r)pk+1), a).

On the other hand, by tensoring an appropriate line bundle A on E, we obtain an iso-
morphism

MX,p(r, L, a) ∼=MX,p(r, L⊗ Ar, a),

(E, {W i
•}) 7→ (E ⊗ A, {W i

•}).
(3)

Therefore, if deg(L1⊗L−12 ) is a multiple of r,MX,p(r, L1) ∼=MX,p(r, L2) and there are sim-
ilar isomorphisms between moduli stacks of a-semistable bundles and their good moduli
spaces. By composing (3) and (2), if degL = d, we obtain a morphism MX,p(r,O, a′) →
MX,p(r, L, a), induced by md.

Assume further that (r, d) = 1 and a is sufficiently small, in the sense that
∑k

i=1

∑r−1
j=1 a

i
j <

ε. Then the forgetful morphism π :MX,p(r, L)→MX(r, L) induces

π :MX,p(r, L, a)→MX(r, L)s

(E, {W i
•}) 7→ E,

and the fiber is a product of flag varieties, because the flag structure does not affect to the
stability computation.

In summary, if a is sufficiently small, we have the following commutative diagram

(4) MX,p′(r,O)
md

//

π

""

MX,p(r, L)

π

||

MX,p′(r,O, a′)

π

��

MX,p′(r,O, a′)
p

oo

j

OO

md
//

π

��

MX,p(r, L, a)

j

OO

π

��

p
// MX,p(r, L, a)

π

��

MX(r,O) MX(r,O)ss
p

oo

j

��

MX(r, L)s
p

//

j

��

MX(r, L)

MX(r,O) MX(r, L).

Each π is a forgetful map, p is a good moduli map, and j is a natural inclusion. Note
that some π on the left-hand side are not regular morphisms but are defined over an open
substack.
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2.3. Schur functors and Borel-Weil-Bott theorem. Let F be a rank r vector bundle on a
stackM. For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) of n with at most r parts, we denote
the associate Schur functor bundle by SλF . For instance, if λ = (n), SλF = SymnF . If
λ = (1, 1, · · · , 1), SλF = ∧nF .

Equivalently, following the standard representation theory of slr, any partition λ can
be understood as a sum of dominant integral weights λ =

∑
ajωj . Here ωj is the j-th

fundamental weight. Then aj = λj − λj+1.

Let E be the universal bundle overMX(r, L). Note that there is a forgetfulMX(r, L)-
morphism MX,p(r, L) → Fl(E|pi). For each partition λ with at most r parts, there is an
associated line bundle Lpi,λ over Fl(E|pi). By taking the pull-back, we have a line bundle
Lpi,λ overMX,p(r, L). By the Borel-Weil-Bott theorem, we have

(5) π∗Lpi,λ = SλEpi .

Furthermore, using the Leray spectral sequence, one can identify their cohomology groups:

(6) H∗(MX,p(r, L), Lpi,λ)
∼= H∗(MX(r, L), SλEpi).

When a is small, since the restricted map π :MX,p(r, L, a)→MX(r, L)s is also a fibration
with the same fiber becauseMX,p(r, L, a) =MX(r, L)s ×MX(r,L)MX,p(r, L). So the same
cohomology formula is true:

(7) H∗(MX,p(r, L, a), Lpi,λ)
∼= H∗(MX(r, L)s, SλEpi).

On the other hand, note that the morphism md : MX,p′(r,O) →MX,p(r, L) in (1) does
not make any change along pi for 1 ≤ i ≤ k. Thus, we have

(8) m∗dLpi,λ = Lpi,λ.

From now on, for notational simplicity, we will suppress the pull-back m∗d if there is no
chance of confusion.

2.4. GIT construction. The moduli space MX,p(r, L, a) of semistable parabolic bundles
can also be constructed by GIT. In this section, we briefly describe a construction.

Fix a degree one line bundle OX(1) over X . Take a sufficiently large m ∈ Z so that
H1(E(m)) = 0 and E(m) is globally generated for all (E, {W i

•}) ∈MX,p(r, L, a). Let χm :=

H0(E(m)) = d + r(m + 1− g). Let Q(m) = Quot(OχmX ) be the quot scheme parametrizing
quotients OχmX → F → 0 such that the Hilbert polynomial of F is that of E(m). Let
R(m) ⊂ Q(m) be the locally closed subscheme parametrizing the quotientsOχmX

ϕ→ F → 0

such that H1(F ) = 0, H0(OχmX )
∧rϕ∼= H0(F ) ∼= Cχm , F is locally free, and ∧rF ∼= L(rm).

For the universal quotient OχmX×R(m) → F → 0, let

R̃(m) := ×R(m)Fl(F|pi)
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be the fiber product of full-flag bundles. Then R̃(m) admits an SLχm-action, and MX,p(r, L, a)

is constructed as a GIT quotient R̃(m)//SLχm with a certain linearization.

The linearization is constructed explicitly in [Bho89]. LetZ := PHom(∧rCχm ,H0(L(rm)))∗.
Then for any [OχmX

ϕ→ F → 0] ∈ R(m), we assign

∧rCχm ∧
rϕ→ ∧rH0(F )→ H0(∧rF ) ∼= H0(L(rm)).

This assignment induces a morphism R(m)→ Z, which is indeed an embedding [Tha96,
Section 7]. Furthermore, for each pi ∈ p, we have an evaluation map ψi : Cχm ∼= H0(F )→
F |pi . Then for each W i

j , we have ψ−1i (W i
j ) ∈ Gr(χm − r + j,Cχm). Therefore, we have a

morphism

(9) R̃(m)→ Z ×
k∏
i=1

r−1∏
j=1

Gr(χm − r + j,Cχm).

In [Bho89], Bhosle described an explicit ample line bundle A(a) on the right-hand side,
such that R̃(m)//A(a)SLχm

∼= MX,p(r, L, a). On the atlas R̃(m) → [R̃(m)/SLχm ], note that
the line bundle Lpi,ωj is given by the restriction of OGr(χm−r+j,Cχm )(1) for the i-th factor in
(9).

A parabolic bundle (E, {W i
•}) is a-unstable if it has a maximal destabilizing parabolic

subbundle (F, {W |F•i}) such that µb(F, {W |iF•}) > µa(E, {W i
•}). If we set s = rank F ,

e = degF , and J i ⊂ [r] such that

µb(F, {W |iF•}) =
e+

∑k
i=1

∑
j∈Ji a

i
j

s
,

this irreducible component is indexed by the numerical triple (s, e, {J i}).

