Homework 1 Solution

Section 1.1, 1.2, and 2.1.
1.1.16. Construct a Bouncing Ball Model by determining r and S_{0} if the ball is dropped from an initial height of 5.5 feet and its maximum height after each bounce is 10% less then its previous maximum height.
Because S_{0} is the initial height, $S_{0}=5.5$. From the second condition, we know that S_{n+1} is 90% of S_{n}. So $S_{n+1}=0.9 S_{n}$.

$$
S_{n+1}=0.9 S_{n}, \quad S_{0}=5.5
$$

1.1.18. Construct a Bouncing Ball Model by determining r and S_{0} if $S_{1}=4.5$ and $S_{2}=$ 2.

From $S_{n+1}=r S_{n}$, we know $S_{2}=r S_{1}$.

$$
2=S_{2}=r S_{1}=4.5 r \Rightarrow r=\frac{2}{4.5}=\frac{4}{9}
$$

Also from $S_{1}=r S_{0}$,

$$
\frac{4}{9} S_{0}=S_{1}=4.5 \Rightarrow S_{0}=4.5 \cdot \frac{9}{4}=\frac{81}{8}
$$

Therefore

$$
S_{n+1}=\frac{4}{9} S_{n}, \quad S_{0}=\frac{81}{8} .
$$

1.1.20. Use the Bouncing Ball Model to compute $S_{1}, S_{2}, \cdots, S_{5}$ for $r=0.8$ and $S_{0}=5$.

$$
\begin{gathered}
S_{1}=r S_{0}=0.8 \cdot 5=4 \\
S_{2}=r S_{1}=0.8 \cdot 4=3.2 \\
S_{3}=r S_{2}=0.8 \cdot 3.2=2.56 \\
S_{4}=r S_{3}=0.8 \cdot 2.56=2.048 \\
S_{5}=r S_{4}=0.8 \cdot 2.048=1.6384
\end{gathered}
$$

1.2.12. Suppose $\$ 1000$ is deposited into an account earning simple interest at an annual rate of 3%.
(a) Construct the corresponding Simple Interest Model.

$$
\begin{gathered}
r=0.03, P_{0}=1000 \Rightarrow I=r P_{0}=30 \\
P_{n+1}=P_{n}+30, \quad P_{0}=1000
\end{gathered}
$$

(b) How much will be in the account after 4 years?

$$
\begin{aligned}
P_{4} & =P_{3}+30=P_{2}+30+30=P_{1}+30+30+30=P_{0}+30+30+30+30 \\
& =1000+120=1120
\end{aligned}
$$

There will be $\$ 1120$.
1.2.17. Suppose $\$ 8000$ is deposited into an account that earns 6% annual interest compounded monthly.
(a) Construct the corresponding Compound Interest Model.

$$
\begin{gathered}
i=\frac{r}{12}=\frac{0.06}{12}=0.005 \\
P_{n+1}=(1+i) P_{n}=1.005 P_{n} \\
\Rightarrow P_{n+1}=1.005 P_{n}, \quad P_{0}=8000 .
\end{gathered}
$$

(b) Compute the account balance after each of the first 3 months.

$$
\begin{gathered}
P_{1}=1.005 P_{0}=1.005 \cdot 8000=\$ 8040 \\
P_{2}=1.005 P_{1}=1.005 \cdot 8040=\$ 8080.2 \\
P_{3}=1.005 P_{2}=1.005 \cdot 8080.2 \approx \$ 8120.6
\end{gathered}
$$

1.2.18. Suppose a deposit is made into an account that earns interest that is compounded quarterly, and the account balance after 3 months is $\$ 5481$.
(a) If the original deposit was $\$ 5416$, what is the annual interest rate?

Because the interest is compounded quarterly, P_{1} represents the total value after a quarter, which is 3 months. From $P_{n+1}=(1+i) P_{n}$,

$$
\begin{gathered}
5481=P_{1}=(1+i) P_{0}=(1+i) 5416 \Rightarrow(1+i)=\frac{5481}{5416} \approx 1.012 \\
\Rightarrow \\
r=4 \cdot i \approx 0.012 \\
\approx 4 \cdot 0.012=0.048
\end{gathered}
$$

Therefore the annual interest rate is approximately 4.8%.
(b) If the annual interest rate is 6%, what was the original deposit?

$$
\begin{gathered}
i=\frac{r}{4}=\frac{0.06}{4}=0.015 \\
5481=P_{1}=(1+i) P_{0}=1.015 P_{0} \\
\Rightarrow P_{0}=\frac{5481}{1.015} \approx 4960.18
\end{gathered}
$$

So the original deposit is approximately $\$ 4960.18$.
1.2.20. Under some circumstances the interest rate i in the Compound Interest Model can be negative. Although this cannot happen for a savings account, it can with riskier investments such as stocks in a declining market.
(a) If $i=-10 \%$ and $P_{0}=\$ 1000$, compute P_{1}, P_{2} and P_{3}.

$$
\begin{gathered}
P_{1}=(1+i) P_{0}=(1-0.1) 1000=\$ 900 \\
P_{2}=(1+i) P_{1}=(1-0.1) 900=\$ 810 \\
P_{3}=(1+i) P_{2}=(1-0.1) 810=\$ 729
\end{gathered}
$$

