Homework 4 Solution

Section $2.2 \sim 2.3$.

- Do not abbreviate your answer. Write everything in full sentences.
- Write your answer neatly. If I couldn't understand it, you'll get 0 point.
- You may discuss with your classmates. But do not copy directly.

1. Let A, B, and C be three sets. Suppose that $A \subset B$ and $B \subset C$. Show that $A \subset C$. Let $x \in A$. Because $A \subset B, x \in B$. Since $B \subset C, x \in C$. Therefore $A \subset C$.
2. Let $W=\{n \in \mathbb{Z} \mid n=x-y$ for some $x, y \in \mathbb{N}\}$. (Note that in our definition of natural numbers, 0 is excluded.) Show that $W=\mathbb{Z}$.

Let $n \in W$. Then by definition, $n \in \mathbb{Z}$, so $W \subset \mathbb{Z}$. Conversely, let $n \in \mathbb{Z}$. If $n>0$, then $n=(n+1)-1$ and both $n+1$ and 1 are natural numbers. If $n=0$, then $n=1-1$. If $n<0$, then $n=1-(-n+1)$ and both 1 and $-n+1$ are natural numbers. Therefore in any case, n can be written as a difference of two natural numbers. So $n \in W$. Thus $\mathbb{Z} \subset W$. This proves $W=\mathbb{Z}$.
3. Consider a collection X defined by

$$
X=\{y \mid y \notin y\} .
$$

Show that it makes a contradiction regardless you assume $X \in X$ or $X \notin X$. (This is a famous example so-called Russell's paradox, which is a collection we want to exclude from the definition of sets.)
If $X \in X$, then by definition of the set $X, X \notin X$. If $X \notin X$, then by definition of the set X again, X does not have the property $X \notin X$. Therefore $X \in X$. In any case, we have a contradiction.
4. Compute the following sets.
(a) $\mathcal{P}(\mathcal{P}(\emptyset))$

$$
\begin{aligned}
\mathcal{P}(\emptyset) & =\{\emptyset\} \\
\mathcal{P}(\mathcal{P}(\emptyset)) & =\{\emptyset,\{\emptyset\}\}
\end{aligned}
$$

Please distinguish \emptyset and $\{\emptyset\}$.
(b) For $A=\{1,2,3\}, A \times \emptyset$.

By definition, $A \times \emptyset=\{(x, y) \mid x \in A, y \in \emptyset\}$. But there is no $y \in \emptyset$. Therefore $A \times \emptyset=\emptyset$.
(c) For $A=\{a, b, c, d, e\}$ and $B=\{b, d, f\},(A \cap B) \times(A \backslash B)$.

$$
\begin{gathered}
A \cap B=\{b, d\}, A \backslash B=\{a, c, e\} \\
(A \cap B) \times(A \backslash B)=\{(b, a),(b, c),(b, e),(d, a),(d, c),(d, e)\}
\end{gathered}
$$

5. Determine whether the given statement is true or false, and explain the reason. (You don't need to give a formal proof.)
(a) $\emptyset \subset \emptyset$.

True. \emptyset is a subset of every set, including \emptyset.
(b) $\emptyset \in \emptyset$.

False. \emptyset does not have any element, by definition.
(c) For any nonempty set $A, A \subset A \times A$.

False. Because every element of $A \times A$ is of the form (x, y) where $x, y \in A$, none of $x \in A$ is in $A \times A$.
(d) For any nonempty set $A, A \subset \mathcal{P}(A)$.

False. For any $x \in A, x$ is not a subset of A, so $x \notin \mathcal{P}(A)$. (But $\{x\} \in \mathcal{P}(A)$.)
(e) For any nonempty set $A, A \times A \subset \mathcal{P}(A)$.

