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Homework 7 Solution
Chapter 7.

1. Let H = {(1),(12)(34), (13)(24), (14)(23) }. Find the left cosets of H in Ay.
Because |A4| = 12 and |H| = 4, there are exactly 12/4 = 3 distinct cosets of H.

H = {e, (12)(34), (13)(24), (14)(23)}

(123)H = {(123)e, (123)(12)(34), (123)(13)(24), (123)(14)(23)}
= {(123),(134), (243), (142)}

(120)H = {(124)e, (124)(12)(34), (124)(13)(24), (124)(14)(23)}
= {(124), (143), (132), (234)}

So they are all of them. Indeed, H = (12)(34)H = (13)(24)H = (14)(23)H,
(123)H = (134)H = (243)H = (142)H, (124)H = (143)H = (132)H = (234)H.

6. Let n be a positive integer. Let H = {0, £n, £2n, £3n, - - - }. Find all left cosets of
H in Z. How many are there?

Note that H = (n). We claim that H,1+ H,2+ H,--- ,(n — 1)+ H are all distinct
cosets of H.

Step 1. They are distinct.

Ifa+H=b+Hfor0<ab<n-—1thenacb+ H={bbtn,b+t2n, --}.
Because b is the only positive integer in b + H less than n, a = b. Therefore they
are distinct.

Step 2. They are all of them.

If ¢ + H is a coset containing ¢ € Z, then by division algorithm, there are ¢ and r
suchthatc=gn+rand0<r <n.Thencer+ Handc+ H=r+ H.

In summary, there are n distinct cosets.

7. Find all of the left cosets of {1, 11} in U(30).

Note that U(30) = {1,7,11,13,17,19,23,29}. So there are 4 distinct cosets. Let
H = {1,11}. Then
H7H ={7-1,7-11} = {7,17},

13H = {13-1,13- 11} = {13,23},19H = {19-1,19 - 11} = {19,29}

are distinct cosets.
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Suppose that a has order 15. Find all of the left cosets of (a°) in (a).

Because |(a) : (a®)| = 15/3 = 5, there are 5 distinct cosets. Let H = (a®). We claim
that H,aH,a*H,a®H,a*H are all cosets. They are distinct, because the smallest
positive n such that ™ is in the coset is 5, 1, 2, 3, and 4 respectively.

Let a and b be nonidentity elements of different orders in a group G of order 155.
Prove that the only subgroup of G that contains a and b is G itself.

Let H be a non-trivial subgroup of G containing both a and b. By Lagrange’s
theorem, |H| = 5,31, or 155. If |H| = 5, then it is cyclic and all non-identity
elements have the same order 5. Similarly, if |H| = 31, all non-identity elements
are of order 31. Therefore |H| = 155and H = G.

Recall that, for any integer n greater than 1, ¢(n) denotes the number of posi-
tive integers less than n and relatively prime to n. Prove that if a is any integer
relatively prime to n, then a®™ mod n = 1.

Let @ mod n = b. Because a is relatively prime to n, b € U(n). Because |U(n)| =
d(n), b = plU)| = 1 mod n. Therefore a?™ = b)) = 1 mod n.

Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove that the order of
U(n) is even when n > 2.

Because gcd(n — 1,n) = 1, n —1 € U(n). If n > 2, thenn —1 # 1. Now
(n—1)2 =n?—2n+1 = 1 mod n. Therefore |n—1| = 2. Because 2 = |n—1|||U(n)|,
|U(n)| is even.

Suppose G is a finite group of order n and m is relatively prime to n. If g € G and
g™ = e, prove that g = e.

Because g™ = e, |g||m. Also |g|||G| = n. Therefore |g| is a common divisor of m
and n, which is 1. Therefore |g| = 1 and g = e.

Let |G| = 15. If G has only one subgroup of order 3 and only one of order 5, prove
that G is cyclic. Generalize to |G| = pg, where p and ¢ are prime.

Note that for a non-identity element a € G, |a| = 3,5, or 15. Let A = {a €
G |la| =3}and B = {a € G | |a| = 5}. Forb € A, (b) = {e, b,b*} is a subgroup of
order 3. Because there is only one subgroup of order 3, A = {b,b} and |A| = 2.
Similarly, for ¢ € B, (c) = {e,c,c?,¢c3, ¢} is the unique subgroup of order 5 and
B = {c,c%, ¢, c*}. Therefore | B| = 4. This implies that there are 15—-2—-4—1 =38

elements of order 15 (The one is for the identity). Hence G is cyclic.

The argument can be generalized in a straightforward way. If we define S, =
{a € G||a| =p}and S; = {a € G| |a| = ¢}, then |S,| =p —1and |S,| = ¢ — 1.
Because (p—1)(¢—1) >0, |G|=pg>p—1+q—1+4+1=p+q— 1. Thus thereis
an element of order pq and G is cyclic.

Let |G| = 8. Show that G must have an element of order 2.
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For a non-identity a € G, |a| = 2,4, or 8. If |a| = 2, a is what we want. If |a| = 4,
then |a?| = 4/2. If |a| = 8, |a*| = 8/4 = 2. Thus in any cases, we can find an order
two element.

42. Let G be a group of order n and k be any integer relatively prime to n. Show that
the mapping from G to G given by g — ¢* is one-to-one. If G is also Abelian,
show that the mapping given by g — ¢* is an automorphism of G.

Let ¢ : G — G is defined by ¢(g) = g*. Because n and k are relatively prime, there
are two integers a, b such that an + bk = 1. If ¢(g) = ¢(h), then g* = h*. So

g= gan+bk — (gn)a(gk)b — (gk)b — (hk:)b — (hn)a(hk)b _ hzzn—i—bk —h.

Therefore G is one-to-one.

Now suppose that G is Abelian. Then ¢ is one-to-one as above. Moreover, ¢ is
onto because an one-to-one map between two finite sets with the same number
of elements is onto as well. Finally, because G is Abelian,

o(gh) = (gh)* = g°h* = d(g)p(k).
Therefore ¢ is an automorphism.
45. Let G = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), (24)(56)}.

(a) Find the stabilizer of 1 and the orbit of 1.
stabg (1) = {(1),(24)(56)}, orbg(1) = {1,2,3,4}
(b) Find the stabilizer of 3 and the orbit of 3.
stabg(3) = {(1),(24)(56)}, orbg(3) = {3,4,1,2}
(c) Find the stabilizer of 5 and the orbit of 5.
stabg (5) = {(1), (12)(34), (13)(24), (14)(23)}, orbe(5) = {5, 6}

57. Let G = GL(2,R) and H = SL(2,R). Let A € G and suppose that det A = 2.
Prove that AH is the set of all 2 x 2 matrices in G that have determinant 2.
Let D ={A € GL(2,R) | det A = 2}.
If B € AH, then B = AC where C € H = SL(2,R). So det B = det AC =
det Adet C =2 -1 = 2. Therefore B D and AH C D.

On the other hand, if B € D, then B = AA 'Band det A='B = det A~!det B =
1/2-2 = 1. Therefore A™'B € SL(2,R) = H and B € AH. Hence D C AH and
D = AH.




