Homework 1 Solution

Section 2.1

2. Use echelon method to solve each system of two equations in two unknowns. Check your answers.

$$
\begin{aligned}
& 4 x+y=9 \\
& 3 x-y=5
\end{aligned}
$$

Apply the transformation $-\frac{3}{4} R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
4 x+y & =9 \\
-\frac{7}{4} y & =-\frac{7}{4}
\end{aligned}
$$

And apply the transformation $\frac{1}{4} R_{1} \rightarrow R_{1}$:

$$
\begin{aligned}
x+\frac{1}{4} y & =\frac{9}{4} \\
-\frac{7}{4} y & =-\frac{7}{4}
\end{aligned}
$$

Then apply the transformation $-\frac{4}{7} R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
x+\frac{1}{4} y & =\frac{9}{4} \\
y & =1
\end{aligned}
$$

Then from $x+\frac{1}{4} \cdot 1=\frac{9}{4}$, we have $x=\frac{9}{4}-\frac{1}{4}=2$. So the unique solution is $x=2, y=1$.
12. Use echelon method to solve each system of two equations in two unknowns. Check your answers.

$$
\begin{aligned}
3 a-8 b & =14 \\
a-2 b & =2
\end{aligned}
$$

Apply the transformation $-\frac{1}{3} R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
3 a-8 b & =14 \\
\frac{2}{3} b & =-\frac{8}{3}
\end{aligned}
$$

Apply the transformation $\frac{1}{3} R_{1} \rightarrow R_{1}$:

$$
\begin{aligned}
a-\frac{8}{3} b & =\frac{14}{3} \\
\frac{2}{3} b & =-\frac{8}{3}
\end{aligned}
$$

Finally, apply the transformation $\frac{3}{2} R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
a-\frac{8}{3} b & =\frac{14}{3} \\
b & =-4
\end{aligned}
$$

From $a-\frac{8}{3}(-4)=\frac{14}{3}$, we have $a=-\frac{32}{3}+\frac{14}{3}=-6$. Therefore the unique solution is $a=-6, b=-4$.
16. Use echelon method to solve each system of two equations in two unknowns. Check your answers.

$$
\begin{array}{r}
3 x+5 y+2=0 \\
9 x+15 y+6=0
\end{array}
$$

First of all, write given system of equations as

$$
\begin{aligned}
3 x+5 y & =-2 \\
9 x+15 y & =-6 .
\end{aligned}
$$

Apply the transformation $-3 R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
3 x+5 y & =-2 \\
0 & =0
\end{aligned}
$$

Then essentially we have only one equation $3 x+5 y=-2$, or equivalently, $3 x=$ $-5 y-2$. By dividing both sides by 3 , we have $x=-\frac{5}{3} y-\frac{2}{3}$. Therefore there are infinitely many solutions and they can be written as $(x, y)=\left(-\frac{5}{3} y-\frac{2}{3}, y\right)$.
24. For each of the following systems of equations in echelon form, tell how many solutions there are in nonnegative integers.

$$
\begin{aligned}
x-7 y+4 z & =75 \\
2 y+7 z & =60
\end{aligned}
$$

From the second equation, we have $2 y=-7 z+60$. By dividing both sides by 2 , we have $y=-\frac{7}{2} z+30$. Plug it in the first equation, we have

$$
x-7\left(-\frac{7}{2} z+30\right)+4 z=75 \Rightarrow x+\frac{49}{2} z+4 z-210=75 \Rightarrow x=-\frac{57}{2} z+285 .
$$

Therefore the solutions can be written as

$$
(x, y, z)=\left(-\frac{57}{2} z+285,-\frac{7}{2} z+30, z\right)
$$

Because we want to find nonnegative solutions, we have three inequalities,

$$
\begin{gathered}
-\frac{57}{2} z+285 \geq 0,-\frac{7}{2} z+30 \geq 0, z \geq 0 \\
-\frac{57}{2} z+285 \geq 0 \Rightarrow 285 \geq \frac{57}{2} \Rightarrow 10 \geq z \\
-\frac{7}{2} z+30 \geq 0 \Rightarrow 30 \geq \frac{7}{2} z \Rightarrow z \leq \frac{60}{7} \approx 8.57
\end{gathered}
$$

So the integer values of z satisfying all of those inequalities $z \geq 0, z \leq 10, z \leq 8.57$ are $z=0,1,2,3,4,5,6,7,8$.
If z is an odd number, then we can check that $y=-\frac{7}{2} z+30$ is not an integer. So we need to exclude them. If z is an even number, then it gives integer values of $x=-\frac{57}{2} z+285$ and $y=-\frac{7}{2} z+30$. Therefore there are 5 possible z values $(0,2$, $4,6,8)$ and so there are 5 solutions.
36. An apparel shop sells skirts for $\$ 45$ and blouses for $\$ 35$. Its entire stock is worth $\$ 51,750$. But sales are slow and only half the skirts and two-thirds of the blouses are sold, for a total of $\$ 30,600$. How many skirts and blouses are left in the store?
Suppose that x is the number of blouses in the shop, and y is the number of skirts. If we sell all of them, the revenue is $45 x+35 y$. So we have an equation $45 x+35 y=51750$. From the actual selling data, we know that $45 \cdot \frac{1}{2} x+35 \cdot \frac{2}{3} y=$ 30600. Therefore we have a system of linear equations

$$
\begin{aligned}
45 x+35 y & =51750 \\
\frac{45}{2} x+\frac{70}{3} y & =30600
\end{aligned}
$$

