Homework 11 Solution

Section 4.3.

4.3.2. For $\mathbf{u}=\left[\begin{array}{c}-6 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$, compute:
(a) $3 \mathbf{u}$;

$$
3 \mathbf{u}=3\left[\begin{array}{c}
-6 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \cdot(-6) \\
3 \cdot 0
\end{array}\right]=\left[\begin{array}{c}
-18 \\
0
\end{array}\right]
$$

(b) $\mathbf{u}+\mathbf{v}$;

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}
-6 \\
0
\end{array}\right]+\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
-6+5 \\
0+3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

(c) $-\frac{1}{2} \mathbf{v}$;

$$
-\frac{1}{2} \mathbf{v}=-\frac{1}{2}\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{l}
-\frac{1}{2} \cdot 5 \\
-\frac{1}{2} \cdot 3
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2}
\end{array}\right]
$$

(d) $2 \mathbf{u}-\mathbf{v}$;

$$
2 \mathbf{u}-\mathbf{v}=2\left[\begin{array}{c}
-6 \\
0
\end{array}\right]-\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
2 \cdot(-6)-5 \\
2 \cdot 0-3
\end{array}\right]=\left[\begin{array}{c}
-17 \\
-3
\end{array}\right]
$$

(e) $\frac{1}{3} \mathbf{u}+3 \mathbf{v}$.

$$
\frac{1}{3} \mathbf{u}+3 \mathbf{v}=\frac{1}{3}\left[\begin{array}{c}
-6 \\
0
\end{array}\right]+3\left[\begin{array}{l}
5 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \cdot(-6)+3 \cdot 5 \\
\frac{1}{3} \cdot 0+3 \cdot 3
\end{array}\right]=\left[\begin{array}{c}
13 \\
9
\end{array}\right]
$$

4.3.10. For $A=\left[\begin{array}{cc}2.75 & 1.5 \\ 2.5 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}-4 & -3 \\ 1.5 & 2\end{array}\right]$, compute:
(a) $5 A$;

$$
5 A=5\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right]=\left[\begin{array}{cc}
5 \cdot 2.75 & 5 \cdot 1.5 \\
5 \cdot 2.5 & 5 \cdot(-1)
\end{array}\right]=\left[\begin{array}{cc}
13.75 & 7.5 \\
12.5 & -5
\end{array}\right]
$$

(b) $A+B$;

$$
\begin{aligned}
A+B & =\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right]+\left[\begin{array}{cc}
-4 & -3 \\
1.5 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2.75+(-4) & 1.5+(-3) \\
2.5+1.5 & -1+2
\end{array}\right]=\left[\begin{array}{cc}
-1.25 & -1.5 \\
4 & 1
\end{array}\right]
\end{aligned}
$$

(c) $4 A-2 B$.

$$
\begin{aligned}
4 A-2 B & =4\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right]-2\left[\begin{array}{cc}
-4 & -3 \\
1.5 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 \cdot 2.75-2 \cdot(-4) & 4 \cdot 1.5-2 \cdot(-3) \\
4 \cdot 2.5-2 \cdot 1.5 & 4 \cdot(-1)-2 \cdot 2
\end{array}\right]=\left[\begin{array}{cc}
19 & 12 \\
7 & -8
\end{array}\right]
\end{aligned}
$$

4.3.12. For $A=\left[\begin{array}{ll}2 & 0 \\ 5 & 1\end{array}\right], \mathbf{u}=\left[\begin{array}{l}3 \\ 7\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{c}0 \\ -2\end{array}\right]$, compute:
(a) $A \mathbf{u}$;

$$
A \mathbf{u}=\left[\begin{array}{ll}
2 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
7
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 3+0 \cdot 7 \\
5 \cdot 3+1 \cdot 7
\end{array}\right]=\left[\begin{array}{c}
6 \\
22
\end{array}\right]
$$

(b) $A \mathbf{v}$.

$$
A \mathbf{v}=\left[\begin{array}{ll}
2 & 0 \\
5 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 0+0 \cdot(-2) \\
5 \cdot 0+1 \cdot(-2)
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2
\end{array}\right]
$$

4.3.16. For $A=\left[\begin{array}{cc}2.75 & 1.5 \\ 2.5 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}-4 & -3 \\ 1.5 & 2\end{array}\right]$, compute:
(a) $A B$;

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right]\left[\begin{array}{cc}
-4 & -3 \\
1.5 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2.75 \cdot(-4)+1.5 \cdot 1.5 & 2.75 \cdot(-3)+1.5 \cdot 2 \\
2.5 \cdot(-4)+(-1) \cdot 1.5 & 2.5 \cdot(-3)+(-1) \cdot 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-8.75 & -5.25 \\
-11.5 & -9.5
\end{array}\right]
\end{aligned}
$$

(b) $B A$;

$$
\begin{aligned}
B A & =\left[\begin{array}{cc}
-4 & -3 \\
1.5 & 2
\end{array}\right]\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-4 \cdot 2.75+(-3) \cdot 2.5 & -4 \cdot 1.5+(-3) \cdot(-1) \\
1.5 \cdot 2.75+2 \cdot 2.5 & 1.5 \cdot 1.5+2 \cdot(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-18.5 & -3 \\
9.125 & 0.25
\end{array}\right]
\end{aligned}
$$

(c) A^{2};

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right]\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2.75^{2}+1.5 \cdot 2.5 & 2.75 \cdot 1.5+1.5 \cdot(-1) \\
2.5 \cdot 2.75+(-1) \cdot 2.5 & 2.5 \cdot 1.5+(-1)^{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
11.3125 & 2.625 \\
4.375 & 4.75
\end{array}\right]
\end{aligned}
$$