False. An element of $A \times A$ is (x, y) for some $x, y \in A$. But (x, y) is different from $\{x, y\}$, which is an element of $\mathcal{P}(A)$. Since (x, y) is not a subset, $(x, y) \notin$ $\mathcal{P}(A)$.
6. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be a function defined by

$$
f(n)= \begin{cases}\frac{n}{2}, & \text { if } n \text { is even } \\ \frac{1-n}{2}, & \text { if } n \text { is odd }\end{cases}
$$

(a) Show that f is one-to-one correspondence.

Let $a, b \in \mathbb{N}$. Suppose that $f(a)=f(b)$. If $f(a)>0$, then both $f(a)$ and $f(b)$ are positive, so $f(a)=\frac{a}{2}$ and $f(b)=\frac{b}{2}$. Then $\frac{a}{2}=f(a)=f(b)=\frac{b}{2}$. Therefore $a=b$. If $f(a) \leq 0$, then both $f(a)$ and $f(b)$ are non positive. So $f(a)=\frac{1-a}{2}$ and $f(b)=\frac{1-b}{2}$. So we have $\frac{1-a}{2}=f(a)=f(b)=\frac{1-b}{2}$. This implies $1-a=1-b$, and $a=b$. So in any case, we have $a=b$ and f is injective.
Let $c \in \mathbb{Z}$. If $c>0$, then $2 c \in \mathbb{N}$ and $f(2 c)=\frac{2 c}{2}=c$. If $c \leq 0,-2 c \geq 0$, so $1-2 c \in \mathbb{N}$. Moreover, $f(1-2 c)=\frac{1-(1-2 c)}{2}=\frac{2 c}{2}=c$. Therefore in any case, we can find $d \in \mathbb{N}$ such that $f(d)=c$. Therefore f is onto. So we can conclude that f is one-to-one correspondence.
Wait, this result is very surprising. \mathbb{N} is contained in \mathbb{Z} and there are infinitely many elements of $\mathbb{Z} \backslash \mathbb{N}$, but we could make a bijective function between \mathbb{N} and \mathbb{Z}. This is a big difference between finite sets and infinite sets.
(b) Find a formula for f^{-1}.

The proof in (a) also provides the formula of f^{-1}. Let $x \in \mathbb{Z}$. If $x>0$, then $f(2 x)=x$. So $f^{-1}(x)=2 x$. If $x \leq 0, f(1-2 x)=x$. Therefore $f^{-1}(x)=1-2 x$. In summary,

$$
f^{-1}(x)= \begin{cases}2 x, & x>0 \\ 1-2 x, & x \leq 0\end{cases}
$$

7. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be two functions.
(a) Suppose that f, g are injective. Prove that $g \circ f$ is injective.

Let $a, b \in X$. Suppose that $(g \circ f)(a)=(g \circ f)(b)$. Then by definition, $g(f(a))=g(f(b))$. Because g is injective, this implies $f(a)=f(b)$. Since f is injective, $a=b$. Therefore $g \circ f$ is injective.
(b) Suppose that f, g are surjective. Prove that $g \circ f$ is surjective.

Let $c \in Z$. Because g is surjective, there is $d \in Y$ such that $g(d)=c$. Since f is surjective, there is $e \in X$ such that $f(e)=d$. Then $(g \circ f)(e)=g(f(e))=$ $g(d)=c$. Therefore $g \circ f$ is surjective.
8. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. Suppose that $g \circ f$ is bijective.
(a) Show that f is injective.

Let $a, b \in X$ and suppose that $f(a)=f(b)$. Then $g(f(a))=g(f(b))$. By definition of the composition function, $(g \circ f)(a)=(g \circ f)(b)$. Because $g \circ f$ is bijective, it is an injective function. So $a=b$. Therefore f is injective.
(b) Prove that g is surjective.

