Homework 4 Solution

Section 2.2 \sim 2.3.

- Do not abbreviate your answer. Write everything in full sentences.
- Write your answer neatly. If I couldn't understand it, you'll get 0 point.
- You may discuss with your classmates. But do not copy directly.
- 1. Let *A*, *B*, and *C* be three sets. Suppose that $A \subset B$ and $B \subset C$. Show that $A \subset C$. Let $x \in A$. Because $A \subset B$, $x \in B$. Since $B \subset C$, $x \in C$. Therefore $A \subset C$.
- 2. Let $W = \{n \in \mathbb{Z} \mid n = x y \text{ for some } x, y \in \mathbb{N}\}$. (Note that in our definition of natural numbers, 0 is excluded.) Show that $W = \mathbb{Z}$.

Let $n \in W$. Then by definition, $n \in \mathbb{Z}$, so $W \subset \mathbb{Z}$. Conversely, let $n \in \mathbb{Z}$. If n > 0, then n = (n + 1) - 1 and both n + 1 and 1 are natural numbers. If n = 0, then n = 1 - 1. If n < 0, then n = 1 - (-n + 1) and both 1 and -n + 1 are natural numbers. Therefore in any case, n can be written as a difference of two natural numbers. So $n \in W$. Thus $\mathbb{Z} \subset W$. This proves $W = \mathbb{Z}$.

3. Consider a collection *X* defined by

$$X = \{ y \mid y \notin y \}.$$

Show that it makes a contradiction regardless you assume $X \in X$ or $X \notin X$. (This is a famous example so-called *Russell's paradox*, which is a collection we want to exclude from the definition of sets.)

If $X \in X$, then by definition of the set $X, X \notin X$. If $X \notin X$, then by definition of the set X again, X does not have the property $X \notin X$. Therefore $X \in X$. In any case, we have a contradiction.

4. Compute the following sets.

(a) $\mathcal{P}(\mathcal{P}(\emptyset))$

$$\begin{aligned} \mathcal{P}(\emptyset) &= \{\emptyset\} \\ \mathcal{P}(\mathcal{P}(\emptyset)) &= \{\emptyset, \{\emptyset\}\} \end{aligned}$$

Please distinguish \emptyset and $\{\emptyset\}$.

(b) For $A = \{1, 2, 3\}, A \times \emptyset$. By definition, $A \times \emptyset = \{(x, y) \mid x \in A, y \in \emptyset\}$. But there is no $y \in \emptyset$. Therefore $A \times \emptyset = \emptyset$.

- (c) For $A = \{a, b, c, d, e\}$ and $B = \{b, d, f\}$, $(A \cap B) \times (A \setminus B)$. $A \cap B = \{b, d\}, A \setminus B = \{a, c, e\}$ $(A \cap B) \times (A \setminus B) = \{(b, a), (b, c), (b, e), (d, a), (d, c), (d, e)\}$
- 5. Determine whether the given statement is true or false, and explain the reason. (You don't need to give a formal proof.)
 - (a) $\emptyset \subset \emptyset$.

True. \emptyset is a subset of every set, including \emptyset .

- (b) Ø ∈ Ø.False. Ø does not have any element, by definition.
- (c) For any nonempty set $A, A \subset A \times A$. False. Because every element of $A \times A$ is of the form (x, y) where $x, y \in A$, none of $x \in A$ is in $A \times A$.
- (d) For any nonempty set $A, A \subset \mathcal{P}(A)$. False. For any $x \in A, x$ is not a subset of A, so $x \notin \mathcal{P}(A)$. (But $\{x\} \in \mathcal{P}(A)$.)
- (e) For any nonempty set A, A × A ⊂ P(A).
 False. An element of A × A is (x, y) for some x, y ∈ A. But (x, y) is different from {x, y}, which is an element of P(A). Since (x, y) is not a subset, (x, y) ∉ P(A).
- 6. Let $f : \mathbb{N} \to \mathbb{Z}$ be a function defined by

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even,} \\ \frac{1-n}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

(a) Show that *f* is one-to-one correspondence.