(b) For any i satisfying $-1 \leq i<0$, determine the asymptotic behavior of P_{n} as $n \rightarrow \infty$, for any $P_{0} \geq 0$.
If $-1 \leq i<0$, then $0 \leq 1+i<1$. Because $P_{n+1}=(1+i) P_{n}$, the next term P_{n+1} is smaller than P_{n}. So the total value is decreasing.
Indeed, from

$$
P_{n}=(1+i) P_{n-1}=(1+i)(1+i) P_{n-2}=\cdots(1+i)^{n} P_{0}
$$

we know that $P_{n}=P_{0}(1+i)^{n}$. Because $\lim _{n \rightarrow \infty}(1+i)^{n}=0$ (since $0 \leq 1+i<$ 1), ultimately P_{n} approaches 0 .
2.1.4. For the price model $P_{n+1}=100-P_{n}$:
(a) If $P_{0}=40$ compute P_{1}, \cdots, P_{5}.

$$
\begin{aligned}
& P_{1}=100-P_{0}=100-40=60 \\
& P_{2}=100-P_{1}=100-60=40 \\
& P_{3}=100-P_{2}=100-40=60 \\
& P_{4}=100-P_{3}=100-60=40 \\
& P_{5}=100-P_{4}=100-40=60
\end{aligned}
$$

(b) If $P_{0}=75$ compute P_{1}, \cdots, P_{5}.

$$
\begin{aligned}
& P_{1}=100-P_{0}=100-75=25 \\
& P_{2}=100-P_{1}=100-25=75 \\
& P_{3}=100-P_{2}=100-75=25 \\
& P_{4}=100-P_{3}=100-25=75 \\
& P_{5}=100-P_{4}=100-75=25
\end{aligned}
$$

(c) Can you predict what will happen for any other value of P_{0} ?

We can prove that regardless the value of P_{0}, P_{n} oscillates, in other words, $P_{0}=P_{2}=P_{4}=\cdots$ and $P_{1}=P_{3}=P_{5}=\cdots$.
For $P_{n+1}=100-P_{n}$, by plug $n+1$ in n, we have $P_{n+2}=100-P_{n+1}$. The first equation is same to $P_{n}=100-P_{n+1}=P_{n+2}$. Therefore for any n, $P_{n}=P_{n+2}$.
2.1.6. Construct the Annuity Savings Model that satisfies:
(a) $i=1 \%, P_{0}=\$ 1000, P_{1}=\$ 1125$.

$$
\begin{gathered}
P_{1}=(1+i) P_{0}+d \Rightarrow 1125=(1.01) 1000+d=1010+d \\
\Rightarrow d=1125-1010=115
\end{gathered}
$$

So the annuity saving model is

$$
P_{n+1}=(1+0.01) P_{n}+115, \quad P_{0}=1000
$$

(b) $P_{0}=\$ 10,000, P_{1}=\$ 12,400, P_{2}=\$ 14,836$.

$$
\begin{aligned}
& P_{1}=(1+i) P_{0}+d \Rightarrow 12400=(1+i) 10000+d \Rightarrow 2400=10000 i+d \\
& P_{2}=(1+i) P_{1}+d \Rightarrow 14836=(1+i) 12400+d \Rightarrow 2436=12400 i+d
\end{aligned}
$$

So we have a system of linear equations

$$
\begin{aligned}
& 10000 i+d=2400 \\
& 12400 i+d=2436
\end{aligned}
$$

By solving this, we have $i=0.015, d=2250$. So the annuity saving model is

$$
P_{n+1}=(1+0.015) P_{n}+2250, \quad P_{0}=10000 .
$$

2.1.12. Construct the Linear Population Model that satisfies:
(a) The initial population is 3500 and the ratio of the next population to the present one is $6 / 5$.
The second condition is simply saying that the growth ratio is $6 / 5$.

$$
P_{n+1}=\frac{6}{5} P_{n}, \quad P_{0}=3500 .
$$

(b) The initial population is 3500 and the population doubles every 3 generations.
The second condition is saying that $P_{3}=2 P_{0}$.

$$
\begin{gathered}
P_{3}=r P_{2}=r r P_{1}=r r r P_{0}=P_{0} r^{3} \\
2 P_{0}=P_{0} r^{3} \Rightarrow r^{3}=2 \Rightarrow r=2^{\frac{1}{3}} \\
P_{n+1}=2^{\frac{1}{3}} P_{n}, \quad P_{0}=3500
\end{gathered}
$$

2.1.14. Construct the Linear Harvesting Model that satisfies:
(a) The population, initially 100,000 , is decreasing by 5% per generation and harvesting is occurring at a constant rate of 1500 per generation.
The growth ratio r is $1-0.05=0.95$. So the population model is

$$
P_{n+1}=0.95 P_{n}-1500, \quad P_{0}=100000
$$

(b) $P_{0}=75,000, P_{1}=77,000, P_{2}=79,500$.

$$
\begin{aligned}
& P_{1}=r P_{0}+k \Rightarrow 77000=75000 r+k \\
& P_{2}=r P_{1}+k \Rightarrow 79500=77000 r+k
\end{aligned}
$$

By solving this system of linear equations, we have $r=1.25, k=-16750$. Therefore the corresponding population model is

$$
P_{n+1}=1.25 P_{n}-16750, \quad P_{0}=75000
$$

2.1.18. Suppose that a contaminated body of water is being cleaned by a filtering process. Each week this process is capable of filtering out a certain fraction a of all the pollutants present at that time, but another b tons of pollutants seep in. Here, a and b are constants that satisfy $0<a<1$ and $b>0$.
(a) If T_{0} tons of pollutants are initially in that body of water, write a general iterative equation for T_{n}, the amount of pollutants present n weeks later.

$$
T_{n+1}=(1-a) T_{n}+b
$$

(b) If each week 10% of all pollutants present can be removed but another 2 tons seep in, find the values of a and b and write the iterative equation for this process.
From the assumption, we have $a=0.1$ and $b=2$. So we have:

$$
T_{n+1}=0.9 T_{n}+2
$$

