Homework 4 Solution
Chapter 4.

1. Find all generators of \(\mathbb{Z}_6, \mathbb{Z}_8, \) and \(\mathbb{Z}_{20}. \)

\(\mathbb{Z}_6, \mathbb{Z}_8, \) and \(\mathbb{Z}_{20} \) are cyclic groups generated by 1. Because \(|\mathbb{Z}_6| = 6 \), all generators of \(\mathbb{Z}_6 \) are of the form \(k \cdot 1 = k \) where \(\gcd(6, k) = 1 \). So \(k = 1, 5 \) and there are two generators of \(\mathbb{Z}_6 \), 1 and 5.

For \(k \in \mathbb{Z}_8 \), \(\gcd(8, k) = 1 \) if and only if \(k = 1, 3, 5, 7 \). So there are four generators.

Finally, for \(k \in \mathbb{Z}_{20} \), \(\gcd(20, k) = 1 \) if and only if \(k = 1, 3, 7, 9, 11, 13, 17, 19 \). They are generators of \(\mathbb{Z}_{20} \).

4. List the elements of the subgroups \(\langle 3 \rangle \) and \(\langle 15 \rangle \) in \(\mathbb{Z}_{18} \). Let \(a \) be a group element of order 18. List the elements of the subgroups \(\langle a^3 \rangle \) and \(\langle a^{15} \rangle \).

\[
\langle 3 \rangle = \{ n \cdot 3 \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \{ 0, 3, 6, 9, 12, 15 \}
\]

\[
\langle 15 \rangle = \langle -3 \rangle = \{ n \cdot (-3) \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \{ n \cdot 3 \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \langle 3 \rangle = \{ 0, 3, 6, 9, 12, 15 \}
\]

\[
\langle a^3 \rangle = \{ (a^3)^n = a^{3n} \in \langle a \rangle \mid n \in \mathbb{Z} \} = \{ e, a^3, a^6, a^9, a^{12}, a^{15} \}
\]

\[
\langle a^{15} \rangle = \langle a^{-3} \rangle = \langle a^3 \rangle = \{ e, a^3, a^6, a^9, a^{12}, a^{15} \}
\]

5. List the elements of the subgroups \(\langle 3 \rangle \) and \(\langle 7 \rangle \) in \(U(20) \).

\[
3^2 = 9, 3^3 = 27 = 7 \mod 20, 3^4 = 1 \mod 20 \Rightarrow \langle 3 \rangle = \{ 1, 3, 7, 9 \}
\]

\[
3 \cdot 7 = 21 = 1 \mod 20 \Rightarrow 7 = 3^{-1}
\]

\[
\langle 7 \rangle = \langle 3^{-1} \rangle = \langle 3 \rangle = \{ 1, 3, 7, 9 \}
\]

10. In \(\mathbb{Z}_{24} \), list all generators for the subgroup of order 8. Let \(G = \langle a \rangle \) and let \(|a| = 24 \).

List all generators for the subgroup of order 8.

Because \(\mathbb{Z}_{24} \) is a cyclic group of order 24 generated by 1, there is a unique subgroup of order 8, which is \(\langle 3 \cdot 1 \rangle = \langle 3 \rangle \). All generators of \(\langle 3 \rangle \) are of the form \(k \cdot 3 \) where \(\gcd(8, k) = 1 \). Thus \(k = 1, 3, 5, 7 \) and the generators of \(\langle 3 \rangle \) are 3, 9, 15, 21.

In \(\langle a \rangle \), there is a unique subgroup of order 8, which is \(\langle a^3 \rangle \). All generators of \(\langle a^3 \rangle \) are of the form \((a^3)^k \) where \(\gcd(8, k) = 1 \). Therefore \(k = 1, 3, 5, 7 \) and the generators of \(\langle a^3 \rangle \) are \(a^3, a^9, a^{15}, \) and \(a^{21} \).
13. In \mathbb{Z}_{24}, find a generator for $\langle 21 \rangle \cap \langle 10 \rangle$. Suppose that $|a| = 24$. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?

$$\langle 21 \rangle = \langle \gcd(24, 21) \rangle = \langle 3 \rangle = \{0, 3, 6, 9, 12, 15, 18, 21\}$$

$$\langle 10 \rangle = \langle \gcd(24, 10) \rangle = \langle 2 \rangle = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22\}$$

$$\langle 21 \rangle \cap \langle 10 \rangle = \{0, 6, 12, 18\} = \langle 6 \rangle$$

$$\langle a^{21} \rangle = \langle a^{\gcd(24,21)} \rangle = \langle a^3 \rangle = \{e, a^3, a^6, a^9, a^{12}, a^{15}, a^{18}, a^{21}\}$$

$$\langle a^{10} \rangle = \langle a^{\gcd(24,10)} \rangle = \langle a^2 \rangle = \{e, a^2, a^4, a^6, a^8, a^{10}, a^{12}, a^{14}, a^{16}, a^{18}, a^{20}, a^{22}\}$$

$$\langle a^{21} \rangle \cap \langle a^{10} \rangle = \langle a^3 \rangle \cap \langle a^2 \rangle = \langle a^6 \rangle = \{e, a^6, a^{12}, a^{18}\}$$

