MATH 3005 Homework Solution Han-Bom Moon

Homework 11 Solution
Chapter 10.

7. If ¢ is a homomorphism from G to H and o is a homomorphism from H to K,

12.

show that o¢ is a homomorphism from G to K. How are ker ¢ and ker o ¢ related?
If ¢ and o are onto and G is finite, describe [ker 0¢ : ker ¢] in terms of |H| and | K.

Fora,b € G,

a¢(ab) = o(p(ab)) = a(¢(a)p(b)) = o(d(a))a(¢(b)) = ap(a)op(b).

So ¢ is a homomorphism.

If a € ker ¢, then o¢(a) = o(ey) = ex where ey (resp. er) is the identity of H
(resp. K). Therefore a € ker oc¢. This implies that ker ¢ < ker 0¢. Furthermore,
ker ¢ < ker 0¢. Indeed, ker ¢ < G so for every element g € kero¢p < G, gker pg~! C
ker ¢.

Moreover, if ¢ and o are onto and G is finite, then from the first isomorphism the-
orem, |G| = |ker ¢||¢(G)| = |ker ¢||H| and |G| = [kero¢||od(G)| = |ker o¢[| K.

So
Gl/|K|

GI/1H|

[ker o¢ : ker @] = |ker o¢|/| ker ¢| = |H|/|K|.

Prove that the mapping from G & H to G given by (g, h) — g is a homomorphism.
What is the kernel? This mapping is called the projection of G & H onto G.

Let ¢ : G @& H — G be amap defined as ¢(g, h) = g. For (g1, h1), (g2, h2) € GO H,

d((g1, h1)(g2, h2)) = ¢(9192, hih2) = g1g2 = ¢(g1, h1)P(g2, h2).

Therefore ¢ is a homomorphism.

Note that
(g:h) € ker ¢ < ¢(g,h) =g =e.
Therefore ker ¢ = {(e,h) | h € H} = {e} @ H (This group is isomorphic to H.).

Suppose that & is a divisor of n. Prove that Z,,/ (k) = Zy.

For these kind of problems, the best approach is using the first isomorphism the-
orem.

Define a map ¢ : Z, — Zy as ¢(m) = m mod k. If m; mod n = my mod n, then
n|lmj — mg. Because k|n, k|m; — mg and m; mod k = mg mod k. Therefore ¢ is
well-defined. Moreover, ¢(m; +mz) = mj + mg mod k = m; mod k 4+ mg mod k.
So ¢ is a homomorphism. Furthermore, for 0 < m < k — 1, ¢(m) = m. Therefore
¢ is onto.
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Because
m € ker ¢ < m mod k =0 < k|m,

ker ¢ = (k). By the first isomorphism theorem, Z,,/(k) = Z,,/ ker ¢ ~ ¢(Zy,) = Z.

Prove that there is no homomorphism from Zg @ Zs onto Z4 @ Zj.
Suppose that ¢ : Zg ® Zy — Zy ® Z4 is a homomorphism.

Sol 1. Because |Zg & Za| = 16 = |Z4 & Z4|, if ¢ is onto, then it is an isomorphism.
But Zs @ Zo has an element of order 8 ((1,0)), and all elements of Z4 @ Z4 have
order at most 4. Therefore they are not isomorphic.

Sol 2. Because all elements of Z4 @ Z4 have order at most 4, ¢(4 - a) = 4¢(a) =0
for every a € Zg @ Zs. In particular, ¢(4,0) = ¢(4-(1,0)) = 0 and (4,0) € ker ¢
and | ker ¢| > 1. Therefore

|(Zs ® Zo)| = |Zs & Zo|/| ker ¢| < |Zs & Zs| = 16 = |Z4 & Z4|
and ¢ is not onto.

Can there be a homomorphism from Z4 @ Z4 onto Zg? Can there be a homomor-
phism from Z;s onto Zy @ Zo? Explain your answers.

For any homomorphism ¢ : Zy & Zy — Zg, |¢(a)| < |a| < 4 because any element
in Z4 & Z4 has order at most 4. But in Zg, there is an element of order 8. So ¢ is
not onto.

For a homomorphism ¢ : Zig — Zy @ Zsa, 1(Z1s) is a cyclic group generated by
Y (1). But Zy & Zs is not cyclic, so 1(Z16) # Za & Zs. Therefore v is not onto.

Suppose that ¢ is a homomorphism from a finite group G onto G and that G has
an element of order 8. Prove that G has an element of order 8. Generalize.

Let’s prove a general statement: For a surjective homomorphism ¢ : G — G
between finite groups, if G has an element of order n, then so does G.

Let a € G be an element of order n. Because ¢ is onto, there is b € G such that
#(b) = a. We have |a| = |¢(b)]||b], so |b] is a multiple of n. Let |b| = nk. Then
bF| = n.

Suppose that there is a homomorphism from a finite group G onto Z;. Prove
that G has normal subgroups of indexes 2 and 5.

Let ¢ : G — Zjo be such a homomorphism. Because Zj( is Abelian, (5) (resp.
(2)) is a normal subgroup of Zjo of order 2 (resp. 5). Then H := ¢ 1((5)) and
K := ¢71((2)) are normal subgroups of G.