Definition 2.6. We denote the unstable stratum associated to the numerical data (s, e, {J i})
by S(s,e,{Ji}) ⊂ R̃(m).

Under the condition L = O, the codimension of the unstable locus is evaluated by Sun
[Sun00]. See [MY20, Section 3.2] for a summary. In particular, in [MY20, p.254, (3.2)], it
was shown that codimension of S(s,e,{Ji}) is given by

s(r − s)(g − 1) +
k∑
i=1

codim Y i + re,

where Y i ⊂ Fl(Cr) is a certain flag variety. In [Sun00, Lemma 5.2] (see also [MY20, p.254]),
it was shown that

∑k
i=1 codim Y i + re is positive. In summary, we have:

Lemma 2.7. The codimension of the unstable locus S(s,e,{Ji}) is at least s(r − s)(g − 1) + 1.
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3. BONDAL-ORLOV CRITERION AND COHOMOLOGY OF LINE BUNDLES

Many natural functors between two derived categories of algebraic varieties are con-
structed as Fourier-Mukai transforms ΦF . In this section, we describe the Fourier-Mukai
kernel that we will use and reformulate the Bondal-Orlov criterion for the fully-faithfulness
of ΦF .

3.1. Fourier-Mukai kernel. Let Xn be the product of n copies of X and let qi : Xn → X

be the projection to its i-th factor. There is a natural Sn-action on Xn. We denote the
quotient map q : Xn → Xn = Xn/Sn ∼= Hilbn(X), which is a finite flat morphism. This
construction can be relativized, obviously. For any scheme or stackM, we have a quotient
map qM : Xn ×M → Xn ×M. If there is no chance of confusion, we will suppress the
subscriptM and denote it by q.

Let E be the universal bundle on the moduli stackMX(r, L). LetMX(r, L)ss ⊂MX(r, L)

be the open substack of the semistable bundles and p : MX(r, L)ss → MX(r, L) be the
good moduli space morphism.

Suppose that (r, d) = 1, where d = degL. Then there is a section σ : MX(r, L) →
MX(r, L)ss = MX(r, L)s. A Poincaré bundle on the coarse moduli space is σ∗E , the pull-
back of the universal bundle over the moduli stack. Note that it depends on the choice of
a section σ, which is equivalent to a choice of a line bundle on MX(r, L).

Definition 3.1. Consider a Poincaré bundle σ∗E over X ×MX(r, L). We set

(σ∗E)⊗n :=
n⊗
i=1

q∗i σ
∗E .

Then (σ∗E)⊗n is an Sn-equivariant bundle of rank rn. By taking the invariant functor, we
obtain a vector bundle

(10) F := (q∗(σ
∗E)⊗n)Sn

on Xn ×MX(r, L) [TT21, Lemma 2.1].

Definition 3.2. For p = (
∑
pj) ∈ Xn, let Fp = ι∗pF be the restriction of F by ιp : {p} ×

MX(r, L) ↪→ Xn ×MX(r, L).

Lemma 3.3 ([TT21, Corollary 2.8]). The restricted bundle Fp is a deformation of
⊗

i q
∗
i σ
∗Epi .

In other words, there is a family of bundles over A1 ×MX(r, L) such that the restriction to {0} ×
MX(r, L) is isomorphic to

⊗
i q
∗
i σ
∗Epi and that to {t} ×MX(r, L) for t 6= 0 is isomorphic to Fp.

Definition 3.4. Let ΦF : Db(Xn)→ Db(MX(r, L)) be the Fourier-Mukai transform with the
kernel F in (10), that is,

ΦF(E•) = Rp2∗(Lp
∗
1E
• ⊗L F).
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Remark 3.5. The definition of the Fourier-Mukai kernel F and the Fourier-Mukai trans-
form ΦF depend on a choice of Poincaré bundle σ∗E . To be more precise, we denoteFσ :=

(q∗(σ
∗E)⊗n)Sn . Then for two sections σ, σ′ : MX(r, L)→MX(r, L)s, σ′∗E = (σ∗E)⊗ p∗2A for

some A ∈ Pic(MX(r, L)). Then

Fσ′ = (q∗(σ
′∗E)⊗n)Sn ∼= (q∗(σ

∗E ⊗ p∗2A)⊗n)Sn ∼= (q∗(σ
∗E)⊗n)Sn ⊗ p∗2An = Fσ ⊗ p∗2An.

By the projection formula,
ΦFσ′ (E

•) = ΦFσ(E•)⊗ An.

Therefore, the fully-faithfulness does not change and we may choose any Poincaré bun-
dle.

We will prove Theorem A by showing that the functor ΦF : Db(Xn) → Db(MX(r, L)) is
fully-faithful.

3.2. Bondal-Orlov criterion. We show the fully-faithfulness by employing the classical
result of Bondal and Orlov [BO95, Theorem 1.1]. We state a version adapted to our situa-
tion.

Theorem 3.6 (Bondal-Orlov criterion). The functor ΦF is fully faithful if and only if the fol-
lowing three conditions hold:

(1) (Simplicity) H0(MX(r, L),Fp ⊗F∗p) ∼= C.
(2) (Cohomological boundedness) Hi(MX(r, L),Fp ⊗F∗p) = 0 for i > n.
(3) (Cohomological triviality) Hi(MX(r, L),Fp ⊗F∗q) = 0 for all p 6= q ∈ Xn and i ∈ Z.

Remark 3.7. We say a coherent sheaf F on an algebraic stack (or a scheme)M is cohomo-
logically bounded up to degree n if Hi(M, F ) = 0 for all i > n. F is cohomologically trivial if
Hi(M, F ) = 0 for all i ≥ 0.

4. QUANTIZATION

The cohomological boundedness/triviality on the coarse moduli space will be shown
by comparing the cohomology groups with those on the moduli stack. Then, we need to
estimate the effect of unstable strata. By employing [HL15], we show that the contribution
of the unstable loci is negligible if n is relatively small.

4.1. Contribution of unstable loci. Let V be a smooth quasi-projective variety with a
reductive group G action. Let A be a G-linearization on V . We review [HL15] which
explains how to compare Db([V/G]) and Db([V ss(A)/G]) where the latter quotient stack
[V ss(A)/G] has a good moduli space V//AG (thus π∗ : Db(V//AG) → Db([V ss(A)/G]) is
fully-faithful).
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The Kempf-Ness stratification of V can be constructed as the following. For each one-
parameter subgroup λ : C∗ → G, let Z ⊂ V λ be an irreducible component of the torus
fixed locus Xλ. Then, one may compute the numerical invariant

µ(λ, Z) := −wtλA|Z
|λ|

.