Let $c \in Z$. Because $g \circ f$ is bijective, $g \circ f$ is surjective. So there is $d \in X$ such that $(g \circ f)(d)=c$. Now $g(f(d))=(g \circ f)(d)=c$. Therefore g is surjective.
9. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be two functions. Suppose that $g \circ f=\mathrm{id}_{X}$. Give an example of f and g which are not bijective. (Therefore $g \circ f=\operatorname{id}_{X}$ is not sufficient to guarantee the existence of f^{-1} or g^{-1}.)
Let $X=\{a, b\}$ and $Y=\{1,2,3\}$. Define $f: X \rightarrow Y$ as $f(a)=1, f(b)=2$. And define $g: Y \rightarrow X$ as $g(1)=a, g(2)=b$, and $g(3)=b$. Then clearly f is injective, g is surjective, and $g \circ f=\operatorname{id}_{X}$. But f is not surjective because there is no $x \in X$ such that $f(x)=3$. And g is not injective because $g(2)=b=g(3)$.
10. Let $f: X \rightarrow Y$ be a function. And let $A, B \subset X$.
(a) Show that $f(A \cap B) \subset f(A) \cap f(B)$.

Let $a \in f(A \cap B)$. Then there is $b \in A \cap B$ such that $f(b)=a$. Then $b \in A$, so $a=f(b) \in f(A)$. Similarly, because $b \in B, a=f(b) \in f(B)$. Therefore $a \in f(A) \cap f(B)$.
(b) Is it true that $f(A \cap B)=f(A) \cap f(B)$? Prove it if it is true, and give a counterexample if it is false.
Let $X=\{a, b, c\}, Y=\{1,2\}$, and let $f: X \rightarrow Y$ be a function defined by $f(a)=1, f(b)=2$, and $f(c)=1$. Let $A=\{a, b\}$ and $B=\{b, c\}$. Then $f(A)=$ $\{1,2\}$ and $f(B)=\{1,2\}$. Therefore $f(A) \cap f(B)=\{1,2\}$. On the other hand, $A \cap B=\{b\}$. So $f(A \cap B)=\{2\}$. Therefore $f(A \cap B) \neq f(A) \cap f(B)$.
11. Let $f: X \rightarrow Y$ be a function. And let $A, B \subset Y$.
(a) Show that $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.

Let $a \in f^{-1}(A \cap B)$. Then $f(a) \in A \cap B$. So $f(a) \in A$. This implies $a \in f^{-1}(A)$. Similarly, $f(a) \in B$ so $a \in f^{-1}(B)$. Therefore $a \in f^{-1}(A) \cap f^{-1}(B)$. Therefore $f^{-1}(A \cap B) \subset f^{-1}(A) \cap f^{-1}(B)$.
(b) Is it true that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$? Prove it if it is true, and give a counterexample if it is false.
Let $a \in f^{-1}(A) \cap f^{-1}(B)$. Then $a \in f^{-1}(A)$. So $f(a) \in A$. Similary $a \in$ $f^{-1}(B)$. Thus $f(a) \in B$. Therefore $f(a) \in A \cap B$. This implies $a \in f^{-1}(A \cap B)$. So we have $f^{-1}(A) \cap f^{-1}(B) \subset f^{-1}(A \cap B)$. The opposite inclusion was shown in (a). Therefore $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.
12. Let $f: X \rightarrow Y$ be a function. Let $B \subset Y$.
(a) Prove that $f\left(f^{-1}(B)\right) \subset B$.

Let $a \in f\left(f^{-1}(B)\right)$. Then there is $b \in f^{-1}(B)$ such that $f(b)=a$. Because $b \in f^{-1}(B)$, by the definition of the inverse image, $a=f(b) \in B$. Therefore $f\left(f^{-1}(B)\right) \subset B$.
(b) Is it true that $f\left(f^{-1}(B)\right)=B$? Prove it if it is true, and give a counterexample if it is false.
Let $X=\{a, b\}, Y=\{1,2,3\}$, and $f: X \rightarrow Y$ be a function defined by $f(a)=$ 1 and $f(b)=2$. Let $B=\{2,3\}$. Then $f^{-1}(B)=\{b\}$. And $f\left(f^{-1}(B)\right)=$ $f(\{b\})=\{2\}$. Therefore $f\left(f^{-1}(B)\right) \neq B$.