In general, we claim that $\langle a^m \rangle \cap \langle a^n \rangle = \langle \text{lcm}(m,n) \rangle$. First of all, because $m \mid \text{lcm}(m,n)$, $a^\text{lcm}(m,n) \in \langle a^m \rangle$. Similarly, $a^\text{lcm}(m,n) \in \langle a^n \rangle$. Therefore $a^\text{lcm}(m,n) \in \langle a^m \rangle \cap \langle a^n \rangle$ and hence $\langle a^\text{lcm}(m,n) \rangle \subseteq \langle a^m \rangle \cap \langle a^n \rangle$.

On the other hand, if $b \in \langle a^m \rangle \cap \langle a^n \rangle$, then $b = a^k$ for some k such that $m \mid k$ and $n \mid k$. So $\text{lcm}(m,n) \mid k$ and $a^k \in \langle a^\text{lcm}(m,n) \rangle$. Therefore $\langle a^m \rangle \cap \langle a^n \rangle \subseteq \langle a^\text{lcm}(m,n) \rangle$.

In summary, we obtain $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^\text{lcm}(m,n) \rangle = \langle a^{\gcd(24,\text{lcm}(m,n))} \rangle$.

19. List the cyclic subgroups of $U(30)$.

$$U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$$

Of course, all cyclic subgroups of $U(30)$ are of the form $\langle a \rangle$ for $a \in U(30)$.

$$\langle 1 \rangle = \{1\}$$

$$7^2 = 19 \mod 30, 7^3 = 13 \mod 30, 7^4 = 1 \mod 30 \Rightarrow \langle 7 \rangle = \{1, 7, 13, 19\}$$

$$11^2 = 1 \mod 30 \Rightarrow \langle 11 \rangle = \{1, 11\}$$

$$13^2 = 19 \mod 30, 13^3 = 23 \mod 30, 13^4 = 1 \mod 30 \Rightarrow \langle 13 \rangle = \{1, 17, 19, 23\}$$

$$29^2 = 1 \mod 30 \Rightarrow \langle 29 \rangle = \{1, 29\}$$

Now $\langle 7 \rangle = \langle 7^3 \rangle = \langle 13 \rangle$ and $\langle 17 \rangle = \langle 17^3 \rangle = \langle 23 \rangle$ because $\gcd(4, 3) = 1$. Therefore we have following distinct cyclic subgroups:

$$\langle 1 \rangle, \langle 7 \rangle, \langle 11 \rangle, \langle 17 \rangle, \langle 29 \rangle, \langle 13 \rangle.$$

Note that $U(30)$ itself is not a cyclic group.

33. Determine the subgroup lattice for \mathbb{Z}_{p^aq} where p and q are distinct primes.

There are 6 positive divisors of p^aq, namely, $1, p, p^2, q, pq, p^aq$. For each positive divisor d, there is a cyclic subgroup of \mathbb{Z}_{p^aq} of order d, namely, $\{e\}, \langle pq \rangle, \langle q \rangle, \langle p^2 \rangle, \langle p \rangle, \{1\} = \mathbb{Z}_{p^aq}$, respectively.
Let a and m be elements of the group \mathbb{Z}. Find a generator for the group $\langle m \rangle \cap \langle n \rangle$.

40. Let $H = \langle m \rangle \cap \langle n \rangle$. Then H is a subgroup of \mathbb{Z}. Because \mathbb{Z} is a cyclic group, $H = \langle k \rangle$ is also a cyclic group generated by an element k. Because $\langle k \rangle = \langle -k \rangle$, we may assume that k is a nonnegative number.

We claim that $k = \text{lcm}(m,n)$ and $H = \langle \text{lcm}(m,n) \rangle$. Because $k \in \langle m \rangle$, $m|k$. By the same reason, $n|k$ and $\text{lcm}(m,n)|k$. Thus $k \in \langle \text{lcm}(m,n) \rangle$ and $H = \langle k \rangle \subset \langle \text{lcm}(m,n) \rangle$. On the other hand, if since $m|\text{lcm}(m,n)$, $\text{lcm}(m,n) \in \langle m \rangle$. Similarly, $\text{lcm}(m,n) \in \langle n \rangle$. Therefore $\text{lcm}(m,n) \in \langle m \rangle \cap \langle n \rangle = H$ and $\langle \text{lcm}(m,n) \rangle \subset H$. Therefore we have $H = \langle \text{lcm}(m,n) \rangle$.

41. Suppose that a and b are group elements that commute and have orders m and n. If $\langle a \rangle \cap \langle b \rangle = \{e\}$, prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.