If n = |ker ¢|, then ¢ : G — Zjpisn : 1 map. So |G| = 10n. Also, |H| = n|(5) = 2n
and |K| = n|(2)| = 5n. Therefore

(G : H] = |G|/|H| = 10n/2n = 5

and
G : K] =|G|/|IK| =10n/5n = 2.
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For each pair of positive integers m and n, we can define a homomorphism from Z
t0 Zy, ® Zy, by © — (2 mod m, x mod n). What is the kernel when (m,n) = (3,4)?
What is the kernel when (m,n) = (6,4)? Generalize.

Let’s prove a general statement. Let ¢ : Z — Z,, ® Z,, be the homomorphism
defined as ¢(z) = (z mod m,z mod n). If x € ker¢, then z mod n = 0 and
2 mod n = 0. Therefore x is a common multiple of m and n, so « is a multiple of
lem(m, n). On the other hand, if lcm(m, n)|z, then m|z and n|z. Thus ¢(z) = (0,0)
and z € ker ¢. In summary, ker ¢ = (Iem(m, n)).

Let N be a normal subgroup of a finite group G. Use the theorems of this chapter
to prove that the order of the group element g/N in G/N divides the order of g.

If |g| = n, then (gN)* = g"N =eN = N. So |gN||n = |g|.
Let N be a normal subgroup of a group G. Use property 7 of Theorem 10.2 to

prove that every subgroup of G/N has the form H/N, where H is a subgroup of
G.

Define ¢ : G — G/N as ¢(a) = aN. Then ¢(ab) = abN = aNbN = ¢(a)p(b), so ¢
is a homomorphism. Also from the definition, it is obvious that ¢ is onto.

Let H be a subgroup of G/N. Then H := ¢ !(H) < G. Because ¢ is onto,
¢(H) = ¢(¢~1(H)) = H. On the other hand, ¢(H) = H/N. Therefore H = H/N.
Prove that every group of order 77 is cyclic.

Let G be a group of order 77.

Step 1. There is a unique subgroup H of order 11.

Because 11 is a prime divisor of 77, there is a € G with |a| = 11. In particular,
there is a subgroup |(a)| of order 11. If there are two distinct subgroups H and K
of order 11, then |H N K|||H| = 11,s0 |H N K| = 1. So

[HIIK] _

T =161 > |HE]| = 1p =

121,

which is impossible. Therefore there is a unique subgroup of order 11. Let H be
the unique subgroup of order 11.

Step 2. H is a normal subgroup.

For any g € G, gHg™! is a subgroup of order 11. Because there is a unique
subgroup of order 11, gHg~! = H for every g € G. Therefore H < G.

Step 3. Define a homomorphism f : G — Aut(H).

Now define amap f : G — Aut(H) by f(a) = ¢,, where ¢,(h) = aha™!. Note
that H < G, so aha™! € H for every a € (G. On the other hand,

Gap(h) = abh(ab) ™" = abhb'a! = agp(h)a™! = pady(h),

SO Pab = PaPp. SO f(ab) = Pap = Padp = f(a)f(b) and f is a homomorphism.
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Step 4. gh = hgforallg € Gand h € H.

Because Aut(H) ~ Aut(Z11) = U(11) = Zip and |G| = 77 is relatively prime to
|Aut(H)| = 10, f is a trivial homomorphism, i.e., ¢, = f(g) = id € Aut(H) for all
g € G. Therefore for any g € G, ¢4(h) = ghg™! = h. Therefore gh = hg for every
geGandh e H.

Step 5. Find a generator of G.

Finally, let b be an element of order 7. Then (ba)" = b'a’ because a € H. Then |ba]
is1,7,11,0r 77. If |ba| = 1, then b = a~! € H so it is impossible. If |ba| = 7, then
e = (ba)” = b’a” = a”. But |a| = 11 so it is also impossible. By a similar reason,
|ba| = 11 is also impossible. Therefore |ba| = 77 and G = (ba).

Determine all homomorphisms from Z onto S3. Determine all homomorphisms
from Z to Ss.

Let ¢ : Z — S3 be a homomorphism. ¢(Z) is an Abelian group, so ¢(Z) # S3. So
there is no surjective homomorphism.

Note that ¢ is completely determined by ¢(1) because Z = (1). There are 6 ele-
ments in S3. So there are six homomorphisms from Z to Ss.

Let p be a prime. Determine the number of homomorphisms from Z, @ Z, into
Z,p.

Note that Z, & Z,, has two generators (1,0) and (0, 1). So the homomorphism ¢ :
Ly & Ly, — Ly is completely determined by ¢(1,0) and ¢(0, 1) because ¢(m,n) =
me(1,0) +n¢(0,1).

Conversely, for any a,b € Z,, if we define a map ¢ : Z, ® Z, — Z, as ¢(m,n) =
ma+nb mod p, then this map is well-defined. Indeed, if (m1,n1) = (mg, n2), then
my mod p = mo mod p and n; mod p = ny mod p so mia + n1b mod p = moa +
ngb mod p. Furthermore, ¢ is a homomorphism because ¢((m1,n1) + (mz, n2)) =
d(m1+ma,n1 +n2) = (Mm1+ma)a+ (n1+n2)b mod p = mia+n1b mod p+moa+
n2b mod p = $(m1,n1) + d(ma, n2).

Because |(1,0)| = |(0,1)| = p and any element in Z, has order p or 1, so ¢(1,0)

and ¢(0,1) can be any element of Z,. Therefore the number of homomorphisms
(o2
is p*.