(d) A^{3}.

$$
\begin{aligned}
A^{3} & =A^{2} \cdot A=\left[\begin{array}{cc}
11.3125 & 2.625 \\
4.375 & 4.75
\end{array}\right]\left[\begin{array}{cc}
2.75 & 1.5 \\
2.5 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
11.3125 \cdot 2.75+2.625 \cdot 2.5 & 11.3125 \cdot 1.5+2.625 \cdot(-1) \\
4.375 \cdot 2.75+4.75 \cdot 2.5 & 4.375 \cdot 1.5+4.75 \cdot(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
37.671875 & 14.34375 \\
23.90625 & 1.8125
\end{array}\right]
\end{aligned}
$$

4.3.26. Find the inverse A^{-1} of $A=\left[\begin{array}{ll}0 & -1 \\ 2 & -5\end{array}\right]$. Verify that $A^{-1} A=I$ and $A A^{-1}=I$.

$$
A^{-1}=\frac{1}{0 \cdot(-5)-(-1) \cdot 2}\left[\begin{array}{cc}
-5 & -(-1) \\
-2 & 0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
-5 & 1 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-\frac{5}{2} & \frac{1}{2} \\
-1 & 0
\end{array}\right]
$$

Indeed,

$$
\begin{aligned}
A^{-1} A & =\left[\begin{array}{cc}
-\frac{5}{2} & \frac{1}{2} \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
2 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{5}{2} \cdot 0+\frac{1}{2} \cdot 2 & -\frac{5}{2} \cdot(-1)+\frac{1}{2} \cdot(-5) \\
-1 \cdot 0+0 \cdot 2 & -1 \cdot(-1)+0 \cdot(-5)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

and

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{ll}
0 & -1 \\
2 & -5
\end{array}\right]\left[\begin{array}{cc}
-\frac{5}{2} & \frac{1}{2} \\
-1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 \cdot\left(-\frac{5}{2}\right)+(-1) \cdot(-1) & 0 \cdot \frac{1}{2}+(-1) \cdot 0 \\
2 \cdot\left(-\frac{5}{2}\right)+(-5) \cdot(-1) & 2 \cdot \frac{1}{2}+(-5) \cdot 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

4.3.30. Write the system

$$
\begin{aligned}
& 3 x-6 y=0 \\
& 5 x-9 y=1
\end{aligned}
$$

in vector/matrix form and then use the inverse to solve.

$$
\begin{gathered}
{\left[\begin{array}{ll}
3 & -6 \\
5 & -9
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
3 & -6 \\
5 & -9
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1}{3 \cdot(-9)-(-6) \cdot 5}\left[\begin{array}{cc}
-9 & 6 \\
-5 & -3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
=\frac{1}{3}\left[\begin{array}{c}
6 \\
-3
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
\end{gathered}
$$

So $x=2, y=-1$.
4.3.34. (a) Prove that the determinant of a matrix is 0 if and only if one row of the matrix is a multiple of the other.
Suppose that $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $\operatorname{det} A=a d-b c=0$. First, assume that $a \neq 0$. Then $d=\frac{b c}{a}$. Therefore the second row is

$$
\left[\begin{array}{ll}
c & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{a c}{a} & \frac{b c}{a}
\end{array}\right]=\frac{c}{a}\left[\begin{array}{ll}
a & b
\end{array}\right],
$$

which is a multiple of the first row. If $a=0, b c=0$. So $b=0$ or $c=0$. If $b=0$, then the first row is zero row $\left[\begin{array}{ll}0 & 0\end{array}\right]$ and this is obviously a multiple of the second row, namely, $0\left[\begin{array}{ll}c & d\end{array}\right]$. If $c=0$, then the first row is $\left[\begin{array}{ll}0 & b\end{array}\right]=$ $b\left[\begin{array}{ll}0 & 1\end{array}\right]$ and the second row is $\left[\begin{array}{ll}0 & d\end{array}\right]=d\left[\begin{array}{ll}0 & 1\end{array}\right]$. Therefore one is a multiple of the other.
Conversely, if the first row is a multiple of the second row, then there is r such that $\left[\begin{array}{ll}a & b\end{array}\right]=\left[\begin{array}{ll}r c & r d\end{array}\right]$. Then $\operatorname{det} A=a d-b c=r c d-r d c=0$. We can check the case that the second row is a multiple of the first row in a similar way.
(b) Prove that the determinant of a matrix is 0 if and only if one column of the matrix is a multiple of the other.
Again, assume that $a \neq 0$. Then $d=\frac{b c}{a}$. Now the second column is

$$
\left[\begin{array}{l}
b \\
d
\end{array}\right]=\left[\begin{array}{c}
\frac{b a}{a} \\
\frac{b c}{d}
\end{array}\right]=\frac{b}{a}\left[\begin{array}{l}
a \\
c
\end{array}\right],
$$

which is a multiple of the first column. If $a=0$, then $b c=0$ and either $b=0$ or $c=0$. If $b=0$, then the first column is $\left[\begin{array}{l}0 \\ c\end{array}\right]=c\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and the second column is $\left[\begin{array}{l}0 \\ d\end{array}\right]=d\left[\begin{array}{l}0 \\ 1\end{array}\right]$. So one is a multiple of the other. If $c=0$, then
the first column is zero column. Therefore the first column is a multiple (by zero) of the second column.
Conversely, if the first column is a multiple of the second column, then there is r such that $\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{c}r b \\ r d\end{array}\right]$. Then $\operatorname{det} A=a d-b c=r b d-b r d=0$. We can check the case that the second row is a multiple of the first row in a similar way.