Take a pair (λ, Z) such that µ(λ, Z) is the largest positive one. We set Yλ,Z := {x ∈
V | limt→0 λ(t) · x ∈ Z} and Sλ,Z := G · Yλ,Z . Then Sλ,Z is a stratum in the unstable
locus. One can continue this construction by starting with V \ Sλ,Z , and the G-action on
it.

Theorem 4.1 (Quantization Theorem [HL15, Theorem 3.29]). Let η be the λ-weight of∧topN∗Sλ,Z/V |Z .
Let E• ∈ Db([V/G]), and suppose that the λ-weight ofH∗(E•|Z) is supported on (−∞, η). Then

H∗([V/G], E•) ∼= H∗([V ss(A)/G], E•|[V ss(A)/G]).

Thus, if the given sheaf does not have a too large λ-weight, then its cohomology on the
semistable locus coincides with the cohomology over the whole quotient stack. By induc-
tion, this theorem is valid for the GIT quotient with many components in the unstable
loci.

4.2. The case of moduli space of parabolic bundles. We apply Theorem 4.1 toMX,p(r,O, a).
The main result is Corollary 4.3, which shows that the unstable loci are negligible in the
cohomology calculation.

Let S = S(s,e,{Ji}) be a stratum of the unstable locus, and let the associated one-parameter
subgroup be λ(t). The λ-fixed locus Z ⊂ S parametrizes data

{[Oχ+ ⊕Oχ− ϕ→ E+(m)⊕ E−(m)→ 0], {W i
•}},

where ϕ = ϕ+ ⊕ ϕ−, E+ (resp. E−) is of degree e (resp. −e), and W i
• ⊂ E+ ∪ E−, in

other words, W i
j = (E+|pi ∩ W i

j ) ⊕ (E−|pi ∩ W i
j ). Here χ+(m) = dim H0(E+(m)) and

χ−(m) = dim H0(E−(m)).

If we take a general point of S, then both E+ and E− are simple; hence λ(t) acts on each
factor as a scalar multiplication. So, up to normalization, λ(t) acts as(

t−χ
−

0

0 tχ
+

)
.

For a general point in Z, (E+, {W |iE+•}) has the following property. For any j with J ik ≤
j < J ik+1, dimE+|pi ∩W i

j = k and dimE−|pi ∩W i
j = j − k. Therefore,

dimCχ+ ∩ ψ−1i (W i
j ) = χ+ − s+ k,

and
dimCχ− ∩ ψ−1i (W i

j ) = χ− − (r − s) + j − k.
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Thus,
wtλLpi,ωj = −χ−(χ+ − s+ k) + χ+(χ− − r + s+ j − k) = χ(s− k)− χ+(r − j)

= r(m+ 1− g)(s− k)− (e+ s(m+ 1− g))(r − j)
= (m+ 1− g)(sj − rk)− e(r − j).

Since j− k ≤ dimE−|pi = r− s, sj− rk ≤ s(r− s+ k)− rk = (r− s)(s− k). And if m� 0,
because χ is a linear polynomial for m but e and j are bounded constants,

wtλLpi,ωj = (m+ 1− g)(sj − rk)− e(r − j) ≤ (m+ 1− g)(r − s)(s− k)− e(r − j)

= χ
(r − s)(s− k)

r
− e(r − j) < χ

(r − s)(s− k) + 1

r
< χ

(r − s)s+ 1

r
.

Therefore, for a dominant weight
∑
ajωj with aj ≥ 0, the λ-weight of the associated line

bundle Lpi,λ = Lpi,
∑
ajωj is at most

χ(
∑

aj)
(r − s)s+ 1

r
.

On the other hand, by [Tha96, Section 7], λ(t) acts on NS/V |Z by a multiplication of t−χ.
Thus,

η = wtλ ∧top N∗S/V |Z = χ · rank NS/V ≥ χ (s(r − s)(g − 1) + 1)

by Lemma 2.7. In particular, if
∑
aj ≤ r((r − s)s(g − 1) + 1)/((r − s)s+ 1),

wtλLpi,
∑
ajωj < χ(

∑
aj)

(r − s)s+ 1

r
≤ χ((r − s)s(g − 1) + 1) ≤ η.

The minimum of r((r − s)s(g − 1) + 1)/((r − s)s + 1) for 1 ≤ s ≤ r − 1 is achieved when
s = 1, hence it is r((r − 1)(g − 1) + 1)/(r − 1 + 1) = (r − 1)(g − 1) + 1. Then we obtain
the following result by the Quantization Theorem (Theorem 4.1). Note that we use λ to
describe a partition, not a one-parameter subgroup in the statement.

Proposition 4.2. For a partition λ =
∑
ajωj with

∑
aj ≤ (r − 1)(g − 1) + 1,

H∗([R̃(m)/SLχm ], Lpi,λ)
∼= H∗([R̃(m)ss(A(a))/SLχm ], Lpi,λ)

∼= H∗(MX(r,O, a), Lpi,λ).

Corollary 4.3. For a partition λ =
∑
ajωj with

∑
aj ≤ (r − 1)(g − 1) + 1,

(11) H∗(MX,p(r,O), Lpi,λ)
∼= H∗(MX,p(r,O, a), Lpi,λ).

Proof. There is an open embedding

[R̃(m)/SLχm ] ⊂ [R̃(m+ 1)/SLχm+1 ],

and we have an isomorphism of stacks

MX,p(r,O) ∼= lim
m→

[R̃(m)/SLχm ].

For Lpi,λ with pi ∈ p, we have a morphism

(12) H∗(MX,p(r,O), Lpi,λ)→ lim
m←

H∗([R̃(m)/SLχm ], ι∗mLpi,λ)
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where ιm : [R̃(m)/SLχm ] ⊂MX,p(r,O). By Proposition 4.2, each cohomology is identified
with the cohomology of a line bundle on a projective variety MX,p(r,O, a). Hence it is
finite-dimensional. Thus, the inverse system on the right hand side satisfies the Mittag-
Leffler condition. Therefore, the map in (12) is an isomorphism. �

5. COHOMOLOGICAL BOUNDEDNESS

The classical Borel-Weil-Bott theorem provides a recipe to compute the cohomology
of all line bundles over the full-flag variety Fl(V ) of a finite-dimensional vector space V .
This is extended to the case of the moduli stack of vector bundles with trivial determinant
by Teleman [Tel98]. In this section, we review the Borel-Weil-Bott-Teleman theory and its
implication to the cohomology boundedness/triviality.