Let $a, b \in \mathbb{N}$. Suppose that f(a) = f(b). If f(a) > 0, then both f(a) and f(b) are positive, so $f(a) = \frac{a}{2}$ and $f(b) = \frac{b}{2}$. Then $\frac{a}{2} = f(a) = f(b) = \frac{b}{2}$. Therefore a = b. If $f(a) \le 0$, then both f(a) and f(b) are non positive. So $f(a) = \frac{1-a}{2}$ and $f(b) = \frac{1-b}{2}$. So we have $\frac{1-a}{2} = f(a) = f(b) = \frac{1-b}{2}$. This implies 1 - a = 1 - b, and a = b. So in any case, we have a = b and f is injective.

Let $c \in \mathbb{Z}$. If c > 0, then $2c \in \mathbb{N}$ and $f(2c) = \frac{2c}{2} = c$. If $c \leq 0, -2c \geq 0$, so $1 - 2c \in \mathbb{N}$. Moreover, $f(1 - 2c) = \frac{1 - (1 - 2c)}{2} = \frac{2c}{2} = c$. Therefore in any case, we can find $d \in \mathbb{N}$ such that f(d) = c. Therefore f is onto. So we can conclude that f is one-to-one correspondence.

Wait, this result is very surprising. \mathbb{N} is contained in \mathbb{Z} and there are infinitely many elements of $\mathbb{Z} \setminus \mathbb{N}$, but we could make a bijective function between \mathbb{N} and \mathbb{Z} . This is a big difference between finite sets and infinite sets.

(b) Find a formula for f^{-1} .

The proof in (a) also provides the formula of f^{-1} . Let $x \in \mathbb{Z}$. If x > 0, then f(2x) = x. So $f^{-1}(x) = 2x$. If $x \le 0$, f(1-2x) = x. Therefore $f^{-1}(x) = 1-2x$. In summary,

$$f^{-1}(x) = \begin{cases} 2x, & x > 0\\ 1 - 2x, & x \le 0. \end{cases}$$

- 7. Let $f : X \to Y$, $g : Y \to Z$ be two functions.
 - (a) Suppose that f, g are injective. Prove that g ∘ f is injective.
 Let a, b ∈ X. Suppose that (g ∘ f)(a) = (g ∘ f)(b). Then by definition, g(f(a)) = g(f(b)). Because g is injective, this implies f(a) = f(b). Since f is injective, a = b. Therefore g ∘ f is injective.
 - (b) Suppose that *f*, *g* are surjective. Prove that *g* ∘ *f* is surjective.
 Let *c* ∈ *Z*. Because *g* is surjective, there is *d* ∈ *Y* such that *g*(*d*) = *c*. Since *f* is surjective, there is *e* ∈ *X* such that *f*(*e*) = *d*. Then (*g* ∘ *f*)(*e*) = *g*(*f*(*e*)) = *g*(*d*) = *c*. Therefore *g* ∘ *f* is surjective.
- 8. Let $f : X \to Y$ and $g : Y \to Z$ be two functions. Suppose that $g \circ f$ is bijective.
 - (a) Show that f is injective.

Let $a, b \in X$ and suppose that f(a) = f(b). Then g(f(a)) = g(f(b)). By definition of the composition function, $(g \circ f)(a) = (g \circ f)(b)$. Because $g \circ f$ is bijective, it is an injective function. So a = b. Therefore f is injective.

(b) Prove that *g* is surjective.

Let $c \in Z$. Because $g \circ f$ is bijective, $g \circ f$ is surjective. So there is $d \in X$ such that $(g \circ f)(d) = c$. Now $g(f(d)) = (g \circ f)(d) = c$. Therefore g is surjective.