We claim that ab is an element with the order $\text{lcm}(m,n)$.

If $|ab| = d$, then $(ab)^d = a^db^d = e$ and $a^d = b^{-d} \in \langle b \rangle$. So $a^d \in \langle a \rangle \cap \langle b \rangle = \{e\}$ and $a^d = e$. Therefore $b^d = e$ as well. Then $m|d$ and $n|d$ so $\text{lcm}(m,n)|d$. In particular, $d \geq \text{lcm}(m,n)$.

On the other hand, if $k = \text{lcm}(m,n)$, then $k = mk_1 = nk_2$ for two positive integers k_1, k_2.

\[(ab)^k = a^kb^k = a^{mk_1}b^{nk_2} = (a^m)^{k_1}(b^n)^{k_2} = e^{k_1}e^{k_2} = e\]

So $d = |ab| \leq k = \text{lcm}(m,n)$. Therefore $d = \text{lcm}(m,n)$.

If a and b do not commute, then there may be no such element. The simplest example is S_3. Let $a = (12)$ and $b = (123)$. Then $|a| = 2$ and $|b| = 3$. Also $\langle \langle 12 \rangle \cap \langle 123 \rangle \rangle = \{e\}$. But because S_3 is not Abelian, it is not cyclic. Therefore there is no element with order $|S_3| = 6$.

64. Let a and b belong to a group. If $|a|$ and $|b|$ are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Obviously $\{e\} \subset \langle a \rangle \cap \langle b \rangle$. Let $c \in \langle a \rangle \cap \langle b \rangle$. Then $|c| | |a|$ and $|c| | |b|$. So $|c| \gcd(|a|,|b|) = 1$. In particular, $|c| \leq 1$. But because $|c|$ is positive, $|c| = 1$. Therefore $c = c^1 = e$ and $\langle a \rangle \cap \langle b \rangle = \{e\}$.
66. Prove that $U(2^n) \ (n \geq 3)$ is not cyclic.

Note that $2^{n-1} + 1 \in U(2^n)$ and $2^n - 1 \in U(2^n)$ are different if $n \geq 3$. For these two elements,

$$(2^{n-1} + 1)^2 = 2^{2n-2} + 2 \cdot 2^{n-1} + 1 = 2^{n-2} \cdot 2^n + 2^n + 1 \equiv 1 \mod 2^n$$

and

$$(2^n - 1)^2 = 2^{2n} - 2 \cdot 2^n + 1 \equiv 1 \mod 2^n.$$

Therefore there are two distinct cyclic subgroups $\{1, 2^{n-1} + 1\}$ and $\{1, 2^n - 1\}$ of order two. For any cyclic group, there is a unique subgroup of order two, $U(2^n)$ is not a cyclic group.

70. Suppose that $|x| = n$. Find a necessary and sufficient condition on r and s such that $\langle x^r \rangle \subset \langle x^s \rangle$.

Note that $\langle x^r \rangle \subset \langle x^s \rangle$ if and only if $x^r \in \langle x^s \rangle$. Also $\langle x^s \rangle = \langle x^{\gcd(n,s)} \rangle$. Finally, because $\gcd(n, s)$ is a divisor of n, $x^r \in \langle x^{\gcd(n,s)} \rangle$ if and only if $\gcd(n, s) \mid r$.

72. Let a be a group element such that $|a| = 48$. For each part, find a divisor k of 48 such that

a) $\langle a^{21} \rangle = \langle a^k \rangle$; $\langle a^{21} \rangle = \langle a^{\gcd(48,21)} \rangle = \langle a^3 \rangle \Rightarrow k = 3$

b) $\langle a^{14} \rangle = \langle a^k \rangle$; $\langle a^{14} \rangle = \langle a^{\gcd(48,14)} \rangle = \langle a^2 \rangle \Rightarrow k = 2$

c) $\langle a^{18} \rangle = \langle a^k \rangle$. $\langle a^{18} \rangle = \langle a^{\gcd(48,18)} \rangle = \langle a^6 \rangle \Rightarrow k = 6$

74. Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $GL(2, \mathbb{R})$.

We claim that $H = \langle A \rangle$ where $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Indeed, because $A \in H$, $\langle A \rangle \subset H$.

Furthermore, for any positive integer k, $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. $k = 1$ case is obvious. If

$A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$, then

$A^{n+1} = A^n \cdot A = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & n+1 \\ 0 & 1 \end{bmatrix}$

Therefore by induction we obtain the result.

On the other hand, it is straightforward to check that $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. By the same idea, one can show that $A^{-k} = \begin{bmatrix} 1 & -k \\ 0 & 1 \end{bmatrix}$ for any positive integer k.
Therefore any elements in H is A^n for some $n \in \mathbb{Z}$ and $H \subseteq \langle A \rangle$. Therefore $H = \langle A \rangle$.