5.1. Borel-Weil-Bott for curves. Recall that Pic(MX(r,O)) ∼= Z. Let Θ ∈ Pic(MX(r,O))

be the ample generator. For the universal family E overMX(r,O), a point p ∈ X , and a
partition λ ` n of length at most r− 1, let SλEp be the Schur functor applied to Ep (Section
2.3). If we have k distinct points p = (p1, p2, · · · , pk) and n partitions λ1, λ2, · · · , λk, we
may construct a vector bundle

Θh ⊗
k⊗
i=1

SλiEpi .

Teleman’s extension of the Borel-Weil-Bott theorem evaluates the cohomology groups of
these bundles.

Here we give some relevant representation theoretic definitions, specialized to SLr. Let
h be a fixed nonnegative integer. Let h be the Cartan subalgebra of slr. On the Euclidean
space h∗ with the normalized Killing form (−,−), let {βj} be the set of fixed simple roots,
and {ωj} be the associated fundamental weights. With respect to the Killing form, {ωj} is
the dual basis of {βj}. We denote by ρ the half sum of all positive roots, or equivalently,
the sum of all fundamental weights. The set of hyperplanes {λ | (λ, β) ∈ (h+ r)Z}where
β is a root of h, divides h∗ into polyhedral chambers, the so-called Weyl alcoves. The alcove
containing the small highest weights is called the positive alcove. The positive alcove is an
open simplex bounded by {(λ, βj) > 0}1≤j≤r−1 and (λ,

∑r−1
j=1 βj) < h+ r.

We say a weight λ is regular if λ + ρ is on the interior of one of the alcoves. Otherwise,
λ is called singular. For a regular weight, the length `(λ) is defined as the number of
Weyl reflections that requires to map λ + ρ to µ + ρ in the positive alcove. Equivalently,
`(λ) is the minimum number of hyperplanes required to cross to move from the alcove
containing λ + ρ to the positive alcove. In this situation, µ is called the ground form of λ.
Since ρ =

∑
ωj and {ωj} is the dual basis of {βj}, for a given weight λ =

∑
ajωj , λ + ρ is

in the positive alcove if and only if aj ≥ 0 and
∑
aj ≤ h.

Remark 5.1. If h = 0, the only λ such that λ+ ρ is in the positive alcove is λ = 0.
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Theorem 5.2 ([Tel98]). Fix h ≥ 0. Suppose that, with respect to h+ r, all λi’s are regular. Then
H`(MX(r,O),Θh ⊗

⊗k
i=1 SλiEpi) ∼= H0(MX(r,O),Θh ⊗

⊗k
i=1 SµiEpi), where ` =

∑
`(λi) is

the sum of the lengths of λi’s and µi is the ground form of λi, and all other cohomology groups are
trivial. If one of λi’s is singular, then H∗(MX(r,O),Θh ⊗

⊗k
i=1 SλiEpi) = 0.

If we set p = (p1, p2, · · · , pk) as the set of parabolic points, the moduli stackMX,p(r, L)

of the parabolic bundles over (X,p) is obtained by taking the fiber product of the rela-
tive flag bundles. (Section 2.1) By the Borel-Weil-Bott and the degeneration of the Leray
spectral sequence and the fact that the push-forward of Lpi,λi is SλiEpi , we obtain

(13) H∗(MX,p(r,O),Θh ⊗
k⊗
i=1

Lpi,λi)
∼= H∗(MX(r,O),Θh ⊗

k⊗
i=1

SλiEpi).

Therefore, Teleman’s theorem can be understood as the cohomology evaluation of line
bundles on the moduli stack of parabolic bundles.

5.2. Cohomological boundedness and triviality on the moduli stack. In this section, all
bundles are over MX(r,O). We start with a few combinatorial lemmas. Let E be the
universal bundle over X ×MX(r,O). Recall that a coherent sheaf F is cohomologically
bounded up to degree n if Hi(F ) = 0 for all i > n (Remark 3.7).

Under the assumption h = 0, here we describe the Weyl reflection more explicitly.
Let λ =

∑
ajωj be a dominant weight. Then λ + ρ =

∑
(aj + 1)ωj . We set h = 0 in

the statement of Theorem 5.2. We investigate the effect of a Weyl reflection on λ. For
notational simplicity, we set ω0 = ωr = 0. There are r(r−1)/2 positive roots β := βi+βi+1+

· · ·+βj = −ωi−1+ωi+ωj−ωj+1 with i ≤ j. When i = j, we have β = βi = −ωi−1+2ωi−ωi+1.
The partition λ is singular if there is a positive root β such that r|(λ+ ρ, β). If λ is regular,
the Weyl alcove containing λ+ ρ is bounded by affine hyperplanes (λ+ ρ, β) ≡ ±1 mod r

for positive roots, and there is a positive root β such that (λ + ρ, β) ≡ 1 mod r. The Weyl
reflection along the β moves λ+ ρ to λ+ ρ− β.

Lemma 5.3. Suppose that r > 2n. For any partitions λ and µ with |λ| = |µ| = n, SλEp ⊗ SµE∗p
is cohomologically bounded up to degree n.

Proof. Suppose that µ has columns (not rows!) µ1 ≥ µ2 ≥ · · · ≥ µt > 0. Then the dual
partition µ∗, which gives the isomorphism Sµ∗Ep ∼= SµE∗p has the columns r − µt ≥ r −
µt−1 ≥ · · · ≥ r − µ1. Since |µ| = n and r > 2n, the length of each columns of µ∗ is at least
n+ 1.

We may decompose the tensor product of SλEp and SµE∗p as a direct sum of Schur func-
tors:

SλEp ⊗ SµE∗p ∼=
⊕
ν

cνλ,µ∗SνEp.
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By the Littlewood-Richardson rule [Ful97, p. 121, Corollary 2], cνλ,µ∗ is the number of skew
semistandard Young tableaux of shape ν/µ∗ with some extra combinatorial conditions.
Because r > 2n, ν with a nonzero cνλ,µ∗ is a partition that has the following properties. It
has at most n boxes of ‘small height’ (the columns including the boxes have the height at
most n ≤ (r− 1)/2) and at least tr− n boxes of ‘large height’ (the columns containing the
boxes have the height at least (r − 1)/2 + 1 ≥ n+ 1). See Figure 1.

λ µ µ∗ ν

FIGURE 1. List of four partitions ν with nonzero cνλ,µ∗ for r = 7, n = 3,
λ = (2 ≥ 1), µ = (3).