Apply the transformation $-\frac{1}{2} R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
45 x+35 y & =51750 \\
\frac{35}{6} y & =4725
\end{aligned}
$$

Apply the transformation $\frac{1}{45} R_{1} \rightarrow R_{1}$:

$$
\begin{aligned}
x+\frac{7}{9} y & =1150 \\
\frac{35}{6} y & =4725
\end{aligned}
$$

Then apply the transformation $\frac{6}{35} R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
x+\frac{7}{9} y & =1150 \\
y & =810
\end{aligned}
$$

Then we have $x+\frac{7}{9} \cdot 810=1150$, so $x=1150-\frac{7}{9} 810=520$. Therefore $x=520$ and $y=810$.

Note that in this problem, we are interested in remaining numbers of items. Because an half of blouses are already sold, the number of remaining blouses is $520 \cdot \frac{1}{2}=260$. The number of remaining skirts is $810 \cdot \frac{1}{3}=270$.
38. Lorri Morgan has $\$ 16,000$ invested in Disney and Exxon stock. The Disney stock currently sells for $\$ 30$ a share and the Exxon stock for $\$ 70$ a share. Her stockbroker points out that if Disney stock goes up 50% and Exxon stock goes up by $\$ 35$ a share, her stock will be worth $\$ 25,500$. Is this possible? If so, tell how many shares of each stock she owns. If not, explain why not.
Suppose that x is the number of Disney stocks and y is the number of Exxon stocks she has. Based on the current price, we can make an equation on the total value $30 x+70 y=16000$. If Disney stock goes up 50%, then its new price is $30+0.5 \times 30=45$. Based on these new prices, the total value becomes $45 x+105 y=$ 25500. Therefore we can make a system of linear equations:

$$
\begin{aligned}
30 x+70 y & =16000 \\
45 x+105 y & =25500
\end{aligned}
$$

Apply the transformation $-\frac{45}{30} R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
30 x+70 y & =16000 \\
0 & =1500
\end{aligned}
$$

Because the second equation is impossible, there is no solution.
40 A bank teller has a total of 70 bills in five-, ten-, and twenty-dollar denominations. The total value of the money is $\$ 960$.
(a) Find the total number of solutions.

Suppose that x is the number of five dollar bills, y is that of ten dollar bills, and z is that of twenty dollar bills. From the total number of bills, we can make an equation $x+y+z=70$. And from the total value, we can find another equation $5 x+10 y+20 z=960$. Therefore we have a system of linear equations

$$
\begin{aligned}
x+y+z & =70 \\
5 x+10 y+20 z & =960
\end{aligned}
$$

Apply the transformation $-5 R_{1}+R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
x+y+z & =70 \\
5 y+15 z & =610
\end{aligned}
$$

Apply the transformation $\frac{1}{5} R_{2} \rightarrow R_{2}$:

$$
\begin{aligned}
x+y+z & =70 \\
y+3 z & =122
\end{aligned}
$$

So we have $y=-3 z+122$. From $x+y+z=70$, we get $x+(-3 z+122)+z=70$, which implies $x=2 z-52$. Therefore the solutions are given by $(x, y, z)=$ $(2 z-52,-3 z+122, z)$.
So $2 z-52 \geq 0,-3 z+122 \geq 0$ and $z \geq 0$.

$$
\begin{gathered}
2 z-52 \geq 0 \Rightarrow 2 z \geq 52 \Rightarrow z \geq 26 \\
-3 z+122 \geq 0 \Rightarrow 122 \geq 3 z \Rightarrow z \leq \frac{122}{3} \approx 40.66
\end{gathered}
$$

Therefore z is in integer satisfying $z \geq 26, z \leq 40.66$ and $z \geq 0$. The possible z values are $z=26,27,28, \cdots, 40$. So there are 15 solutions.
(b) Find the solution with the smallest number of five-dollar bills.

If we minimize the number of five-dollar bills (which is x), then we need to take the smallest z value, which is 26 . In this case, $(x, y, z)=(2 \cdot 26-52,-3$. $26+122,26)=(0,44,26)$.
(c) Find the solution with the largest number of five-dollar bills.

To maximize the number of five-dollar bills, we have to take the largest z value, which is 40 . Then $(x, y, z)=(2 \cdot 40-52,-3 \cdot 40+122,40)=(28,2,40)$.