9. Let $f : X \to Y$ and $g : Y \to X$ be two functions. Suppose that $g \circ f = id_X$. Give an example of f and g which are not bijective. (Therefore $g \circ f = id_X$ is *not* sufficient to guarantee the existence of f^{-1} or g^{-1} .)

Let $X = \{a, b\}$ and $Y = \{1, 2, 3\}$. Define $f : X \to Y$ as f(a) = 1, f(b) = 2. And define $g : Y \to X$ as g(1) = a, g(2) = b, and g(3) = b. Then clearly f is injective, g is surjective, and $g \circ f = id_X$. But f is not surjective because there is no $x \in X$ such that f(x) = 3. And g is not injective because g(2) = b = g(3).

- 10. Let $f : X \to Y$ be a function. And let $A, B \subset X$.
 - (a) Show that f(A ∩ B) ⊂ f(A) ∩ f(B).
 Let a ∈ f(A ∩ B). Then there is b ∈ A ∩ B such that f(b) = a. Then b ∈ A, so a = f(b) ∈ f(A). Similarly, because b ∈ B, a = f(b) ∈ f(B). Therefore a ∈ f(A) ∩ f(B).

(b) Is it true that $f(A \cap B) = f(A) \cap f(B)$? Prove it if it is true, and give a counterexample if it is false.

Let $X = \{a, b, c\}$, $Y = \{1, 2\}$, and let $f : X \to Y$ be a function defined by f(a) = 1, f(b) = 2, and f(c) = 1. Let $A = \{a, b\}$ and $B = \{b, c\}$. Then $f(A) = \{1, 2\}$ and $f(B) = \{1, 2\}$. Therefore $f(A) \cap f(B) = \{1, 2\}$. On the other hand, $A \cap B = \{b\}$. So $f(A \cap B) = \{2\}$. Therefore $f(A \cap B) \neq f(A) \cap f(B)$.

- 11. Let $f : X \to Y$ be a function. And let $A, B \subset Y$.
 - (a) Show that $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$. Let $a \in f^{-1}(A \cap B)$. Then $f(a) \in A \cap B$. So $f(a) \in A$. This implies $a \in f^{-1}(A)$. Similarly, $f(a) \in B$ so $a \in f^{-1}(B)$. Therefore $a \in f^{-1}(A) \cap f^{-1}(B)$. Therefore $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.
 - (b) Is it true that f⁻¹(A ∩ B) = f⁻¹(A) ∩ f⁻¹(B)? Prove it if it is true, and give a counterexample if it is false.
 Let a ∈ f⁻¹(A) ∩ f⁻¹(B). Then a ∈ f⁻¹(A). So f(a) ∈ A. Similary a ∈ f⁻¹(B). Thus f(a) ∈ B. Therefore f(a) ∈ A∩B. This implies a ∈ f⁻¹(A∩B). So we have f⁻¹(A) ∩ f⁻¹(B) ⊂ f⁻¹(A ∩ B). The opposite inclusion was shown in (a). Therefore f⁻¹(A ∩ B) = f⁻¹(A) ∩ f⁻¹(B).
- 12. Let $f : X \to Y$ be a function. Let $B \subset Y$.
 - (a) Prove that f(f⁻¹(B)) ⊂ B.
 Let a ∈ f(f⁻¹(B)). Then there is b ∈ f⁻¹(B) such that f(b) = a. Because b ∈ f⁻¹(B), by the definition of the inverse image, a = f(b) ∈ B. Therefore f(f⁻¹(B)) ⊂ B.
 - (b) Is it true that $f(f^{-1}(B)) = B$? Prove it if it is true, and give a counterexample if it is false.

Let $X = \{a, b\}, Y = \{1, 2, 3\}$, and $f : X \to Y$ be a function defined by f(a) = 1 and f(b) = 2. Let $B = \{2, 3\}$. Then $f^{-1}(B) = \{b\}$. And $f(f^{-1}(B)) = f(\{b\}) = \{2\}$. Therefore $f(f^{-1}(B)) \neq B$.