Let ν =
∑
ajωj . If ν is singular, then by Theorem 5.2, SνEp is cohomologically trivial.

So, suppose that ν is regular. Then there is a positive root β = βi+βi+1 + · · ·+βj such that
(ν+ρ, β) ≡ 1 mod r. Because (ν+ρ, β) =

∑j
k=i(ak + 1) ≤ 2n+ r−1 < 2r−1, (ν+ρ, β) = 1

or r + 1. The first case only occurs if β = βi and ai = 0. In this case, the i-th coefficient of
ν + ρ − β is −1, so it is out of the region of dominant weights. Thus, we do not consider
the reflection. Hence, we may assume that there is a root β = βi+βi+1 + · · ·+βj with i < j

such that (ν + ρ, β) = r + 1.

We claim that i ≤ (r−1)/2 and j ≥ (r−1)/2+1. If not, j ≤ (r−1)/2 or i ≥ (r−1)/2+1.
In the former case, because (ν+ρ, β) ≤

∑(r−1)/2
k=i (ak+1) ≤ n+(r−1)/2. But n+(r−1)/2 <

(2r−1)/2 < r+1 = (ν+ρ, β), hence this is impossible. We may exclude the i ≥ (r−1)/2+1

case similarly.

Take the Weyl reflection associated with β = βi + · · · + βj . Since i ≤ (r − 1)/2 and
j ≥ (r − 1)/2 + 1, in terms of the associated Young diagram, this corresponds to

(1) Removing a box from one row in the small height part;
(2) Adding a box to one row in the large height part;
(3) Eliminating any column with length r (if it exists).

Since there are at most n boxes of small height on ν, this procedure terminates at most
n steps and reaches 0 + ρ. Therefore, the length `(ν) is at most n. By Theorem 5.2, with
h = 0, Hi(MX(r,O), SνEp) = 0 for i > n.

Therefore, all irreducible factors SνEp are cohomologically bounded up to degree n, and
the same is true for SλEp ⊗ SµE∗p . �

Lemma 5.4. Suppose that r > 2n. For a partition λ ` n, if |λ| = n, then λ and λ∗ are singular.
Thus SλEp and Sλ∗Ep are cohomologically trivial.
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Proof. Set λ =
∑
ajωj . Then λ + ρ =

∑
(aj + 1)ωj . Since |λ| =

∑
jaj = n, a :=

∑
aj ≤ n

and aj = 0 for j > r − a > n. Now if we take β := β1 + · · ·+ βr−a,

(λ+ ρ, β) =
r−a∑
j=1

(aj + 1) =
r−1∑
j=1

(aj + 1)− (a− 1) = a+ r − 1− (a− 1) = r.

Therefore λ is singular. The singularity of λ∗ follows from the symmetry βj ↔ βr−j . The
second statement follows from Theorem 5.2. �

5.3. Cohomological boundedness and triviality on the moduli space. We are ready to
prove the desired cohomological boundedness and the triviality over MX(r, L). In this
section, we assume that (r, d) = 1 where d = detL.

The following lemma tells us that for ‘balanced’ tensor products of Schur functors, the
universal bundle gives the same bundle with the pull-back of a Poincaré bundle.

Lemma 5.5. Let E be the universal bundle over X ×MX(r, L) and let σ∗E be a Poincaré bundle
over X × MX(r, L) for a section σ : MX(r, L) → MX(r, L)s. For two sequences of points
p1, p2, · · · , pk ∈ X , q1, q2, · · · , q` ∈ X , and two sequences of partitions λ1, λ2, · · · , λk and
µ1, µ2, · · · , µ` such that

∑
|λi| =

∑
|µj|, there is an isomorphism⊗

SλiEpi ⊗
⊗

SµjE∗qj ∼= p∗
(⊗

Sλiσ
∗Epi ⊗

⊗
Sµjσ

∗E∗qj
)
.

Proof. For the good moduli map p :MX(r, L)s → MX(r, L), sinceMX(r, L)s is a C∗-gerbe
over MX(r, L), the pull-back of a universal bundle p∗σ∗E differs from E by a tensor product
of a line bundle F on the stack. Because the Schur functor construction is functorial,

p∗
(⊗

Sλiσ
∗Epi ⊗

⊗
Sµjσ

∗E∗qj
)
∼=
⊗

Sλip
∗σ∗Epi ⊗

⊗
Sµjp

∗σ∗E∗qj
∼=
⊗

Sλi (Epi ⊗ F )⊗
⊗

Sµjσ
∗ (Eqj ⊗ F)∗

∼=
⊗

(SλiEpi)⊗ F |λi| ⊗
⊗(

SµjE∗qj
)
⊗ F−|µj |

∼=
⊗

SλiEpi ⊗
⊗

SµjE∗qj ⊗ F
∑
|λi|−

∑
|µj |

and the power of F is zero by the assumption. �

We first show the cohomological boundedness.

Proposition 5.6. Suppose r > 2n and let p ∈ Xn. Then Hi(MX(r,O),Fp ⊗F∗p) = 0 for i > n.

Proof. We first consider the case that p = (np). Since Fp is a deformation of (σ∗Ep)⊗n
(Lemma 3.3), by the semicontinuity, it is sufficient to show that Hi(MX(r,O), (σ∗Ep)⊗n ⊗
(σ∗E∗p )⊗n) = 0 for i > n. By the Schur-Weyl duality, there is an isomorphism

(σ∗Ep)⊗n ∼=
⊕
λ`n

Vλ ⊗ Sλ(σ∗Ep),
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where Vλ is an irreducible Sn-representation associated to λ. Then

(σ∗Ep)⊗n ⊗ (σ∗E∗p )⊗n ∼=
⊕
λ`n

Vλ ⊗ Sλ(σ∗Ep)⊗
⊕
λ`n

Vλ ⊗ Sλ(σ∗E∗p )

∼=
⊕
λ,µ`n

mλ,µSλ(σ
∗Ep)⊗ Sµ(σ∗E∗p ),

for some integers mλ,µ. Since p∗ : Db(MX(r, L)) → Db(MX(r, L)s) is fully-faithful [LM23,
Lemma 6.1], the cohomology of Sλ(σ∗Ep) ⊗ Sµ(σ∗E∗p ) can be computed after pulling back
toMX(r, L)s. By Lemma 5.5, this is isomorphic to SλEp ⊗ SµE∗p .

Littlewood-Richardson rule implies

SλEp ⊗ SµE∗p ∼=
⊕
ν

cνλ,µ∗SνEp.

