
MATH 3005 Homework Solution Han-Bom Moon

Homework 7 Solution
Chapter 7.

1. Let H = {(1), (12)(34), (13)(24), (14)(23)}. Find the left cosets of H in A4.

Because |A4| = 12 and |H| = 4, there are exactly 12/4 = 3 distinct cosets of H .

H = {e, (12)(34), (13)(24), (14)(23)}

(123)H = {(123)e, (123)(12)(34), (123)(13)(24), (123)(14)(23)}
= {(123), (134), (243), (142)}

(124)H = {(124)e, (124)(12)(34), (124)(13)(24), (124)(14)(23)}
= {(124), (143), (132), (234)}

So they are all of them. Indeed, H = (12)(34)H = (13)(24)H = (14)(23)H ,
(123)H = (134)H = (243)H = (142)H , (124)H = (143)H = (132)H = (234)H .

6. Let n be a positive integer. Let H = {0,±n,±2n,±3n, · · · }. Find all left cosets of
H in Z. How many are there?

Note that H = 〈n〉. We claim that H, 1+H, 2+H, · · · , (n− 1) +H are all distinct
cosets of H .

Step 1. They are distinct.

If a + H = b + H for 0 ≤ a, b ≤ n − 1, then a ∈ b + H = {b, b ± n, b ± 2n, · · · }.
Because b is the only positive integer in b +H less than n, a = b. Therefore they
are distinct.

Step 2. They are all of them.

If c +H is a coset containing c ∈ Z, then by division algorithm, there are q and r

such that c = qn+ r and 0 ≤ r < n. Then c ∈ r +H and c+H = r +H .

In summary, there are n distinct cosets.

7. Find all of the left cosets of {1, 11} in U(30).

Note that U(30) = {1, 7, 11, 13, 17, 19, 23, 29}. So there are 4 distinct cosets. Let
H = {1, 11}. Then

H, 7H = {7 · 1, 7 · 11} = {7, 17},

13H = {13 · 1, 13 · 11} = {13, 23}, 19H = {19 · 1, 19 · 11} = {19, 29}

are distinct cosets.
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8. Suppose that a has order 15. Find all of the left cosets of 〈a5〉 in 〈a〉.

Because |〈a〉 : 〈a5〉| = 15/3 = 5, there are 5 distinct cosets. Let H = 〈a5〉. We claim
that H, aH, a2H, a3H, a4H are all cosets. They are distinct, because the smallest
positive n such that an is in the coset is 5, 1, 2, 3, and 4 respectively.

12. Let a and b be nonidentity elements of different orders in a group G of order 155.
Prove that the only subgroup of G that contains a and b is G itself.

Let H be a non-trivial subgroup of G containing both a and b. By Lagrange’s
theorem, |H| = 5, 31, or 155. If |H| = 5, then it is cyclic and all non-identity
elements have the same order 5. Similarly, if |H| = 31, all non-identity elements
are of order 31. Therefore |H| = 155 and H = G.

18. Recall that, for any integer n greater than 1, φ(n) denotes the number of posi-
tive integers less than n and relatively prime to n. Prove that if a is any integer
relatively prime to n, then aφ(n) mod n = 1.

Let a mod n = b. Because a is relatively prime to n, b ∈ U(n). Because |U(n)| =
φ(n), bφ(n) = b|U(n)| = 1 mod n. Therefore aφ(n) = bφ(n) = 1 mod n.

20. Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove that the order of
U(n) is even when n > 2.

Because gcd(n − 1, n) = 1, n − 1 ∈ U(n). If n > 2, then n − 1 6= 1. Now
(n−1)2 = n2−2n+1 = 1 mod n. Therefore |n−1| = 2. Because 2 = |n−1|||U(n)|,
|U(n)| is even.

21. Suppose G is a finite group of order n and m is relatively prime to n. If g ∈ G and
gm = e, prove that g = e.

Because gm = e, |g||m. Also |g|||G| = n. Therefore |g| is a common divisor of m
and n, which is 1. Therefore |g| = 1 and g = e.

27. Let |G| = 15. IfG has only one subgroup of order 3 and only one of order 5, prove
that G is cyclic. Generalize to |G| = pq, where p and q are prime.

Note that for a non-identity element a ∈ G, |a| = 3, 5, or 15. Let A = {a ∈
G | |a| = 3} and B = {a ∈ G | |a| = 5}. For b ∈ A, 〈b〉 = {e, b, b2} is a subgroup of
order 3. Because there is only one subgroup of order 3, A = {b, b2} and |A| = 2.
Similarly, for c ∈ B, 〈c〉 = {e, c, c2, c3, c4} is the unique subgroup of order 5 and
B = {c, c2, c3, c4}. Therefore |B| = 4. This implies that there are 15− 2− 4− 1 = 8

elements of order 15 (The one is for the identity). Hence G is cyclic.

The argument can be generalized in a straightforward way. If we define Sp =

{a ∈ G | |a| = p} and Sq = {a ∈ G | |a| = q}, then |Sp| = p − 1 and |Sq| = q − 1.
Because (p− 1)(q − 1) > 0, |G| = pq > p− 1 + q − 1 + 1 = p+ q − 1. Thus there is
an element of order pq and G is cyclic.

30. Let |G| = 8. Show that G must have an element of order 2.
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For a non-identity a ∈ G, |a| = 2, 4, or 8. If |a| = 2, a is what we want. If |a| = 4,
then |a2| = 4/2. If |a| = 8, |a4| = 8/4 = 2. Thus in any cases, we can find an order
two element.

42. Let G be a group of order n and k be any integer relatively prime to n. Show that
the mapping from G to G given by g → gk is one-to-one. If G is also Abelian,
show that the mapping given by g → gk is an automorphism of G.

Let φ : G→ G is defined by φ(g) = gk. Because n and k are relatively prime, there
are two integers a, b such that an+ bk = 1. If φ(g) = φ(h), then gk = hk. So

g = gan+bk = (gn)a(gk)b = (gk)b = (hk)b = (hn)a(hk)b = han+bk = h.

Therefore G is one-to-one.

Now suppose that G is Abelian. Then φ is one-to-one as above. Moreover, φ is
onto because an one-to-one map between two finite sets with the same number
of elements is onto as well. Finally, because G is Abelian,

φ(gh) = (gh)k = gkhk = φ(g)φ(k).

Therefore φ is an automorphism.

45. LetG = {(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), (24)(56)}.

(a) Find the stabilizer of 1 and the orbit of 1.

stabG(1) = {(1), (24)(56)}, orbG(1) = {1, 2, 3, 4}

(b) Find the stabilizer of 3 and the orbit of 3.

stabG(3) = {(1), (24)(56)}, orbG(3) = {3, 4, 1, 2}

(c) Find the stabilizer of 5 and the orbit of 5.

stabG(5) = {(1), (12)(34), (13)(24), (14)(23)}, orbG(5) = {5, 6}

57. Let G = GL(2,R) and H = SL(2,R). Let A ∈ G and suppose that detA = 2.
Prove that AH is the set of all 2× 2 matrices in G that have determinant 2.

Let D = {A ∈ GL(2,R) | detA = 2}.

If B ∈ AH , then B = AC where C ∈ H = SL(2,R). So detB = detAC =

detAdetC = 2 · 1 = 2. Therefore B ∈ D and AH ⊂ D.

On the other hand, if B ∈ D, then B = AA−1B and detA−1B = detA−1 detB =

1/2 · 2 = 1. Therefore A−1B ∈ SL(2,R) = H and B ∈ AH . Hence D ⊂ AH and
D = AH .
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