So, we may reduce the statement to the cohomological boundedness of SνEp. Then, by the
cohomology identifications in previous sections,

H∗(MX(r, L)s, SνEp)
(7)∼= H∗(MX,(p)(r, L, a), Lp,ν)

(8)∼= H∗(MX,(p,p′)(r,O, a′), Lp,ν)
(11)∼= H∗(MX,(p,p′)(r,O), Lp,ν)

(6)∼= H∗(MX(r,O), SνEp).
(14)

In other words, we may reduce the cohomology computation of SλEp⊗SµE∗p overMX(r,O).
Finally, by Lemma 5.3, overMX(r,O), SνEp is cohomologically bounded up to degree n.

Now, we prove the general case. The symmetric product Xn
∼= Hilbn(X) is naturally

stratified by the multiplicities of point configuration. For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥
λk > 0) of n, we set

Xλ = {λ1p1 + λ2p2 + · · ·+ λkpk ∈ Hilbn(X) | pi 6= pj if i 6= j}.

Then Xn = tλ`nXλ. By the semicontinuity of cohomology, the vanishing of cohomology
is true for general points of arbitrary strata Xλ ⊂ Xn, as X(n) is the unique closed stratum
and the closure of any other stratum intersect X(n). Theorem 5.2 does not depend on the
actual point configuration. Therefore, if the cohomology vanishing is true for one point of
Xλ, then it is true for every point on Xλ. Thus, the desired statement is true for the whole
Xn. �

Along the same line of the proof, we can show the cohomological triviality as well.

Proposition 5.7. Suppose that r > 2n and p 6= q ∈ Xn. Then Fp ⊗ F∗q is cohomologically
trivial.

Proof. First, consider p = (np) and q = (nq) with p 6= q ∈ X . Because of the deforma-
tion property of Fp (Lemma 3.3), it is sufficient to show the cohomological triviality of
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(σ∗Ep)⊗n ⊗ (σ∗E∗q )⊗n. Applying the Schur-Weyl duality and the tensor decomposition, we
have

(σ∗Ep)⊗n ⊗ (σ∗E∗q )⊗n ∼=
⊕
λ,µ`n

mλ,µSλ(σ
∗Ep)⊗ Sµ(σ∗E∗q ).

By virtue of Lemma 5.5, overMX(r, L)s, p∗(Sλ(σ∗Ep)⊗ Sµ(σ∗E∗q )) ∼= SλEp⊗ SµE∗q . Then, as
in (14), we may reduce the computation to the bundle overMX(r,O). Lemma 5.4 implies
that λ is singular. By Theorem 5.2, SλEp ⊗ SµE∗q is cohomologically trivial regardless of µ.
Hence (σ∗Ep)⊗n ⊗ (σ∗E∗q )⊗n is cohomologically trivial, too.

The semicontinuity tells us that the cohomological triviality is valid for general points
on Xλ ×Xµ ⊂ Xn ×Xn. Since the cohomology computation only depends on the pair of
partitions by Theorem 5.2, we obtained the desired triviality for all points. �

In summary, we have Items (2) and (3) of Theorem 3.6.

Remark 5.8. One may observe that we only used a particular case (h = 0) of Theorem 5.2.
This is because all of the bundles we need to compute their cohomology are ‘balanced’
ones. The technique developed in this article can be extended to more general questions
including the computation of a semiorthogonal decomposition in Db(MX(r, L)) and a con-
struction of ACM bundles on MX(r, L) as in [LM21, LM23]. We expect that in the future
work along this direction, a twist by the theta divisor Θ will play a crucial role, and we
need to employ the full power of Theorem 5.2.

6. SIMPLICITY

To complete the proof of Theorem 3.6, and hence Theorem A, it remains to show the
simplicity of Fp for p ∈ Xn. In this section, we prove this result. In this section, we
assume (r, d) = 1 where d = degL. Let σ∗E be a Poincaré bundle over X ×MX(r, L).

Proposition 6.1. For any p ∈ Xn, Fp is simple. That is, End(Fp) ∼= C.

Proof. For any vector bundleE, End(E) 6= 0. Thus, it is sufficient to show that dim End(Fp) ≤
1.

Let p = (
∑
λjpj) ∈ Xn with pi 6= pj if i 6= j. ThenFp

∼=
⊗

j Fλjpj [TT21, Lemma 2.6] and
it is an Sλ1 × Sλ2 × · · · × Sλk-invariant bundle. Since it is a deformation of

⊗
j(σ
∗Epj)⊗λj ,

by the semicontinuity, there is an injective map

Hom(Fp,Fp) ↪→ Hom(Fp,
⊗
j

(σ∗Epj)⊗λj) ∼= Hom(Fp,
⊗
j

⊕
µ`λj

Vµ ⊗ Sµ(σ∗Epj)).

Since the deformation is Sλ1×Sλ2×· · ·×Sλk-equivariant and Sλ1×Sλ2×· · ·×Sλk trivially
acts on Fp, the image factors through the invariant subbundle, that is,

⊗
j Symλj(σ∗Epj).
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Therefore, we have an injective map

Hom(Fp,Fp) ↪→ Hom(Fp,
⊗
j

Symλj(σ∗Epj)).

We may apply the deformation argument once again, then we have an inclusion

Hom(Fp,
⊗
j

Symλj(σ∗Epj)) ↪→ Hom(
⊗
j

(σ∗Epj)⊗λj ,
⊗
j

Symλj(σ∗Epj))

∼= Hom(
⊗
j

⊕
µ`λj

Vµ ⊗ Sµ(σ∗Epj),
⊗
j

Symλj(σ∗Epj))

and the last space is a direct sum of

H0(MX(r, L),
⊗
j

Sµ(σ∗E∗pj)⊗ S(λj)(σ
∗Epj)).

By applying the chain of isomorphisms in (14), the computation of the cohomology
group is reduced to that of

(15) H0(MX(r,O),
⊗
j

Sµ∗(Epj)⊗ S(λj)(Epj)).

Note that because we are only interested in the zeroth-cohomology and the codimension
of the unstable locus is large (Lemma 2.7), the map in (11) is an isomorphism without the
condition on the partition.

Decompose Sµ∗Epj ⊗ S(λj)Epj ∼=
⊕

cνµ∗,(λj)SνEpj . Note that among the direct summands
on the right-hand side, the only one that ν + ρ is already in the positive Weyl alcove is
S(t,t,··· ,t)Epj ∼= S0Epj ∼= O, by Remark 5.1, and it appears only if µ = (λj). By Theorem 5.2,
the only nonzero contribution to (15) is given by the direct sum of

H0(MX(r,O),
⊗
j

S(λj)∗(Epj)⊗ S(λj)(Epj)),

and its multiplicity is precisely the product of the multiplicities of S(λj)(Epj) ∼= SymλjEpj
in (Epj)⊗λj , which is one. Therefore,

dim End(Fp) ≤ dim H0(MX(r,O),
⊗
j

Sµ∗(Epj)⊗ S(λj)(Epj)) = 1

and we are done. �

This completes the proof of Theorem 3.6 and Theorem A.
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7. FANO VISITOR

7.1. Fano visitors for derived categories. In this section, we will show thatXn and Jac(X)

are Fano visitors. Since MX(r, L) is a smooth Fano variety of dimension (r2 − 1)(g − 1),
Theorem A immediately implies the following consequence.

Corollary 7.1. Let X be a smooth curve of genus g ≥ 2. Then the symmetric product Xn is a
Fano visitor, and its Fano dimension Fdim Xn is at most ((2n+ 1)2 − 1)(g − 1).

Remark 7.2. The upper bound of the Fano dimension is not tight. For n ≤ g − 1, the
embedding Db(Xn) → Db(MX(2, L)) is obtained by the work of Tevelev-Torres in [TT21].
Thus, for this range, the upper bound of the Fano dimension is dim MX(2, L) = 3(g − 1),
thus Fdim Xn ≤ 3g − 3. For general low genus curves, one can find better upper bounds
[KL23, Section 5].

For any birational morphism f : V → W between two smooth projective varieties,
the natural morphism OW → Rf∗OV is an isomorphism [Hir64, p. 144]. Thus, for any
F •, G• ∈ Db(W ),

Hom(Lf ∗F •, Lf ∗G•) ∼= Hom(F •, Rf∗Lf
∗G•) ∼= Hom(F •, G•)

by the projection formula. Thus, Lf ∗ : Db(W )→ Db(V ) is fully-faithful.

Proof of Theorem B. The Abel-Jacobi map AJ : Xg → Jac(X) is a birational morphism be-
tween smooth varieties. By the above argument, we have an embeddingLAJ∗ : Db(Jac(X))→
Db(Xg). So we have an embedding

ΦF ◦ LAJ∗ : Db(Jac(X))→ Db(MX(2g + 1, L)).

The dimension of MX(2g + 1, L) is ((2g + 1)2 − 1)(g − 1) = 4(g + 1)g(g − 1). So we obtain
an upper bound of Fdim Jac(X). �

Remark 7.3. If g(X) = 0, the Jacobian is trivial. When g(X) = 1, the Abel-Jacobi map is
an isomorphism.

It is well-known that any principally polarized abelian variety A of dimension ≤ 3 are
either Jacobian of a curve or products of Jacobians. Thus, applying [Kuz11, Corollary
5.10], Db(A) is embedded into the derived category of a product of Fano varieties, which
is Fano.

Corollary 7.4. Any principally polarized abelian varieties of dimension ≤ 3 are Fano visitors.

Remark 7.5. Since Xn and abelian varieties are not simply connected, they are not com-
plete intersections. Thus, they are new examples of Fano visitors.
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Remark 7.6. Derived categories of abelian varieties are also indecomposable [KO15, Corol-
lary 1.5]. In the range of 1 ≤ n ≤ g − 1, the indecomposability of Db(Xn) is obtained by
an accumulation of many works (see [Lin21]). On the other hand, when n ≥ g, an ex-
plicit semiorthogonal decomposition of Db(Xn) is obtained in [Tod21, Section 5.5]. Indeed,
Db(Xn) can be decomposed into the derived categories of Jac(X) and Xm with m ≤ g− 1.

7.2. Motivic Fano visitors. Orlov conjectured that semiorthogonal decompositions of de-
rived categories of algebraic varieties are closely related to motives of them [Orl05]. From
this perspective, it is natural to ask the following definition.

Definition 7.7. A smooth projective variety V is a motivic Fano visitor if its rational Chow
motive (or one of its tensor products with Lefschetz motives) is a direct summand of the
rational Chow motive of a smooth Fano variety W .

Then we can state the Fano visitor problem for motives as follows.

Question 7.8 (Fano visitor problem for motives). Is every smooth projective variety a
motivic Fano visitor?

One may ask similar questions for the other versions of motives, for instance, the
Grothendieck ring of varieties, numerical motives, Voevodsky motives, and so on. For
simplicity, we restrict ourselves to rational Chow motives in this paper. See [GL20] and
references therein for more details about motives.

Del Baño obtained the following formula.

Theorem 7.9 ([Ban98][Ban01, Theorem 4.11]). Let r ≥ 2, d be two integers which are coprime
to each other. Then the motivic Poincaré polynomial of MX(r, d) is

r∑
s=1

∑
r1+···+rs=r,ri∈N

(−1)s−1
((1 + 1)h

1(C))s

(1− L)s−1

s∏
j=1

rj−1∏
i=1

(1 + Li)h1(C)

(1− Li)(1− Li+1)

s−1∏
j=1

1

1− Lrj+rj+1
L(

∑
i<j rirj(g−1)+

∑s−1
i=1 (ri+ri+1)〈−

r1+···+ri
r

d〉).

Taking the quotient by the motive of the Jacobian, we obtain an analogous formula for
MX(r, L). See [GL20] for the detail of the argument.

Fu, Hoskins, and Lehalleur proved that under some finiteness assumption, the com-
parison of the motivic Poincaré polynomial suffices to obtain an isomorphism between
Chow motives.

Proposition 7.10 ([FHL21, Proposition 2.2]). Let M1,M2 be two effective Chow motives which
are Kimura finite dimensional whose motivic Poincaré polynomials are the same. Then M1 is
isomorphic to M2 as effective Chow motives.
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Using the strategies of [GL20] and [FHL21], we get the following proposition.

Proposition 7.11. For any smooth curve X and n ∈ N, the symmetric product Xn is a motivic
Fano visitor.

Proof. Let h(MX(r, L)) be the Chow motive of MX(r, L). It admits the following decompo-
sition

h(MX(r, L)) = h−(MX(r, L))⊕ h0(MX(r, L))⊕ h+(MX(r, L))

which provides the following cohomology decomposition,

H∗(MX(r, L)) = Hi≤4n(MX(r, L))⊕H4n<i<(r2−1)(g−1)−4n(MX(r, L))⊕Hi≥(r2−1)(g−1)−4n(MX(r, L))

after applying the realization functor [Ban98].

When r is sufficiently large, Theorem 7.9, the proof of [GL20, Theorem 1.3], and Propo-
sition 7.10 imply that h−(MX(r, L)) admits a decomposition h−(MX(r, L)) = h(Xn)⊗L⊗n⊕
R where R is an effective Chow motive. Using Proposition 7.10 again, we obtain the de-
sired conclusion. �

Vial proved that if there is a surjective morphism f : W → V between two smooth
projective varieties, the rational Chow motive of V is a direct summand of that of W
[Via13, Theorem 1.4]. Note that the Albanese map Alb : Xn → Jac(X) is surjective for any
smooth curve X when n ≥ g. Thus, we obtain the following:

Corollary 7.12. For any smooth curve X , the Jacobian Jac(X) is a motivic Fano visitor.

On the other hand, Matsusaka’s theorem says that every abelian variety admits a sur-
jection from Jac(X) for some curve X [Mat52]. From Matsusaka’s theorem and Vial’s
theorem, we have the following conclusion, which provides a shred of evidence for the
affirmative answer to Question 1.6.

Corollary 7.13. Every abelian variety is a motivic Fano visitor.
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dles and its applications. Preprint, arXiv:2106.04857. 1, 3, 4, 19

[LM23] K.-S. Lee and H.-B. Moon, Derived category and ACM bundles of moduli space of vector bun-
dles on a curve. Forum. Math, Sigma. Volume 11, 2023, e81 DOI: https://doi.org/10.1017/
fms.2023.75. 1, 3, 4, 7, 18, 19

[LN21] K.-S. Lee and M. S. Narasimhan, Symmetric products and moduli spaces of vector bundles of
curves. Preprint, arXiv:2106.04872. 3

[Lin21] X. Lin, On nonexistence of semi-orthogonal decompositions in algebraic geometry. Preprint,
arXiv:2107.09564. 22

[Mat52] T. Matsusaka, On a generating curve of an Abelian variety. Natur. Sci. Rep. Ochanomizu Univ.
3(1952), 1–4. 23

[MS80] V. B. Mehta and C. S. Seshadri. Moduli of vector bundles on curves with parabolic structures.
Math. Ann. 248 (1980), no. 3, 205–239. 6

[MY20] H.-B. Moon and S.-B. Yoo. Finite generation of the algebra of type A conformal blocks via bira-
tional geometry II: higher genus. Proc. Lond. Math. Soc., vol.120 (2020), issue 2, 242–264. 6, 9

https://doi.org/10.1017/fms.2023.75
https://doi.org/10.1017/fms.2023.75


DERIVED CATEGORIES OF SYMMETRIC PRODUCTS AND MODULI SPACES OF BUNDLES 25

[MY21] H.-B. Moon and S-B. Yoo, Finite generation of the algebra of type A conformal blocks via bira-
tional geometry. Int. Math. Res. Not. IMRN, (2021), no. 7, 4941–4974. 6

[Nar17] M. S. Narasimhan, Derived categories of moduli spaces of vector bundles on curves. J. Geom.
Phys. 122 (2017), 53–58. 1, 2

[Nar18] M. S. Narasimhan, Derived categories of moduli spaces of vector bundles on curves II. Geometry,
algebra, number theory, and their information technology applications, 375-382, Springer Proc. Math.
Stat., 251, Springer, Cham, 2018. 1, 2

[Ola21] N. Olander. Fully faithful functors and dimension, preprint, arXiv:2110.09256. 2
[Orl05] D. Orlov, Derived categories of coherent sheaves, and motives. Uspekhi Mat. Nauk 60 (2005), no.

6(366), 231–232. 22
[Orl09] D. Orlov, Remarks on generators and dimensions of triangulated categories. Mosc. Math. J. 9

(2009), no. 1, 153–159 2
[Pau96] C. Pauly, Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J., 84(1):217–

235, 1996. 6
[Ram73] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve. Math. Ann. 200 (1973),

69–84. 1
[Tel98] C. Teleman, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve. Invent. Math.

134 (1998), no. 1, 1–57. 3, 14, 15
[Tev23] J. Tevelev, Braid and phantom. Preprint, arXiv:2304.01825. 1
[TT21] J. Tevelev and S. Torres, The BGMN conjecture via stable pairs. Preprint, arXiv:2108.11951. 1, 3,

10, 19, 21
[Tha96] M. Thaddeus, Geometric invariant theory and flips. J. Amer. Math. Soc. 9 (1996), no. 3, 691–723.

9, 13
[Tod21] Y. Toda, Semiorthogonal decompositions of stable pair moduli spaces via d-critical flips. J. Eur.

Math. Soc. (JEMS) 23 (2021), no. 5, 1675–1725. 22
[Sun00] X. Sun, Degeneration of moduli spaces and generalized theta functions, J. Algebraic Geom. 9

(2000) 459–527. 9
[Via13] C. Vial, Algebraic cycles and fibrations. Doc. Math. 18 (2013), 1521–1553. 23

KYOUNG-SEOG LEE, DEPARTMENT OF MATHEMATICS, POSTECH, 77, CHEONGAM-RO, NAM-GU, POHANG-
SI, GYEONGSANGBUK-DO, 37673, KOREA

Email address: kyoungseog@postech.ac.kr

HAN-BOM MOON, DEPARTMENT OF MATHEMATICS, FORDHAM UNIVERSITY, NEW YORK, NY 10023

Email address: hmoon8@fordham.edu


	1. Introduction
	1.1. Derived category of the moduli space of vector bundles
	1.2. Fano visitor problem
	1.3. Idea of proof
	1.4. Some questions
	1.5. Structure of the paper
	Convention

	2. Moduli space of parabolic bundles
	2.1. Moduli spaces of parabolic bundles
	2.2. Functorial morphisms
	2.3. Schur functors and Borel-Weil-Bott theorem
	2.4. GIT construction

	3. Bondal-Orlov criterion and cohomology of line bundles
	3.1. Fourier-Mukai kernel
	3.2. Bondal-Orlov criterion

	4. Quantization
	4.1. Contribution of unstable loci
	4.2. The case of moduli space of parabolic bundles

	5. Cohomological boundedness
	5.1. Borel-Weil-Bott for curves
	5.2. Cohomological boundedness and triviality on the moduli stack
	5.3. Cohomological boundedness and triviality on the moduli space

	6. Simplicity
	7. Fano visitor
	7.1. Fano visitors for derived categories
	7.2. Motivic Fano visitors

	References

